SML400HB06 ### Attributes: - -aerospace build standard - -high reliability - -lightweight - -metal matrix base plate - -AIN isolation ### Maximum rated values/ Electrical Properties | Collector-emitter Voltage | | Vce | 600 | V | |------------------------------------|---|-----------------------------|----------------|-----------| | DC Collector Current | Tc=70C, Tvj=175C
Tc=25C,Tvj=175c | I _c , nom
Ic | 400
500 | A | | Repetitive peak Collector Current | tp=1msec,Tc=80C | I_{crm} | 800 | A | | Total PowerDissipation | Tc=25C | P_{tot} | 850 | W | | Gate-emitter peak voltage | | V_{ges} | +/-20 | V | | DC Forward Diode
Current | | $ m I_f$ | 400 | A | | Repetitive Peak
Forward Current | tp=1msec | $ m I_{frm}$ | 800 | A | | I ² t value per diode | Vr=0V, tp=10msec,
Tvj=125C
Tvj=150C | I ² _t | 11000
10500 | A^2 sec | | Isolation test voltage | RMS, 50Hz, t=1min | V_{isol} | 2500 | V | | Collector-emitter saturation voltage | Ic=400A,Vge=15V, Tc=25C
Ic=400A,Vge=15V,Tc=125C
Ic=400A,Vge=15V,Tc=150C | $V_{\text{ce(sat)}}$ | | 1.55
1.6
1.7 | 1.9 | V | |--------------------------------------|---|----------------------|-----|--------------------|-----|----------| | Gate Threshold voltage | Ic=6.4mA,Vce=Vge, Tvj=25C | Vge _(th) | 4.9 | 5.8 | 6.5 | V | | Input capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | C _{ies} | | 26 | | nF | | Reverse transfer Capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | C _{res} | | 0.76 | | nF | | Collector emitter cut off current | Vce=600V,Vge=0V,Tvj=25C
Vce=600V,Vge=0V,Tvj=125C | I_{ces} | | 1 | 5 | mA
mA | | Gate emitter cut off current | Vce=0V,Vge=20V,Tvj=25C | I_{ges} | | | 400 | nA | | Turn on delay time | Ic=400A, Vcc=300V | | 110 | | |----------------------------|---|------------------|------------|--------------| | | Vge=+/15V,Rg=1.5Ω,Tvj=25C
Vge=+/-15V,Rg=1.5Ω,Tvj=125C | $t_{d,on}$ | 110
120 | nsec
nsec | | | Vge=+/-15V,Rg=1.5Ω,Tvj=150C | | 130 | nsec | | Rise time | Ic=400A, Vcc=300V | | | | | | Vge=+/-15V,Rg=1.5Ω,Tvj=25C
Vge=+/-15V,Rg=1.5Ω,Tvj=125C | tr | 50
60 | nsec
nsec | | | $Vge=+/-15V,Rg=1.5\Omega,Tvj=150C$ | | 60 | nsec | | Turn off delay time | Ic=400A, Vcc=300V | | | | | | Vge=+/-15V,Rg=1.5Ω,Tvj=25C
Vge=+/-15V,Rg=1.5Ω,Tvj=125C | $t_{d,off}$ | 490
520 | nsec | | | $Vge=+/-15V,Rg=1.5\Omega,Tvj=150C$ | | 530 | nsec
nsec | | Fall time | Ic=400A, Vcc=300V | | | | | | Vge=+/-15V,Rg=1.5Ω,Tvj=25C
Vge=+/-15V,Rg=1.5Ω,Tvj=125C | t_{f} | 50
70 | nsec | | | $Vge=+/-15V,Rg=1.5\Omega,Tvj=150C$ | | 70 | nsec
nsec | | Turn energy loss per pulse | Ic=400A,Vce=300V,Vge=15V | | | | | | Rge= 1.5Ω ,L= 30 nH Tvj= 125 C Tvj= 150 C | Eon | 3.2
