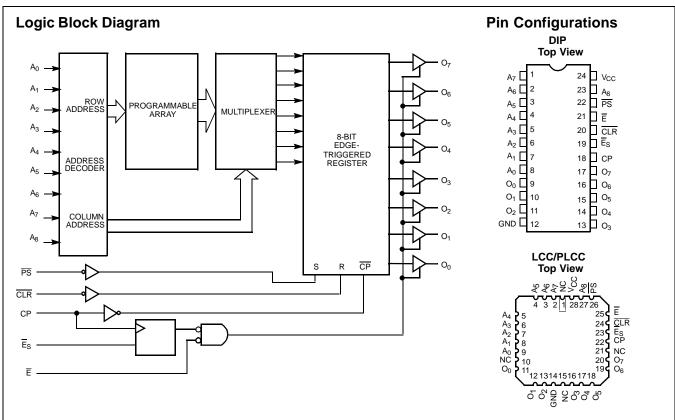


512 x 8 Registered PROM

- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge


Functional Description

The CY7C225A is a high-performance 512 word by 8 bit electrically programmable read only memory packaged in a slim 300-mil plastic or hermetic DIP, 28-pin leadless chip carrier, and 28-pin PLCC. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C225A replaces bipolar devices and offers the advantages of lower power, superior performance, and high programming yield. The EPROM cell requires only 12.5V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.

Features

- · CMOS for optimum speed/power
- · High speed
 - -18 ns address set-up
 - -12 ns clock to output
- Low power
 - -495 mW (commercial)
 - -660 mW (military)
- · Synchronous and asynchronous output enables
- · On-chip edge-triggered registers
- Buffered common PRESET and CLEAR inputs
- EPROM technology, 100% programmable
- Slim 300-mil, 24-pin plastic or hermetic DIP, 28-pin LCC, or 28-pin PLCC
- 5V \pm 10% V_{CC}, commercial and military
- TTL-compatible I/O

Selection Guide

		7C225A-18	7C225A-25	7C225A-30	7C225A-35	7C225A-40
Minimum Address Set-Up Time (ns)		18	25	30	35	40
Maximum Clock to Output (ns)		12	12	15	20	25
Maximum Operating Current (mA)	Commercial	90	90	90		90
	Military		120	120	120	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Supply Voltage to Ground Potential (Pin 24 to Pin 12)......-0.5V to +7.0V DC Voltage Applied to Outputs in High Z State-0.5V to +7.0V DC Input Voltage-3.0V to +7.0V DC Program Voltage (Pins 7, 18, 20)......13.0V

Static Discharge Voltage(per MIL-STD-883, Method 3015)	.>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial ^[1]	−40°C to +85°C	5V ± 10%
Military ^[2]	–55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[3,4]

