

SML400HB06

Attributes:

- -aerospace build standard
- -high reliability
- -lightweight
- -metal matrix base plate
- -AIN isolation

Maximum rated values/ Electrical Properties

Collector-emitter Voltage		Vce	600	V
DC Collector Current	Tc=70C, Tvj=175C Tc=25C,Tvj=175c	I _c , nom Ic	400 500	A
Repetitive peak Collector Current	tp=1msec,Tc=80C	I_{crm}	800	A
Total PowerDissipation	Tc=25C	P_{tot}	850	W
Gate-emitter peak voltage		V_{ges}	+/-20	V
DC Forward Diode Current		$ m I_f$	400	A
Repetitive Peak Forward Current	tp=1msec	$ m I_{frm}$	800	A
I ² t value per diode	Vr=0V, tp=10msec, Tvj=125C Tvj=150C	I ² _t	11000 10500	A^2 sec
Isolation test voltage	RMS, 50Hz, t=1min	V_{isol}	2500	V

Collector-emitter saturation voltage	Ic=400A,Vge=15V, Tc=25C Ic=400A,Vge=15V,Tc=125C Ic=400A,Vge=15V,Tc=150C	$V_{\text{ce(sat)}}$		1.55 1.6 1.7	1.9	V
Gate Threshold voltage	Ic=6.4mA,Vce=Vge, Tvj=25C	Vge _(th)	4.9	5.8	6.5	V
Input capacitance	f=1MHz,Tvj=25C,Vce=25V, Vge=0V	C _{ies}		26		nF
Reverse transfer Capacitance	f=1MHz,Tvj=25C,Vce=25V, Vge=0V	C _{res}		0.76		nF
Collector emitter cut off current	Vce=600V,Vge=0V,Tvj=25C Vce=600V,Vge=0V,Tvj=125C	I_{ces}		1	5	mA mA
Gate emitter cut off current	Vce=0V,Vge=20V,Tvj=25C	I_{ges}			400	nA

Turn on delay time	Ic=400A, Vcc=300V		110	
	Vge=+/15V,Rg=1.5Ω,Tvj=25C Vge=+/-15V,Rg=1.5Ω,Tvj=125C	$t_{d,on}$	110 120	nsec nsec
	Vge=+/-15V,Rg=1.5Ω,Tvj=150C		130	nsec
Rise time	Ic=400A, Vcc=300V			
	Vge=+/-15V,Rg=1.5Ω,Tvj=25C Vge=+/-15V,Rg=1.5Ω,Tvj=125C	tr	50 60	nsec nsec
	$Vge=+/-15V,Rg=1.5\Omega,Tvj=150C$		60	nsec
Turn off delay time	Ic=400A, Vcc=300V			
	Vge=+/-15V,Rg=1.5Ω,Tvj=25C Vge=+/-15V,Rg=1.5Ω,Tvj=125C	$t_{d,off}$	490 520	nsec
	$Vge=+/-15V,Rg=1.5\Omega,Tvj=150C$		530	nsec nsec
Fall time	Ic=400A, Vcc=300V			
	Vge=+/-15V,Rg=1.5Ω,Tvj=25C Vge=+/-15V,Rg=1.5Ω,Tvj=125C	t_{f}	50 70	nsec
	$Vge=+/-15V,Rg=1.5\Omega,Tvj=150C$		70	nsec nsec
Turn energy loss per pulse	Ic=400A,Vce=300V,Vge=15V			
	Rge= 1.5Ω ,L= 30 nH Tvj= 125 C Tvj= 150 C	Eon	3.2 3.4	mJ mJ
	1vj-130C	Lon	3.4	1113
Turn off energy loss per	Ic=400A,Vce=300V,Vge=15V			
pulse	Rge= 1.5Ω ,L= 30 nH Tvj= 125 C	E_{off}	15	mJ
	Tvj=150C		15.5	mJ
SC Data	tp≤10µsec, Vge≤15V Vcc=360V, Tvi=25C	т	2800	
	$Vce_{(max)}=Vces-L\sigma di/dt$ $Tvj=150C$	I_{sc}	2000	A A
Stray Module inductance		$L_{\sigma ce}$	40	nН
Terminal-chip resistance		R _c	1.2	mΩ

Diode characteristics

Forward voltage	Ic=400A,Vge=0V, Tc=25C Ic=400A,Vge=0V, Tc=125C Ic=400A,Vge=0V, Tc=150C	V_{f}	1.55 1.5 1.4	1.9	V V V
Peak reverse recovery current	If=400A, -di/dt=7000A/μsec Vce=300V,Vge=-10V,Tvj=25C Vce=300V,Vge=-10V,Tvj=125C Vce=300V,Vge=-10V,Tvj=150C	I_{rm}	270 330 350		A A A
Recovered charge	If=400A, -di/dt=7000A/μsec Vce=600V,Vge=-10V,Tvj=25C Vce=600V,Vge=-10V,Tvj=125C Vce=600V,Vge=-10V,Tvj=150C	Qr	15 29 32		μC μC μC
Reverse recovery energy	If=400A, -di/dt=7000A/μsec Vce=600V,Vge=-10V,Tvj=25C Vce=600V,Vge=-10V,Tvj=125C Vce=600V,Vge=-10V,Tvj=150C	E _{rec}	3.6 7.4 8.3		mJ mJ mJ

Thermal Properties			Min	Typ	Max	
Thermal resistance junction to case	Igbt Diode	$R_{ heta J ext{-}C}$			0.09 0.1	K/W
Thermal resistance case to heatsink		$R_{ heta ext{C-hs}}$		0.03		K/W
Maximum junction temperature		Tvj			175	С
Maximum operating temperature		Тор	-55		175	С
Storage Temperature		Tstg	-55		175	С

output characteristic IGBT-inverter (typical) lc = f (VcE) Voe = 15 V

output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) T_{VJ} = 150°C

transfer characteristic IGBT-inverter (typical)
Ic = f (V_{GE})
Vce = 20 V

switching losses IGBT-inverter (typical)

 $E_{on} = f(I_C), E_{off} = f(I_C)$ $V_{GE} = \pm 15 \text{ V}, R_{Gon} = 1,5 \Omega, R_{Goff} = 1,5 \Omega, V_{CE} = 300 \text{ V}$

switching losses IGBT-Inverter (typical)

 $E_{on} = f(R_{\Theta}), E_{off} = f(R_{\Theta})$ $V_{GE} = \pm 15 \text{ V, Io} = 400 \text{ A, Voe} = 300 \text{ V}$

reverse bias safe operating area IGBT-inv. (RBSOA) $I_C = f(V_{CE})$ $V_{GE} = \pm 15 \text{ V}$, $R_{Goff} = 1,5 \Omega$, $T_{VJ} = 150^{\circ}\text{C}$

forward characteristic of diode-inverter (typical) $I_F = f(V_F)$

All dimensions in mm

CIRCUIT DIAGRAM