

APT55M65L2FLL

550V 78A 0.065Ω

POWER MOS 7TM FREDFET

Power MOS 7TM is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7TM by significantly lowering R_{DS(ON)} and Q_g. Power MOS 7TM combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

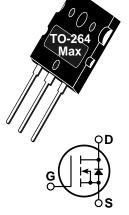
- Lower Input Capacitance
- Lower Miller Capacitance
- Lower Gate Charge, Qg

MAXIMUM RATINGS

Easier To Drive

Increased Power Dissipation

• Popular TO-264 MAX Package


All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT55M65L2FLL	UNIT	
V _{DSS}	Drain-Source Voltage	550	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	78	Amos	
I _{DM}	Pulsed Drain Current ①	312	- Amps	
V _{GS}	Gate-Source Voltage Continuous	±30		
V _{GSM}	Gate-Source Voltage Transient	±40	- Volts	
P _D	Total Power Dissipation @ T _C = 25°C	893	Watts	
	Linear Derating Factor	7.14	W/°C	
T_{J},T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150		
Τ _L	Lead Temperature: 0.063" from Case for 10 Sec.	300	- °C	
I _{AR}	Avalanche Current $^{\textcircled{1}}$ (Repetitive and Non-Repetitive)	78	Amps	
E _{AR}	Repetitive Avalanche Energy ①	50		
E _{AS}	Single Pulse Avalanche Energy ④	3200	- mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	МАХ	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V, I_{D} = 250\mu A$)	550			Volts
I _{D(on)}	On State Drain Current ⁽²⁾ $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	78			Amps
R _{DS(on)}	Drain-Source On-State Resistance ⁽²⁾ $(V_{GS} = 10V, 0.5 I_{D[Cont.]})$			0.065	Ohms
I _{DSS}	Zero Gate Voltage Drain Current ($V_{DS} = V_{DSS}$, $V_{GS} = 0V$)			250	μA
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125^{\circ}C$)			1000	
I _{GSS}	Gate-Source Leakage Current ($V_{GS} = \pm 30V$, $V_{DS} = 0V$)			±100	nA
V _{GS(th)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 5mA$)	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

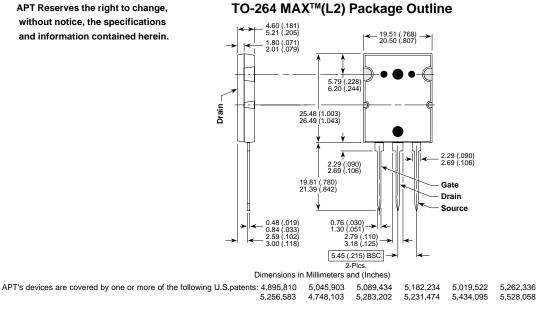
Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT	
C _{iss}	Input Capacitance	$V_{GS} = 0V$		9710			
C _{oss}	Output Capacitance	V _{DS} = 25V		1870		pF	
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		130			
Qg	Total Gate Charge ³	V _{GS} = 10V		233			
Q_gs	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		58		nC	
Q _{gd}	Gate-Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		105]	
t _d (on)	Turn-on Delay Time	V _{GS} = 15V		23			
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		20		ns	
t _d (off)	Turn-off Delay Time	I _D = I _D [Cont.] @ 25°C		55		115	
t _f	Fall Time	R _G =0.6Ω		8			

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
ا _S	Continuous Source Current (Body Diode)				78	A
I _{SM}	Pulsed Source Current ^① (Body Diode)				312	Amps
V _{SD}	Diode Forward Voltage $(V_{GS} = 0V, I_S = -I_D [Cont.])$				1.3	Volts
^{dv/} dt	Peak Diode Recovery ^{dv/} dt ^⑤				15	V/ns
t _{rr}	Reverse Recovery Time	T _j = 25°C			300	ns
	(I _S = -I _D [Cont.], ^{di} / _{dt} = 100A/µs)	T _j = 125°C			600	
Q _{rr}	Reverse Recovery Charge	T _j = 25°C		2.6		
	(I _S = -I _D [Cont.], ^{di} / _{dt} = 100A/µs)	T _j = 125°C		10		μC
I _{RRM}	Peak Recovery Current	T _j = 25°C		17		
	$(I_{S} = -I_{D} [Cont.], \frac{di}{dt} = 100 A/\mu s)$	T _j = 125°C		34		Amps

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ extsf{ heta}JC}$	Junction to Case			0.14	
$R_{ extsf{ heta}JA}$	Junction to Ambient			40	°C/W


① Repetitive Rating: Pulse width limited by maximum junction temperature.

⁽²⁾ Pulse Test: Pulse width < 380 μ s, Duty Cycle < 2%

③ See MIL-STD-750 Method 3471

(4) Starting T_j = +25°C, L = 1.05mH, R_G = 25 Ω , Peak I_L = 78A (5) dv/_{dt} numbers reflect the limitations of the test circuit rather than the device itself. $I_{S} \leq -I_{D[Cont.]} \frac{di}{dt} \leq 700 \text{A/}\mu \text{s}$ $V_{R} \leq V_{DSS}$ $T_{J} \leq 150^{\circ}\text{C}$

APT Reserves the right to change, without notice, the specifications and information contained herein.