	Test Condition	Min.	Max.	Unit	
Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA V_{IN} = V_{IH} or V_{IL}	2.4		V	
Output LOW Voltage	V_{CC} = Min., I_{OL} = 16 mA V_{IN} = V_{IH} or V_{IL}		0.4	V	
Input HIGH Level	Guaranteed Input Logical HI All Inputs	2.0		V	
Input LOW Level	Guaranteed Input Logical LO Inputs		0.8	V	
Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	-10	+10	μΑ	
Input Clamp Diode Voltage	Note 4				
Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Output	-10	+10	μΑ	
Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = 0.0V^{[6]}$		-20	-90	mA
Power Supply Current	I _{OUT} = 0 mA	Commercial		90	mA
	V _{CC} = Max.	Military		120	
Programming Supply Voltage		1	12	13	V
Programming Supply Current				50	mA
Input HIGH Programming Voltage			3.0		V
Input LOW Programming Voltage				0.4	V
	Output LOW Voltage Input HIGH Level Input LOW Level Input Leakage Current Input Clamp Diode Voltage Output Leakage Current Output Short Circuit Current Power Supply Current Programming Supply Voltage Programming Supply Current Input HIGH Programming Voltage Input LOW Programming	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $Output \ LOW \ Voltage$ $V_{CC} = \text{Min., } I_{OL} = 16 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $Input \ HIGH \ Level$ $Input \ LOW \ Level$ $Input \ Low \ Low \ Input \ Inpu$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $Output \ LOW \ Voltage$ $V_{CC} = \text{Min., } I_{OL} = 16 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $Input \ HIGH \ Level$ $Guaranteed \ Input \ Logical \ HIGH \ Voltage \ for \ All \ Inputs$ $Input \ LOW \ Level$ $Guaranteed \ Input \ Logical \ LOW \ Voltage \ for \ All \ Inputs$ $Input \ Leakage \ Current$ $GND \le V_{IN} \le V_{CC}$ $Input \ Clamp \ Diode \ Voltage$ $Output \ Leakage \ Current$ $GND \le V_{OUT} \le V_{CC}, \ Output \ Disabled^{[5]}$ $Output \ Short \ Circuit \ Current$ $V_{CC} = Max., \ V_{OUT} = 0.0V^{[6]}$ $Power \ Supply \ Current$ $I_{OUT} = 0 \ mA$ $V_{CC} = Max.$ $Programming \ Supply \ Voltage$ $Programming \ Supply \ Voltage$ $Input \ HIGH \ Programming$ $Voltage$ $Input \ LOW \ Programming$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ Output LOW Voltage $V_{CC} = \text{Min., } I_{OL} = 16 \text{ mA} $ $V_{IN} = V_{IH} \text{ or } V_{IL}$ Input HIGH Level $V_{IN} = V_{IH} \text{ or } V_{IL}$ Guaranteed Input Logical HIGH Voltage for All Inputs $V_{IN} = V_{IH} \text{ or } V_{IL}$ Input LOW Level $V_{IN} = V_{IH} \text{ or } V_{IL}$ Guaranteed Input Logical LOW Voltage for All Inputs $V_{IN} = V_{IH} \text{ or } V_{IL}$ Input Leakage Current $V_{IN} = V_{IH} \text{ or } V_{IL}$ Guaranteed Input Logical LOW Voltage for All Inputs $V_{IN} = V_{IH} \text{ or } V_{IL}$ Input Leakage Current $V_{IN} = V_{IH} \text{ or } V_{IL}$ Output Clamp Diode Voltage $V_{IN} = V_{IH} \text{ or } V_{IL}$ Output Leakage Current $V_{IN} = V_{IH} \text{ or } V_{IL}$ Output Leakage Current $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = V_{IH} \text{ or } V_{IH}$ $V_{IH} = V_{IH} \text{ or } V_{IL}$ $V_{IH} = V_{IH} \text{ or } V_{IH}$ $V_{IH} = V_{IH} \text{ or } V_{$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

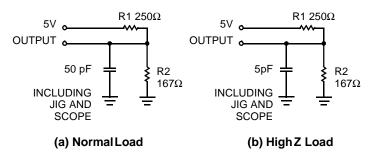
Capacitance^[4]

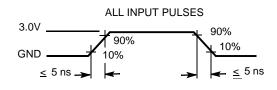
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	V _{CC} =5.0V	10	pF

Notes:

- Contact a Cypress representative for industrial temperature range specifications.
- T_A is the "instant on" case temperature.

- See the last page of this specification for Group A subgroup testing information.


 See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.


 For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.

 For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms^[4]

Operating Modes

The CY7C225A incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous (\overline{E}_S) and asynchronous (\overline{E}) output enables and \overline{CLEAR} and \overline{PRESET} inputs.

Upon power-up, the synchronous enable (\overline{E}_S) flip-flop will be in the set condition causing the outputs (O_0-O_7) to be in the OFF or high-impedance state. Data is read by applying the memory location to the address inputs (A_0-A_8) and a logic LOW to the enable (\overline{E}_S) input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs (O_0-O_7) provided the asynchronous enable (\overline{E}) is also LOW.

