

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagrams. The logic diagrams shall be as specified on figure 3.
- 3.2.4 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4.
 - 3.2.5 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-86839 REVISION LEVEL SHEET 3

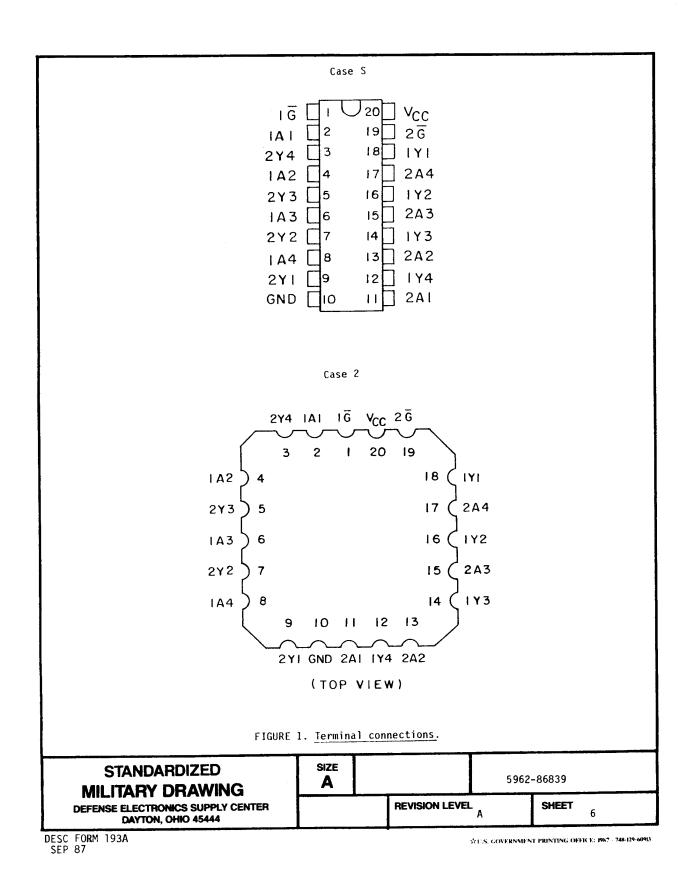
DESC FORM 193A SEP 87

₩ U.S. GOVERNMENT PRINTING OFFICE 1987—549-09

High level output voltage Low level output voltage Off-state output current	V _{OH1}	unle VIH = 2.0 V _{CC} = 4.5 I _{OH} = -12 3/ 4/	V V	se specified VIL = 0.8 V	subgroups	Min	Max	1
Low level output voltage Off-state output	 	$ V_{CC} = 4.5$ $ I_{OH} = -12$	γ	V _{IL} = 0.8 V	1, 3		T	
voltage Off-state output	V _{OH2}	I _{OH} = -12 <u>3/4/</u>	.0 mA			2.0		V
voltage Off-state output	V _{OH2}		.0 mA	V _{IL} = 0.7 V	2		! !	1
voltage Off-state output	ļ	$ V_{IH} = 2.0$ $ V_{CC} = 4.5$) V V _{IL} S V	VIL = 0.8 V	1, 3	2.4] 	V
voltage Off-state output	<u> </u> 	$I_{OH} = -3.0 \text{ mA}$		V _{IL} = 0.7 V	2	-] 	
voltage Off-state output	I V _{ОНЗ}	V _{IH} = 2.0 V _{CC} = 4.5	٧	V _{IL} = 0.8 V	1, 3	2.5	2.5	
voltage Off-state output	 	I OH = -0.4	.4 mA	V _{IL} = 0.7 V	2	-	 	
	1 55	V _{IH} = 2.0 V _{CC} = 4.5	5 V	V _{IL} = 0.8 V	1, 3	_	0.4	V
		$I_{OL} = 12 \text{ mA}$ $\frac{4}{5}$	mA	$V_{IL} = 0.7 V$	2		 	
	IOZH	V _{CC} = 5.5 V _{IH} = 2.0	V V	V _{OUT} = 2.7 V	1, 2, 3		20	 μ A
	IOZL	† 		V _{OUT} = 0.4 V	1, 2, 3		-20	μA
High level input current	II _{IH1}	$ V_{IN} = 2.7$					20	 μA
	II _{IH2}	V _{CC} = 5.5 V _{IN} = 7.0 All other	V V inputs =	0.0 v	1, 2, 3		100	μA
Low level input current	IIIL	 V _{CC} = 5.5 V _{IN} = 0.4					-0.1	mA
Output current	10	V _{CC} = 5.5 V			1, 2, 3	-30	-112	mA
See footnotes at end of	table.							
STANDARDI			SIZE A		E 04	52-86839	· · · · · · · · · · · · · · · · · · ·	<u> المراجع المسمس</u>
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER					EVEL SHEET			

