

Vishay High Power Products

Schottky Rectifier, 2 x 10 A

2 x 10 A

80 V to 100 V

PRODUCT SUMMARY

I_{F(AV)}

 V_R

FEATURES

- 150 °C T_J operation
- Center tap D²PAK and TO-262 packages
- Low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

- High frequency operation
- · Guard ring enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Halogen-free according to IEC 61249-2-21 definition
- Compliant to RoHS directive 2002/95/EC
- AEC-Q101 qualified

DESCRIPTION

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS	AND CHARACTERISTICS		
SYMBOL	CHARACTERISTICS	VALUES	UNITS
I _{FRM}	T _C = 133 °C (per leg)	20	А
V _{RRM}		80 to 100	V
I _{FSM}	$t_p = 5 \ \mu s \ sine$	850	А
V _F	10 Apk, T _J = 125 °C	0.70	V
TJ	Range	- 65 to 150	°C

VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-MBRB2080CTGPbF VS-MBR2080CTG-1PbF	VS-MBRB2090CTGPbF VS-MBR2090CTG-1PbF	VS-MBRB20100CTGPbF VS-MBR20100CTG-1PbF	UNITS
Maximum DC reverse voltage	V _R				
Maximum working peak reverse voltage	V _{RWM}	80	90	100	V

Vishay High Power Products Schottky Rectifier, 2 x 10 A

ABSOLUTE MAXIMUM RATI	NGS				
PARAMETER	SYMBOL	-	TEST CONDITIONS	VALUES	UNITS
Maximum average per leg		T _C = 133 °C, rate	od V-	10	
forward current per device	I _{F(AV)}	$T_{\rm C} = 135$ C, rate	u v _R	20	
Peak repetitive forward current per leg	I _{FRM}	Rated V _R , square T _C = 133 °C	e wave, 20 kHz	20	
Non vonstitive poels overe overest		5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	850	A
Non-repetitive peak surge current	IFSM	Surge applied at single phase, 60	rated load conditions half wave, Hz	150	
Peak repetitive reverse surge current	I _{RRM}	2.0 µs, 1.0 kHz		0.5	
Non-repetitive avalanche energy per leg	E _{AS}	$T_J = 25 \text{ °C}, I_{AS} =$	2 A, L = 12 mH	24	mJ

ELECTRICAL SPECIFICAT	IONS				
PARAMETER	SYMBOL	TEST CON	DITIONS	VALUES	UNITS
		10 A	T.I = 25 °C	0.80	
Maximum forward voltage drep	V _{FM} ⁽¹⁾	20 A	1j=25 C	0.95	v
Maximum forward voltage drop	VFM (*)	10 A	T,₁ = 125 °C	0.70	v
		20 A	$I_{\rm J} = 125$ C	0.85	
Maximum instantaneous	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	0.10	mA
reverse current	IRM ("	T _J = 125 °C	V _R = naleu V _R	6	ША
Threshold voltage	V _{F(TO)}	$T_{1} = T_{1}$ maximum		0.433	V
Forward slope resistance	r _t	ij = ij maximum		15.8	mΩ
Maximum junction capacitance	CT	$V_{R} = 5 V_{DC}$ (test signal range	e 100 kHz to 1 MHz), 25 °C	400	pF
Typical series inductance	L _S	Measured from top of termi	nal to mounting plane	8.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MEC	TANICAL S	PECIFIC	AIIUNS			
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction tempe	erature range	TJ		- 65 to 150	°C	
Maximum storage temperature range		T _{Stg}		- 65 to 175		
Maximum thermal resista junction to case per leg	ince,	R _{thJC}		2.0	°C/W	
Maximum thermal resista junction to ambient	nce	R _{thJA}	DC operation	50	0/10	
Approvimente weight				2	g	
Approximate weight				0.07	oz.	
Mounting torque	minimum		Non-lubricated threads	6 (5)	kgf · cm	
Mounting torque	maximum		Non-lubricated threads	12 (10)	(lbf ⋅ in)	
				MBRB20	080CTG	
			Case style D ² PAK	MBRB20	90CTG	
NA. 11				MBRB20	100CTG	
Marking device				MBR208	0CTG-1	
			Case style TO-262	MBR209	0CTG-1	
				MBR20100CTG-1		

