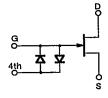
SST6908 SERIES

Siliconix incorporated


N-Channel JFET Circuits

The SST6908 Series is much more than a JFET. The addition of back-to-back diodes effectively clamps input "over-voltage" while a highperformance JFET provides an effective amplification stage. With the addition of a source resistor, a complete common-source amplifier is created which provides both low leakage and very low noise. This performance is especially effective as a small signal pre-amplifier as well as impedance matching between low and high impedance sources. Finally, its SOT-143 package provides a cost effective design solution and is available tape and reeled to support automated assembly. (See Section 8.)

For additional design information please see performance curves NBB, which are located in Section 7.

SIMILAR PRODUCTS

- TO-72, See 2N6908 Series
- Chips, Order 2N69XXCHP

PART NUMBER	V _{GS(OFF)} MAX (V)	V _(BR) GSS MIN (V)	9 fs MIN (µS)	I _{DSS} MAX (mA)
SST6908	-1.8	-30	100	2
SST6909	-2.3	-30	400	3.5
SST6910	-3.5	-30	1200	5

SOT-143

TOP VIEW

- 1 GATE 2 DRAIN
- 3 SOURCE 4 DIODES (4TH)

PRODUCT MARKING						
	SST6908	B08				
	SST6909	B09				
J	SST6910	B10				

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V _{GD}	-30	V
Gate-Source Voltage	V _{GS}	-30] <u> </u>
Forward Gate Current	IG	10	mA
Power Dissipation	PD	350	mW
Power Derating		2.8	mW/°C
Operating Junction Temperature	TJ	-55 to 150	
Storage Temperature	T _{stg}	-55 to 150	°C
Lead Temperature (1/16" from case for 10 seconds)	TL	300	

4-150

Siliconix incorporated

SST6908 SERIES

"ICUI PUI AIEC										
ELECTRICAL CHARACTERISTICS 1			LIMITS							
				SST6908		SST6909		SST6910		
PARAMETER	SYMBOL	TEST CONDITIONS	TYP2	MIN	МАХ	MIN	МАХ	MIN	MAX	UNIT
STATIC	STATIC							·······		
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A, V_{DS} = 0 V$ $V_{G4} = 0 V$	-50	-30		-30		-30		
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 10 V, I _D = 1 nA V _{G4} = 0 V	ž	-0.3	-1.8	-0.6	-2.3	-0.9	-3.5	"
Saturation Drain Current ³	I _{DSS}	V _{DS} = 10 V, V _{GS} = 0 V V _{G4} = 0 V		0.05	2	0.2	3.5	0.6	5	mA
Gate Reverse Current	lass	V _{GS} = -15 V V _{DS} = 0 V V _{G4} = 0 V T _A =125°C	-2 -1		25		-25		25	рА пА
Gate Operating Current	l _G	V _{DG} = 15 V, I _D = 50 дА	-2							nA.
Forward Gate Diode Current 4	I _{G4}	V _{G4} = ± 100 mV	<u>±</u> 1		± 10		± 10		<u>+</u> 10	pΑ
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = \pm 0.5 \text{ mA}$, $V_{DS} = 0 \text{ V}$ $V_{G4} = 0 \text{ V}$	± 0.7		±1.2		<u>+</u> 1.2		±1.2	v
DYNAMIC	DYNAMIC								 -	
Common-Source Forward Transconductance	Q _{fs}	V _{DS} = 15 V, V _{GS} = 0 V		0.1	3	0.4	3.5	1.2	4	mS
Common-Source Output Conductance	gos	V _{Q4} = 0 V, f = 1 kHz			50		75		100	μS
Common-Source Input Capacitance	Ciss	V _{DS} = 10 V, V _{GS} = 0 V	3.2		5		5		5	
Common-Source Reverse Transfer Capacitance	C _{rss}	V _{G4} = 0 V, f = 1 MHz	1.5		2		2	"	2	pF
Equivalent Input Noise Voltage	ēn	V _{DS} = 10 V, V _{GS} = 0 V f = 10 Hz	12		25		25	,.	25	n\/
Noise Figure	NF	V_{DS} = 15 V, V_{QS} = 0 V, f = 1 kHz R $_{G}$ = 1 M Ω	0.1		1		1		1	dΒ

NOTES: 1. T_A = 25 °C unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW = 300 ⊥s, duty cycle ≤ 3%.
4. Forward diode current when a voltage is applied between gate and fourth lead.