The outputs may be disabled at any time by switching the asynchronous enable $(\overline{\mathsf{E}})$ to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.

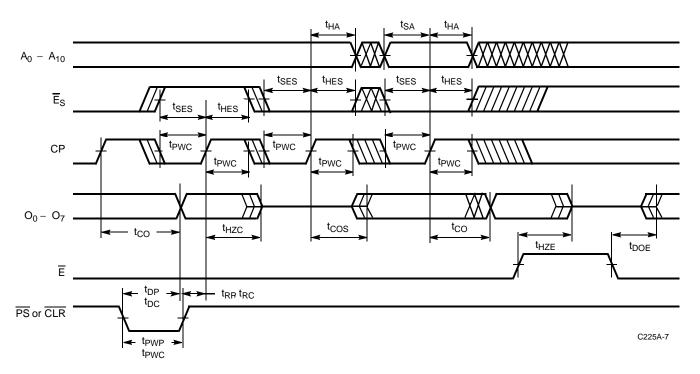
Regardless of the condition of E, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable ($\overline{\mathsf{E}}_{S}$) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW,

the subsequent positive clock edge will return the output to the active state if E is LOW. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the CY7C225A decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.

System timing is simplified in that the on-chip edge-triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C225A has buffered asynchronous CLEAR and PRE-SET inputs. Applying a LOW to the PRESET input causes an immediate load of all ones into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). Applying a LOW to the CLEAR input, resets the flip-flops to all zeros. The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable (E) LOW.

When power is applied, the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high-impedance state. In order to enable the outputs, a clock must occur and the $\overline{\mathsf{E}}_S$ input pin must be LOW at least a set-up time prior to the clock LOW-to-HIGH transition. The $\overline{\mathsf{E}}$ input may then be used to enable the outputs.



Switching Characteristics Over the Operating Range $^{[3,4]}$

		7C22	5A-18	7C22	5A-25	25 7C225A-30		7C22	5A-35	7C225A-40		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{SA}	Address Set-Up to Clock HIGH	18		25		30		35		40		ns
t _{HA}	Address Hold from Clock HIGH	0		0		0		0		0		ns
t _{CO}	Clock HIGH to Valid Output		12		12		15		20		25	ns
t _{PWC}	Clock Pulse Width	10		10		15		20		20		ns
t _{SES}	E _S Set-Up to Clock HIGH	10		10		10		10		10		ns
t _{HES}	E _S Hold from Clock HIGH	0		0		5		5		5		ns
t _{DP} , t _{DC}	Delay from PRESET or CLEAR to Valid Output		20		20		20		20		20	ns
t _{RP} , t _{RC}	PRESET or CLEAR Recovery to Clock HIGH	15		15		20		20		20		ns
t _{PWP} , t _{PWC}	PRESET or CLEAR Pulse Width	15		15		20		20		20		ns
t _{COS}	Valid Output from Clock HIGH ^[7]		15		20		20		25		30	ns
t _{HZC}	Inactive Output from Clock HIGH ^[7]		15		20		20		25		30	ns
t _{DOE}	Valid Output from E LOW		15		20		20		25		30	ns
t _{HZE}	Inactive Output from E HIGH		15		20		20		25		30	ns

Note:

Switching Waveforms^[4]

^{7.} Applies only when the synchronous (\overline{E}_S) function is used.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed

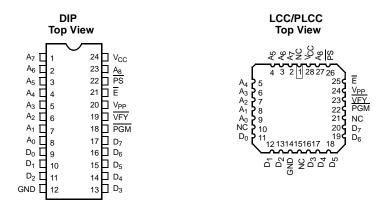
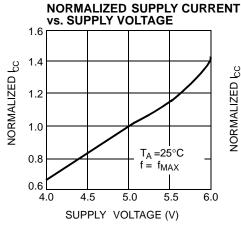
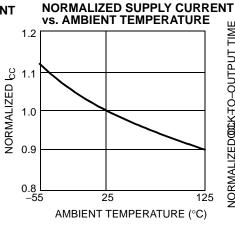
programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