3.4 | mJ
mJ | | | 1vj-130C | Lon | 3.4 | 1113 | | Turn off energy loss per | Ic=400A,Vce=300V,Vge=15V | | | | | pulse | Rge= 1.5Ω ,L= 30 nH Tvj= 125 C | E_{off} | 15 | mJ | | | Tvj=150C | | 15.5 | mJ | | SC Data | tp≤10µsec, Vge≤15V Vcc=360V,
Tvi=25C | т | 2800 | | | | $Vce_{(max)}=Vces-L\sigma di/dt$ $Tvj=150C$ | I_{sc} | 2000 | A
A | | Stray Module inductance | | $L_{\sigma ce}$ | 40 | nН | | Terminal-chip resistance | | R _c | 1.2 | mΩ | ### **Diode characteristics** | Forward voltage | Ic=400A,Vge=0V, Tc=25C
Ic=400A,Vge=0V, Tc=125C
Ic=400A,Vge=0V, Tc=150C | V_{f} | 1.55
1.5
1.4 | 1.9 | V
V
V | |-------------------------------|---|------------------|--------------------|-----|----------------| | Peak reverse recovery current | If=400A, -di/dt=7000A/μsec
Vce=300V,Vge=-10V,Tvj=25C
Vce=300V,Vge=-10V,Tvj=125C
Vce=300V,Vge=-10V,Tvj=150C | I_{rm} | 270
330
350 | | A
A
A | | Recovered charge | If=400A, -di/dt=7000A/μsec
Vce=600V,Vge=-10V,Tvj=25C
Vce=600V,Vge=-10V,Tvj=125C
Vce=600V,Vge=-10V,Tvj=150C | Qr | 15
29
32 | | μC
μC
μC | | Reverse recovery energy | If=400A, -di/dt=7000A/μsec
Vce=600V,Vge=-10V,Tvj=25C
Vce=600V,Vge=-10V,Tvj=125C
Vce=600V,Vge=-10V,Tvj=150C | E _{rec} | 3.6
7.4
8.3 | | mJ
mJ
mJ | | Thermal Properties | | | Min | Typ | Max | | |-------------------------------------|---------------|------------------------|-----|------|-------------|-----| | Thermal resistance junction to case | Igbt
Diode | $R_{ heta J ext{-}C}$ | | | 0.09
0.1 | K/W | | Thermal resistance case to heatsink | | $R_{ heta ext{C-hs}}$ | | 0.03 | | K/W | | Maximum junction temperature | | Tvj | | | 175 | С | | Maximum operating temperature | | Тор | -55 | | 175 | С | | Storage Temperature | | Tstg | -55 | | 175 | С | # output characteristic IGBT-inverter (typical) lc = f (VcE) Voe = 15 V output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) T_{VJ} = 150°C transfer characteristic IGBT-inverter (typical) Ic = f (V_{GE}) Vce = 20 V switching losses IGBT-inverter (typical) $E_{on} = f(I_C), E_{off} = f(I_C)$ $V_{GE} = \pm 15 \text{ V}, R_{Gon} = 1,5 \Omega, R_{Goff} = 1,5 \Omega, V_{CE} = 300 \text{ V}$ ### switching losses IGBT-Inverter (typical) $E_{on} = f(R_{\Theta}), E_{off} = f(R_{\Theta})$ $V_{GE} = \pm 15 \text{ V, Io} = 400 \text{ A, Voe} = 300 \text{ V}$ reverse bias safe operating area IGBT-inv. (RBSOA) $I_C = f(V_{CE})$ $V_{GE} = \pm 15 \text{ V}$, $R_{Goff} = 1,5 \Omega$, $T_{VJ} = 150^{\circ}\text{C}$ ### forward characteristic of diode-inverter (typical) $I_F = f(V_F)$ ### All dimensions in mm ### CIRCUIT DIAGRAM