### **Quint Differential Line Receiver**

# Product Preview ELECTRICALLY TESTED PER: 100E516

The 100E516 is a quint differential line receiver with emitter-follower outputs. An internally generated reference supply (V<sub>BB</sub>) is available for single-ended reception.

Active current sources plus a deep collector feature of the MOSAIC III process provide the receivers with excellent common-mode noise rejection. Each receiver has a dedicated VCCO supply lead, providing optimum symmetry and stability.

The receiver design features clamp circuity to cause a defined state if both the inverting and non-inverting inputs are left open; in this case the Q output goes LOW, while the  $\overline{\mathbf{Q}}$  output goes HIGH. This feature makes the device ideal for twisted pair applications.

If both inverting and non-inverting inputs are at equal potential > -2.5 V, the receiver does not go to a defined state, but rather current-shares in normal differential amplifier fashion, producing output voltage levels midway between HIGH and LOW, or the device may even oscillate.

The device VBB output is intended for use as a reference voltage for single-ended reception of ECL signals to that device only. When using for this purpose, it is recommended that VBB is decoupled to VCC via a  $0.01 \mu F$  capacitor.

The 100E516 features input pull-down resistors, as does the rest of the ECLinPS family.

- 500 ps Max. Propagation Delay
- VBB Supply Output
- Dedicated V<sub>CCO</sub> Pin for Each Receiver
- Extended 100E VEE Range of 4.2 V to 5.46 V
- 75 kΩ Input Pulldown Resistors

#### **PIN NAME**

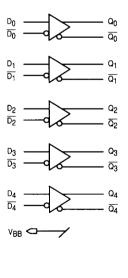
| Function                   |                                                                                                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------|
| Differential Inputs Pairs  |                                                                                                                     |
| Differential Outputs Pairs | 8 8                                                                                                                 |
| •                          | 11 10 9 8 7 6 5 4 00 00 00 00 00 00 00 00 00 00 00 00 0                                                             |
|                            | Differential Inputs Pairs Differential Outputs Pairs Reference Voltage Outputs  □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ |

## Military 100E516



#### AVAILABLE AS

1) JAN: N/A 2) SMD: N/A


3) 883: Planned

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: NON-Compliant

QFP: X

#### **LOGIC DIAGRAM**



This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MOTOROLA MILITARY MECL DATA 5-52

5

#### 100E516

100E Series DC CHARACTERISTICS: VEE = -4.2 V to - 5.46 V, VCC = VCCO = GND; -55°C to + 125°C

| Symbol          | Parameter           | Min   | Max   | Units | TEST CONDITION APPLIED:                   |                       |  |
|-----------------|---------------------|-------|-------|-------|-------------------------------------------|-----------------------|--|
| Voн             | Output HIGH Voltage | -1025 | -880  | mV    | V <sub>IN</sub> = V <sub>IH(max)</sub>    | Loading with          |  |
| VOL             | Output LOW Voltage  | -1810 | -1620 | mV    | or V <sub>IN</sub> = V <sub>IL(min)</sub> | 50Ω to -2.0 V         |  |
| VOHA            | Output HIGH Voltage | -1035 |       | mV    | VIN = VIH(min)                            | Loading with          |  |
| VOLA            | Output LOW Voltage  |       | -1610 | mV    | or V <sub>IN</sub> = V <sub>IL(max)</sub> | 50Ω to -2.0 V         |  |
| VIH             | Input HIGH Voltage  | -1165 | -880  | mV    | Guaranteed HIGH S                         | Signal for All Inputs |  |
| V <sub>IL</sub> | Input LOW Voltage   | -1810 | -1475 | mV    | Guaranteed LOW S                          | ignal for All Inputs  |  |
| ΊL              | Input LOW Current   | 0.5   |       | μА    | V <sub>IN</sub> = V                       | IL(min)               |  |

#### DC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

| Symbol               | Parameter  Functional  Parameters: |         |       | Lin      | nits  |         | Units | TEST CONDITION APPLIED: |          |
|----------------------|------------------------------------|---------|-------|----------|-------|---------|-------|-------------------------|----------|
|                      |                                    | + 25° C |       | + 125° C |       | - 55° C |       |                         |          |
|                      |                                    | Min     | Max   | Min      | Max   | Min     | Max   |                         |          |
| VBB                  | Output Reference<br>Voltage        | -1.38   | -1.26 | -1.38    | -1.26 | -1.38   | -1.26 | v                       |          |
| ĺН                   | Input High Current                 |         | 200   |          | 200   |         | 200   | μА                      |          |
| IEE                  | Power Supply<br>Current            | 29      | 35    | 33       | 40    | 29      | 35    | mA                      |          |
| V <sub>PP</sub> (DC) | Input Seneitivity                  | 150     |       | 150      |       | 150     |       | mV                      | (Note 1) |
| VCMR                 | Common Mode<br>Range               | -2.0    | -0.6  | -2.0     | -0.6  | -2.0    | -0.6  | V                       | (Note 2) |

- 1. Vpp is the minimum differential input voltage required to assure full ECL levels are present at the outputs.
- 2. V<sub>CMR</sub> is referenced to the most positive side of the differential input signal. Normal operation is obtained when the "HIGH" input is within the V<sub>CMR</sub> range and the input swing is greater than V<sub>PPMIN</sub> and < 1.0 V.

#### AC CHARACTERISTICS: VEE = VEE(min) to VEE(max), VCC = VCCO = GND

| Symbol               | Parameter                      |         |     | Lin      | nits |         |          | Units | TEST CONDITION APPLIED: |
|----------------------|--------------------------------|---------|-----|----------|------|---------|----------|-------|-------------------------|
|                      | Functional<br>Parameters:      | + 25° C |     | + 125° C |      | − 55° C |          |       |                         |
|                      |                                | Min     | Max | Min      | Max  | Min     | Max      | 1     |                         |
| tPLH<br>tPHL         | Propagation Delay to<br>Output | _       |     |          |      |         |          |       |                         |
|                      | D                              | 200     | 450 | 200      | 450  | 200     | 450      | ps    |                         |
|                      | D (SE)                         | 150     | 500 | 150      | 500  | 150     | 500      | ps    |                         |
| V <sub>PP</sub> (AC) | Minimum Input<br>Swing         | 150     |     | 150      |      | 150     |          | mV    | (Note 1)                |
| <sup>t</sup> Skew    | Within-device Skew             |         |     |          |      |         | <u> </u> | †     |                         |
|                      | Dn to Qn, Qn                   | 50      |     | 50       |      | 50      |          | ps    | (Note 2)                |
| tSkew                | Duty Cycle Skew                |         |     |          |      |         |          |       |                         |
|                      | tPLH - tPHL                    | ±       | 10  | ± 10     |      | ±       | ± 10     |       | (Note 3)                |
| t <sub>r</sub>       | Rise/Fall Times<br>20 - 80%    | 275     | 575 | 275      | 575  | 275     | 575      | ps    |                         |

- 1. Minimum input swing for which AC parameters are guaranteed.
- 2. Within-device skew is defined as identical transitions on similar paths through a device.
- 3. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross points of the outputs.

MOTOROLA MILITARY MECL DATA