

## ENH057Q1-350/450/600 Color TFT-LCD Module Features

### **GENERAL DESCRIPTION**

Panelview provides optically enhanced solutions to the standard Sharp LQ057Q3DC02 color active matrix LCD module. The first enhancement is an index matching (IM) film lamination to the front surface of the display polarizer. The IM film is available in two surface treatments - IM/Clear and IM/110 (a 10% diffusion). The second enhancement is the incorporation of a reflective polarizer (RP) to improve brightness by up to 40%. The third enhancement is the addition of prism films (RPp) further increasing the brightness of the display. This module is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit and a backlight unit. Graphics and text can be displayed on a 320 X 3 X 240 dots panel with 262,144 colors by supplying 18 bit data signal (6bit/color), four timing signals.

The TFT-LCD panel used for this module is a low-reflection and higher-color-saturation type. Therefore, this module is also suitable for multimedia use. Viewing angle is 12 o'clock direction. This module is the type of wide viewing angle and high brightness 350cd/m². It has horizontal display mode and vertical display mode.

Backlight-driving DC/AC inverter is not built in this module.

Panelview assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets. Panelview does assume the responsibility for the warranty of the enhanced product.

#### MECHANICAL SPECIFICATIONS

| Parameter                   | Specificalions                              | Unit  |
|-----------------------------|---------------------------------------------|-------|
| Display size                | 14.4 (5.7") Diagonal                        | cm    |
| Active area                 | 115.2 (H) x 86.4(V)                         | mm    |
| Pixel format                | 320 (H) x 240 (V)                           | pixel |
|                             | (1 pixel=R+G+B dots)                        | -     |
| Pixel pitch                 | 0.360(H) X 0.360(V)                         | mm    |
| Pixel configuration         | R,G,B vertical stripe                       | -     |
| Display mode                | Normally white                              | -     |
| Unit outline dimensions (1) | 144.0(W) X 104.6(H) X 13.0(D)               | mm    |
| Mass                        | 220 ± 20                                    | g     |
| Surface treatment           | IM/Clear (glossy) or IM/110 and hardcoat 3H | _     |

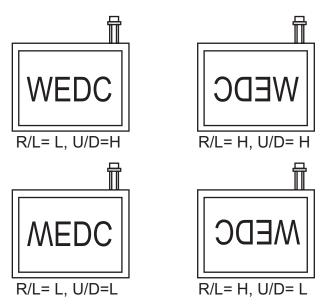
#### Note:

1) Excluding backlight cables.



## **INPUT TERMINALS**

TFT-LCD panel driving


CN1 Used connector:08-6210-033-340-800 (Kyocera Elco Corporation)

| Pin No. | Symbol | I/O | Function                                         | Remark |
|---------|--------|-----|--------------------------------------------------|--------|
| 1       | GND    | _   | GND                                              |        |
| 2       | СК     | I   | Clock signal for sampling each data signal       |        |
| 3       | Hsync  | I   | Horizontal synchronous signal (Negative)         |        |
| 4       | Vsync  | I   | Vertical synchronous signal (Negative)           |        |
| 5       | GND    | -   | GND                                              |        |
| 6       | R0     | I   | RED data signal (LSB)                            |        |
| 7       | R1     | I   | RED data signal                                  |        |
| 8       | R2     | I   | RED data signal                                  |        |
| 9       | R3     | I   | RED data signal                                  |        |
| 10      | R4     | I   | RED data signal                                  |        |
| 11      | R5     | I   | RED data signal (MSB)                            |        |
| 12      | GND    | -   | GND                                              |        |
| 13      | G0     | I   | GREEN data signal (LSB)                          |        |
| 14      | G1     | I   | GREEN data signal                                |        |
| 15      | G2     | I   | GREEN data signal                                |        |
| 16      | G3     | I   | GREEN data signal                                |        |
| 17      | G4     | I   | GREEN data signal                                |        |
| 18      | G5     | 1   | GREEN data signal (MSB)                          |        |
| 19      | GND    | -   | GND                                              |        |
| 20      | B0     | I   | BLUE data signal (LSB)                           |        |
| 21      | B1     | I   | BLUE data signal                                 |        |
| 22      | B2     |     | BLUE data signal                                 |        |
| 23      | B3     | ı   | BLUE data signal                                 |        |
| 24      | B4     | I   | BLUE data signal                                 |        |
| 25      | B5     | I   | BLUE data signal (MSB)                           |        |
| 26      | GND    | -   | GND                                              |        |
| 27      | ENAB   | I   | Signal to settle the horizontal display position | (1)    |
|         |        |     | (Positive)                                       |        |
| 28      | Vcc    | _   | +3.3V power supply                               |        |
| 29      | Vcc    | _   | +3.3V power supply                               |        |
| 30      | R/L    | I   | Horizontal display mode select signal (2)        |        |
|         |        |     | L: Normal, H: Left/Right reverse mode            |        |
| 31      | U/D    | I   | Vertical display mode select signal (3)          |        |
|         |        |     | H: Normal, L: Up/Down reverse mode               |        |
| 32      | V/Q    | I   | VGA/QVGA mode select signal                      |        |
| 33      | GND    | _   | GND                                              |        |

#### Note:

1) The horizontal display start timing is settled in accordance with a rising timing of ENAB signal. In case ENAB is fixed "Low", the horizontal start timing is determined as described in "Backlight Driving" on p. 5. Don't keep ENAB "Low" during operation.





