

DS-00830-00

830PGA Series

Programmable
Gain
Amplifiers

Index

Features	3
Applications	3
General Description	3
Analog Input Characteristics	4
Analog Output Characteristics	
General Analog Characteristics	5
Power Requirements	5
Environmental	
Performance Curves	
Programming Characteristics	
Functional Schematic	
Package and Pin Data	
Ordering Information	

830PGA Series Programmable Gain Amplifier

FEATURES

- Adjustable Gain Selection up to 60 dB (1000X) in 0.5, 1.0, or 2.0 dB steps
- Digital Gain Selection (8 bit word) via Industry - Standard CMOS Interface Logic
- · Differential Input
- Internally Latched Control Lines
- · >100 kHz Full Power Bandwidth
- · Plug-In Ready-to-Use

APPLICATIONS

- · Data Acquisition
- Test Equipment
- · Remote Instrumentation Systems
- Ground Loop Elimination in Remote measurements
- System Dynamic Range and Resolution Improvements
- Telemetry
- · Process Control
- Medical, Scientific & Engineering Research
- Digitally controlled autoranging system

General Description

The 830PGA Series programmable amplifiers are digitally controlled gain modules that were designed for conditioning DC-Coupled Wideband Signals in automated systems.

The 830 PGA Series of amplifiers are programmable from:

0 dB to 60 dB in 2 dB steps or 0 dB to 40 dB in 1 dB steps

or 0 dB to 20 dB in 0.5 dB steps and feature a fill power bandwidth in excess of 100 kHz.

The gain selection is accomplished with an 8-bit word which can be internally latched for easy microprocessor interfacing, or be simply controlled manually from an 8-bit DIP switch. Other performance features includes differential input, tight gain and phase matching, and low noise and distortion, making this plug-in ready - to - use amplifier ideal for many signal conditioning applications.

These units contain 8-bit CMOS clocked "D" latches which can be digitally configured to operate in any of three modes:

- a) Transfer frequency control input data into the latches on the STROBE (or CLOCK) rising edge.
- b) As above, but on the STROBE falling edge.
- c) Continuously follow the frequency tuning input data, in a nonlatching transparent mode.

830PGA Series General Specifications

Analog Input Characteristics

Configuration	DC Coupled Differential Input		
	AC Coupled Available		

Impedance 1 Meg Ω II 47 pF

 Bias Current
 1 μA Max.

 Offset Current
 10 nA Max.

 Voltage Range
 ± 10 VPEAK

 Maximum Safe Voltage
 ± 120 VPEAK

Common Mode Rejection Ratio Typ. 80 dB at 1 kHz

Min. 60 dB from 10 Hz to 100 kHz

Noise (Referred to input)
90 μVRMs (@ 4 MHz Bandwidth)
20 μVRMs (@ 100 kHz Bandwidth)
typ 110 dB down from 7 VRMs

Analog Output Characteristics

Configuration	Single Ended DC Coupled
Impedance	<1 Ω
Current	\pm 10 mA Max. (for linear operation)
Initial Offset @ G = 0 dB (@ 25 °C)	< 2 mV Typ. 10 mV Max.
Initial Offset @ G = 60 dB (@ 25 °C)	± 30 mV Typ. ± 80 mV Max.
Offset vs. Temp. @ $G = 0 dB$ (RTI)	50 μV/°C Typ. 100 μV/°C Max.
Offset vs. Temp. @ G = 60 dB (RTI)	20 μV/°C Typ.

40 μV/°C Max.

830PGA Series General Specifications (cont'd)

Gain 0 to 60 dB in 2 dB Steps

Gain Tolerance ± 0.02 dB

Gain Match (Channel to Channel @ 0 dB) 0.04 dB from 1 Hz to 100 kHz

Gain vs. Temp. @ G = 0 dB 0.001 $dB/^{\circ}C$

(0.01 %/°C)

Gain vs. Temp. @ G = 60 dB 0.005 dB/°C

(0.05 %/°C)

Phase Match (Channel to Channel @ 0 dB) 0.5° from 1 Hz to 100 kHz

Distortion 0.003% @ 1 kHz 0.02% @ 90 kHz

Full Power Bandwidth 100 kHz

Power Requirements

Rated Voltage ± 15 Vdc

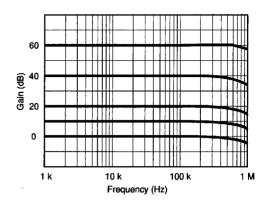
Operating Range ± 12 Vdc to ± 18 Vdc

Max. Safe Voltage ± 18 Vdc
Quiescent Current ± 38 mA

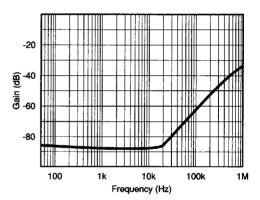
± 4 mA (7 V_{RMS} In, Output open)

Environmental

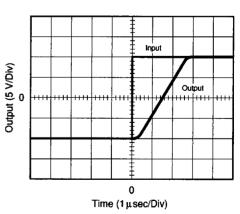
Operating Temperature -25 °C to +85 °C Storage Temperature -40 °C to +85 °C