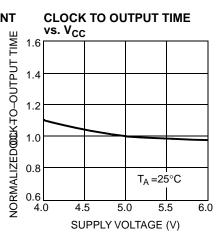
Table 1. Mode Selection

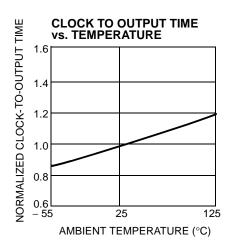
			Pin Function ^[8]						
	Read or Output Disable	A ₈ - A ₀	СР	Es	CLR	E	PS	O ₇ - O ₀	
Mode	Other	A ₈ - A ₀	PGM	VFY	V _{PP}	E	PS	$D_7 - D_0$	
Read	Read		Х	V _{IL}	V _{IH}	V _{IL}	V _{IH}	O ₇ – O ₀	
Output	Disable	A ₈ - A ₀	Х	V _{IH}	V _{IH}	Х	V _{IH}	High Z	
Output	Disable	A ₈ - A ₀	Х	Х	V _{IH}	V _{IH}	V _{IH}	High Z	
Clear		A ₈ - A ₀	Х	V _{IL}	V _{IL}	V _{IL}	V _{IH}	Zeros	
Preset		A ₈ - A ₀	Х	V _{IL}	V _{IH}	V _{IL}	V _{IL}	Ones	
Progra	m	A ₈ - A ₀	V _{ILP}	V _{IHP}	V _{PP}	V _{IHP}	V _{IHP}	D ₇ – D ₀	
Progra	Program Verify		V _{IHP}	V_{ILP}	V _{PP}	V _{IHP}	V _{IHP}	O ₇ – O ₀	
Progra	Program Inhibit		V _{IHP}	V _{IHP}	V _{PP}	V _{IHP}	V _{IHP}	High Z	
Intelligent Program		A ₈ - A ₀	V _{ILP}	V _{IHP}	V_{PP}	V _{IHP}	V _{IHP}	D ₇ – D ₀	
Blank Check		A ₈ - A ₀	V _{IHP}	V_{ILP}	V _{PP}	V _{IHP}	V _{IHP}	Zeros	

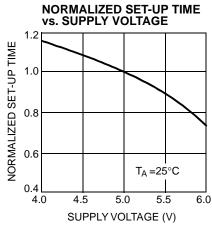
Note:

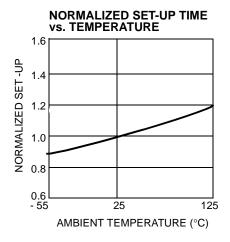
^{8.} X = "don't care" but not to exceed $V_{CC} \pm 5\%$.

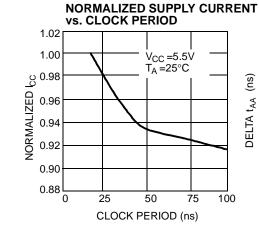




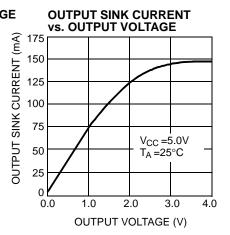

Figure 1. Programming Pinouts.