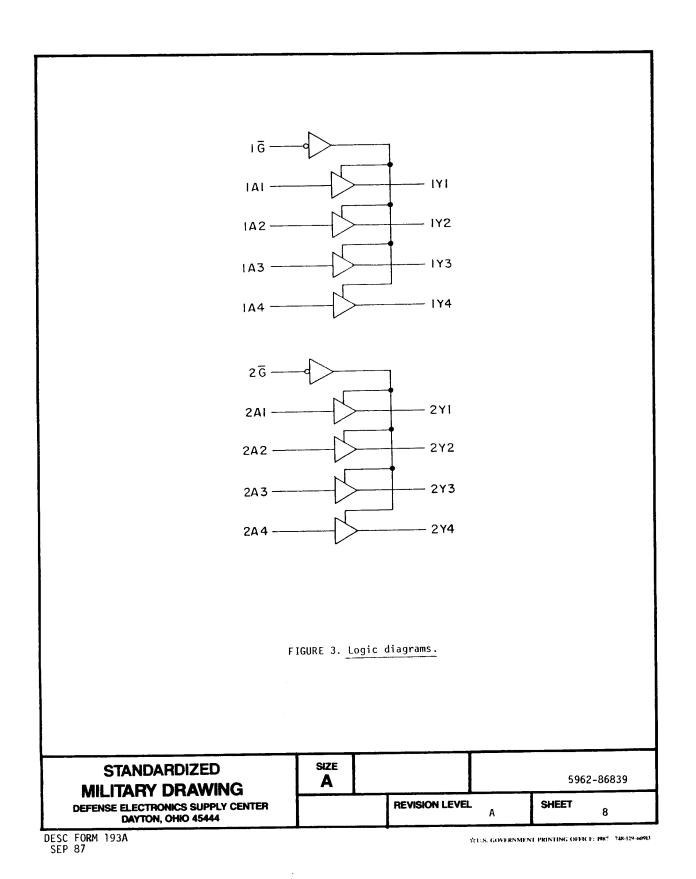
DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987--549-096

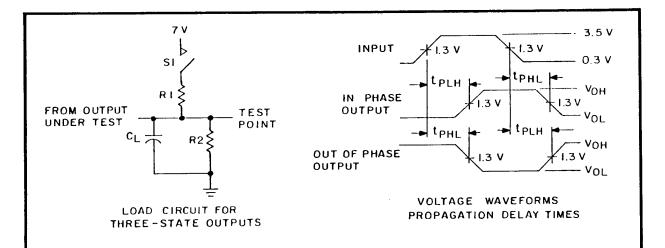

TABLE I.	Electri	cal performance chara	acteristics 1/	2/ - Contine	ued.		
Test	 Symbol	Condition	Group A	Limi	its	Unit	
	<u> </u>	-55°C < T _C dunless otherwi	<pre>← +125°C se specified</pre>	subgroups	Min	 Max	
High level supply current	ICCH	V _{CC} = 5.5 V Outputs high		1, 2, 3		15	mA
Low level supply current	ICCL	T - -	 Outputs low 	1, 2, 3		 24 	mA mA
Supply current disabled	Iccz	Ť 	 Outputs disabled	1, 2, 3		27	mA
Functional tests	 	See 4.3.1c 7/		7,8		 	
Propagation delay time, A to Y	t _{PLH}	V _{CC} = 4.5 V to 5.5 V C _L = 50 pF	V	9, 10, 11	1	16	ns
	t _{PHL}	8/ See figure 4 R ₁ = 500Ω		9, 10, 11	3	12	l ns
Output enable time, G to Y	l t _{PZL}	$\begin{bmatrix} R_2^1 = 500\Omega \\ I \end{bmatrix}$		9, 10, 11	1	24	ns
	tpZH	- 		9, 10, 11	1	26 	ns
Output disable time, G to Y	t _{PLZ}	Ť 		9, 10, 11	1	 26	ns
	t _{PHZ}	- 		9, 10, 11	2	10	ns