Altitude 10,000 Feet

Relative Humidity 0 % to 95 % @ 60 °C (non-condensing)

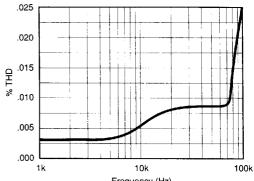


830PGA Series Typical Performance Curves


Frequency Response

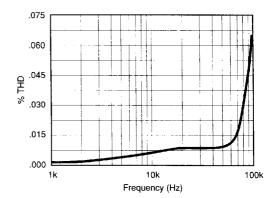
Common Mode Rejection Ratio

Step Response (Slew Rate V/T = 10 to 20 V/μs)


(Slew Rate Increases with Programmed Gain)

830PGA Series **Typical Performance Curves**

Total Harmonic Distortion


Vout = 3.5 V RMS (Gain = 0 dB)

Frequency (Hz)

Total Harmonic Distortion

Vout = 6.5 V RMS (Gain = 0 dB)

830PGA Series Programming Characteristics

DATA LATCH CHARACTERISTICS

Data Control Lines

Functions

Latch Strobe (C)

Transition Polarity (P)

Data Control Modes

Mode 1 (Latch)

 $P = 0; C = 0 \rightarrow 1$

gain latched on rising edge

Mode 2 (Latch)

Mode 3 (Transparent)

 $P = 1; C = 1 \rightarrow 0$

gain latched on falling edge gain follows input

P = 0; C = 0 or P = 1; C = 1

INPUT DATA LEVELS (CMOS LOGIC)

input Voltage (Vs = 15V)	Min.	Max.
Low Level In	0 V	4 V
High Level In	11 V	15 V
Input Current		
High Level In	– 10 [–] 5 μΑ Typ.	– 1 μΑ
Low Level in	+ 10 [–] 5 μΑ Typ.	+ 1 µA
Input Capacitance	5 pF	7.5 pF
Latch Response		·
Data Set Up Time ¹	25 ns	-
Data Hold Time ²	50 ns	_
Strobe Pulse Width	80 ns	

PROGRAMMING WEIGHTS (Gain dB)

LSB					MSB				
Model	D0	D1	D2	D3	D4	D5	D6	D7	Steps
830 PGA - 60	2	4	6	8	10	10	20	20	2 dB
830 PGA - 40	1	2	3	4	5	5	10	20	1 dB
830 PGA - 20	0.5	1.0	1.5	2.0	2.5	2.5	5.0	5.0	0.5 dB

Notes

^{1.} The time data must be present before occurrence of the strobe edge.

^{2.} The time data must be present after occurrence of the strobe edge.

830PGA Series
Programming
Characteristics (cont'd)
Functional Schematic

INPUT DATA FORMAT

Gain Select Bits

Positive Logic

Logic "1" = +Vs

Logic "0" = Gnd

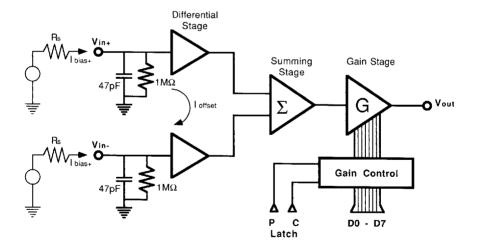
Bit Weighting

(Binary-Coded)

Gain Range

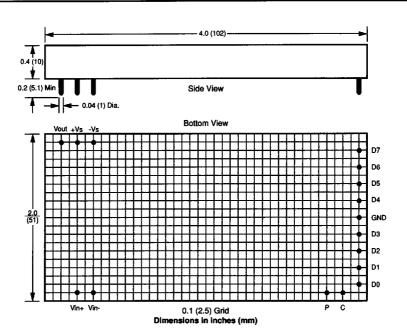
D0 = LSB

D7 = LSB


1000:1

Logic threshold typ. = 0.45 Vs

Least Significant Bit Most Significant Bit


Programmed Weighted

Functional Schematic

830PGA Series Package Data and Pin Designation

PIn Designation

Vin+	Input Signal Positive	D_{o}	Gain Bit 0 (LSB)
Vin-	Input Signal Negative	D,	Gain Bit 1
Vout	Output Signal	D_2	Gain Bit 2
"P"	Transition Polarity Bit	D_3	Gain Bit 3
"C"	Gain Strobe Bit	D ₄	Gain Bit 4
+ Vs	Supply Voltage, Positive	D _s	Gain Bit 5
– Vs	Supply Voltage, Negative	D _e	Gain Bit 6
Gnd	Power and Signal Return	D_{τ}	Gain Bit 7 (MSB)

Grounding

To achieve specified precision, all analog and digital grounds are connected internal to the filter. Should this cause a problem, all digital inputs (C, P, and D0 - D7) can be optically isolated.

830PGA Series Ordering Information

Standard Models

Model Number	Max. Gain (dB)	Gain Step (dB)
830PGA-60	60	2.0
830PGA-40	40	1.0
830PGA-20	20	0.5

Input and Output Options

Suffix Added to Model Number

/AC

/SN

/DF

Description

AC Coupled Input and Output

Single Ended Input

Differential Output

Custom Features

For custom models, please contact our sale office.