Schottky Rectifier, 2 x 10 A Vishay High Power Products

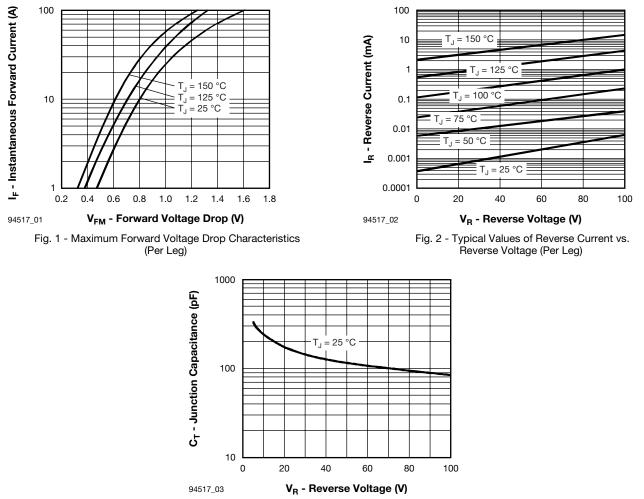
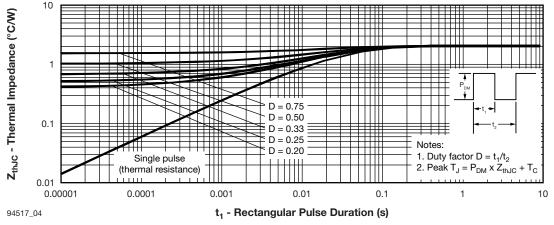
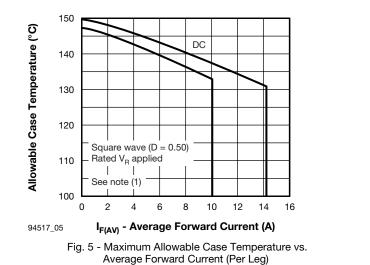
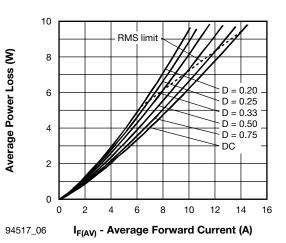
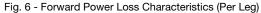
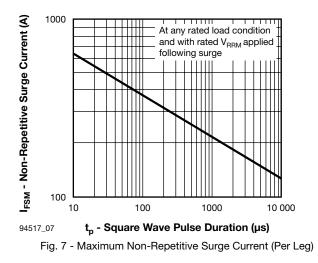


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)



Vishay High Power Products Schottky Rectifier, 2 x 10 A

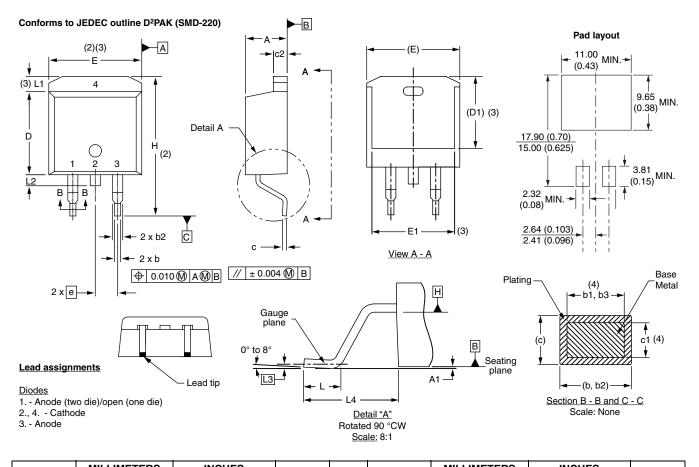
Note

- ⁽¹⁾ Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC}$;
- $\begin{array}{l} \mbox{Pd} = \mbox{Forward power loss} = \mbox{I}_{F(AV)} \times \mbox{V}_{FM} \mbox{ at } (I_{F(AV)}/D) \mbox{ (see fig. 6);} \\ \mbox{Pd}_{REV} = \mbox{Inverse power loss} = \mbox{V}_{R1} \times \mbox{I}_{R} \mbox{ (1 D);} \mbox{ } I_{R} \mbox{ at } \mbox{V}_{R1} = \mbox{Rated V}_{R} \end{array}$

Schottky Rectifier, 2 x 10 A Vishay High Power Products

ORDERING INFORMATION TABLE

Device code	VS-	MBR	в	20	100	СТ	G	-1	TL	PbF
	1	2	3	4	5	6	7	8	9	10
	5 · 6 · 7 ·	 Ess B Nu Cur Cur Cur Cur Cur Nu T T P 	ential p = D^2PA one = T rent rati age rati = Esser Schottk one = D = TO-2 one = T L = Tap R = Tap	O-262 ng (20 = ngs — ntial part xy gener ² PAK	= 20 A) : numbe ation pieces) eel (left c eel (righ free (for	oriented t oriente r D ² PAł	90 = 100 = - for D ² ed - for I	D ² PAK	ıly) only)	


LINKS TO RELAT	ED DOCUMENTS
Dimensions	www.vishay.com/doc?95014
Part marking information	www.vishay.com/doc?95008
Packaging information	www.vishay.com/doc?95032

Vishay High Power Products

D²PAK, TO-262

DIMENSIONS FOR D²PAK in millimeters and inches

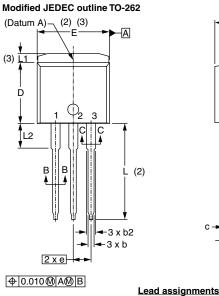
SHA

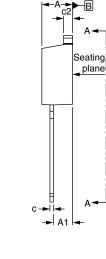
SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
A	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
с	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

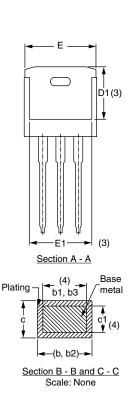
SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54	BSC	0.100	BSC	
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25	BSC	0.010	BSC	
L4	4.78	5.28	0.188	0.208	

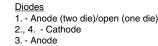
⁽⁷⁾ Outline conforms to JEDEC outline TO-263AB

Notes


- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- ⁽⁴⁾ Dimension b1 and c1 apply to base metal only
- ⁽⁵⁾ Datum A and B to be determined at datum plane H
- ⁽⁶⁾ Controlling dimension: inch


Vishay High Power Products


D²PAK, TO-262


DIMENSIONS FOR TO-262 in millimeters and inches

Lead tip

	MILLIM	MILLIMETERS		IES	NOTEO
SYMBOL -	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100	BSC	
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- ⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Controlling dimension: inches

⁽⁶⁾ Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

www.vishay.com 2

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.