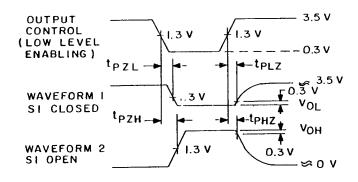
- 1/ Unused inputs that do not directly control the pin under test must be \geq 2.5 V or \leq 0.4 V.
- 2/ Unused inputs shall not exceed 5.5 V or go less than 0.0 V. No inputs shall be floated.
- $\underline{3}/$ One input to buffer under test must be = VIH, enable inputs shall be $\underline{<}$ 0.7 V.
- 4/ All outputs must be tested. In the case where only one input at V_{IL} maximum or V_{IH} minimum produces the proper output state, the test must be performed with each input being selected as the V_{IL} maximum or V_{IH} minimum input.
- 5/ One input to buffer under test must = V_{IL}, enable inputs shall be ≤ 0.7 V.
- 6/ The output conditions have been chosen to produce a current that closely approximates one-half of the true short circuit output current, IOS. Not more than one output will be tested at a time and the duration of the test condition shall not exceed one second.
- 7/ Functional tests shall be conducted at input test conditions of 0.0 V \leq V_{IL} \leq V_{OL} and V_{OH} \leq V_{IH} \leq V_{CC}.
- 8/ The propagation delay limits are based on single output switching. Unused inputs = 3.5 V or \le 0.3 V.

STANDARDIZED MILITARY DRAWING	SIZE A	5962-86839			-86839	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL	-	SHEET	5


DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987—549-096




Powered by ICminer.com Electronic-Library Service CopyRight 2003

Outputs Inputs L L Н Н L Z н | х H = High voltage level L = Low voltage level Z = High impedance state χ = Irrelevant FIGURE 2. <u>Truth table</u>. **STANDARDIZED** SIZE 5962-86839 Α **MILITARY DRAWING REVISION LEVEL** SHEET DEFENSE ELECTRONICS SUPPLY CENTER 7 DAYTON, OHIO 45444 DESC FORM 193A SEP 87 \$(1.8. GOVERNMENT PRINTING OFFICE: 1987 - 748-129-60913

Powered by ICminer.com Electronic-Library Service CopyRight 2003

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE STATE OUTPUTS

NOTES:

- 1. C_L includes probe and jig capacitance.
- 2. All input pulses have the following characteristics: PRR \leq 10 MHz, duty cycle = 50 percent, t_r = t_f = 3.0 ns ± 1.0 ns.
- 3. When measuring propagation delay items, switch S1 is open.
- 4. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

FIGURE 4. Waveforms and test circuit.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-86839 REVISION LEVEL A SHEET 9

DESC FORM 193A SEP 87 ☆U.S. GOVERNMENT PRINTING OFFICE: 1987 748-129-66913

- 3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 tests shall verify the truth table as specified on figure 2 herein.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A or D using the circuit submitted with the certificate of compliance (see $3.5\ \text{herein}$).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A		5962	2-86839	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	•	SHEET 10	

DESC FORM 193A SEP 87

1/2 U.S. GOVERNMENT PRINTING OFFICE: 1987—549-096

TABLE II. Electrical test requirements.

 MIL-STD-883 test requirements 	Subgroups (per method 5005, table I)		
Interim electrical parameters (method 5004)			
 Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9, 10, 11		
 Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10, 11		
 Groups C and D end-point electrical parameters (method 5005)	1, 2, 3		

^{*}PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/38303B--.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-86839

REVISION LEVEL
A
11

DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987—549-09

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number	
5962-8683901SX	27014 18324 01295	54ALS244AW/883 54ALS244A/BSA SNJ54ALS244AW	M38510/38303BSX	
5962-86839012X <u>2</u> /	27014 18324 01295	54ALS244AE/883 54ALS244A/B2A SNJ54ALS244AFK	M38510/38303B2X	

- $\frac{1}{2}$ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 2/ This device is inactive for new design. Use QPL device.

Vendor CAGE number	Vendor name and address			
01295	Texas Instruments, Incorporated P.O. Box 6448 Midland, TX 79701			
18324	Signetics Corporation 4130 South Market Court Sacramento, CA 95834			
27014	National Semiconductor Corporation 2900 Semiconductor Drive Santa Clara, CA 95051			

STANDARDIZED MILITARY DRAWING	SIZE 5962-86839			
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	•	SHEET 12

DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987--549-096

011935 _ _ _