Typical DC and AC Characteristics







C225A-10

Ordering Information^[9]

	eed is)	Ordering	Package	Package Type	Operating Range
t _{SA}	t _{co}	Code	Туре	туре	Kange
18	12	CY7C225A-18DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-18JC	J64	28-Lead Plastic Leaded Chip Carrier	=
		CY7C225A-18PC	P13	24-Lead (300-Mil) Molded DIP	=
25	12	CY7C225A-25DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-25JC	J64	28-Lead Plastic Leaded Chip Carrier	=
		CY7C225A-25PC	P13	24-Lead (300-Mil) Molded DIP	=
		CY7C225A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-25LMB	L64	28-Square Leadless Chip Carrier	=
30	15	CY7C225A-30DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-30JC	J64	28-Lead Plastic Leaded Chip Carrier	=
		CY7C225A-30PC	P13	24-Lead (300-Mil) Molded DIP	=
		CY7C225A-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-30LMB	L64	28-Square Leadless Chip Carrier	=
35	20	CY7C225A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-35LMB	L64	28-Square Leadless Chip Carrier	
40	25	CY7C225A-40DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-40JC	J64	28-Lead Plastic Leaded Chip Carrier	=
		CY7C225A-40PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C225A-40DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-40LMB	L64	28-Square Leadless Chip Carrier	

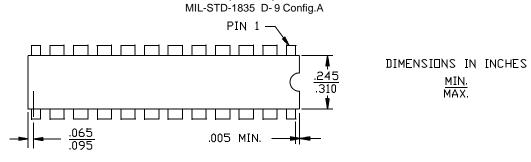
Note:

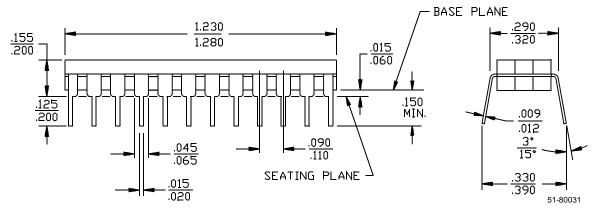
MILITARY SPECIFICATIONS Group A Subgroup Testing

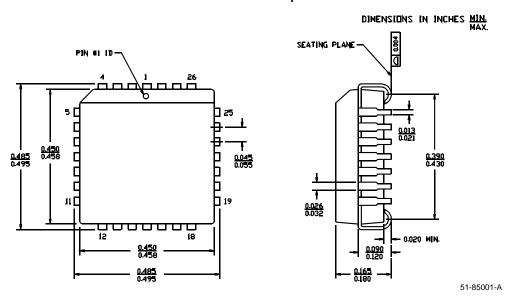
DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

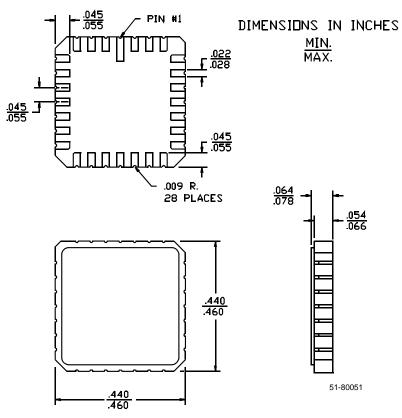

Parameter	Subgroups
t _{SA}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{CO}	7, 8, 9, 10, 11
t _{DP}	7, 8, 9, 10, 11
t _{RP}	7, 8, 9, 10, 11


Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

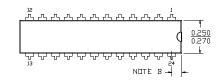

Package Diagrams

24-Lead (300-Mil) CerDIP D14

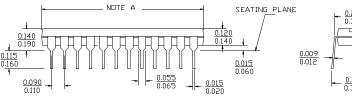
28-Lead Plastic Leaded Chip Carrier J64

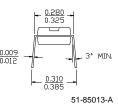


Package Diagrams (Continued)


28-Square Leadless Chip Carrier L64

MIL-STD-1835 C-4




24-Lead (300-Mil) Molded DIP P13/P13A

DIMENSIONS IN INCHES MIN.

	P 13	P 13A
NOTE A	<u>1.170</u> 1.200	1.230 1.260
NOTE B	0.030 0.050	0.060 0.080

Document Title: CY7C225A 512 x 8 Registered PROM Document Number: 38-04001							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	113858	03/06/02	DSG	Change from Spec number: 38-00228 to 38-04001			