## **BACKLIGHT DRIVING**

CN2 Used connector: BHR-02(8.0)VS-1N (JST)

Corresponding connector: SM02(8.0)B-BHS-1N-TB (JST) (installed on a board.)

| Pin No. | Symbol           | Function                                  | Color of Cable |
|---------|------------------|-------------------------------------------|----------------|
| 1       | V <sub>LOW</sub> | Power supply for lamp (Low voltage side)  | White          |
| 2       | NC               | This is electrically opened               | _              |
| 3       | VHIGH            | Power supply for lamp (High voltage side) | Red            |

#### ABSOLUTE MAXIMUM RATINGS

| Parameter                       | Symbol | Condition | Ratings     | Unit | Remark  |
|---------------------------------|--------|-----------|-------------|------|---------|
| Input voltage                   | Vı     | Ta=25°C   | -0.3~ + 6.0 | V    | (1)     |
| +3.3V supply voltage            | Vcc    | Ta=25°C   | 0 ~ + 4.0   | V    | _       |
| Storage temperature             | Tstg   | _         | -30 ~ + 80  | °C   | (2)     |
| Operating temperature (Panel)   | Topa1  | _         | -10 ~ +70   | °C   | (2,3,4) |
| Operating temperature (Ambient) | Topa2  | _         | -10 ~ +70   | °C   | (5)     |

#### Notes:

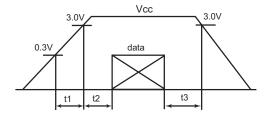
- 1) CK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, ENAB, R/L, U/D, V/Q.
- 2) No parameter is allowed to exceed the range on the surface of the display.
- 3) Maximum wet-bulb temperature at 39°C or less. No dew condensation.
- 4) Only operation is guaranteed at operating temperature. Contrast, response time, another display quality are evaluated at +25°C.
- 5) The ambient temperature, when backlight is on. (Reference)



## **ELECTRICAL CHARACTERISTICS**

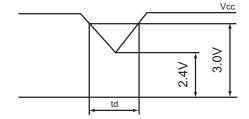
## TFT-LCD panel driving

| F                               | Parameter           | Symbol          | Symbol Min. Typ. |      | Max.   | Unit  | Remark                          |
|---------------------------------|---------------------|-----------------|------------------|------|--------|-------|---------------------------------|
| +3.3V                           | Supply voltage      | Vcc             | +3.0             | +3.3 | +3.6   | V     | (1)                             |
|                                 | Current dissipation | Icc             | _                | 130  | 160    | mA    | (2)                             |
| Permissive input ripple voltage |                     | V <sub>RF</sub> | _                | -    | 100    | mVp-p | V <sub>CC</sub> =+3.3V          |
| Input vo                        | Itage (Low)         | VIL             | 0                | -    | 0.3Vcc | V     | (3)                             |
| Input vo                        | Itage (High)        | ViH             | 0.7 <b>V</b> cc  | -    | +5.5   | V     |                                 |
| Input cu                        | rrent (Low)         | lol1            | _                | _    | 10     | μA    | V1=0V (3)                       |
| Input current (High)            |                     | Іон1            |                  |      | 10     | μA    | V <sub>I</sub> = 3.3 ~ 5.0V (4) |
|                                 |                     | Іон2            | _                | _    | 100    | μA    | V <sub>I</sub> = 3.3~ 5.0V (5)  |


#### Notes:

1) Vcc-turn-on conditions

 $0 < t1 \le 20ms$ 


 $0 < t2 \le 50ms$ 

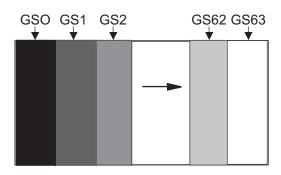
 $0 < t3 \le 1s$ 



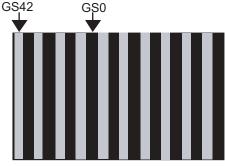
Vcc-dip conditions

Vcc-dip conditions should also follow the Vcc-turn-on conditions  $td \le 20ms$ 






2) Vcc=3.3V V/Q= "H" Typical current situation


: 64-gray bar pattern Timing : Typical signal

Maximum current situation : Vertical stripe pattern by GS0 and GS42 signal on every other pixel.

(This pattern is used temporarily) Timing: Typical signal



**Typical Current Situation** 



Maximum current situation

- 3) CK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, ENAB, R/L, U/D, V/D
- 4) CK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, R/L, U/D
- 5) ENAB, V/D

#### **BACKLIGHT DRIVING**

The backlight system is an edge-lighting type with single CCFT (Cold Cathode Fluorescent Tube).

The characteristics of a single lamp are shown below.

Ta=25°C

| Parameter      |            | Symbol | Min. | Тур. Мах.   |      | Unit  | Remark              |
|----------------|------------|--------|------|-------------|------|-------|---------------------|
| Lamp voltage   |            | VL7    | 620  | 620 690 760 |      | Vrms  | I L=5.0mArms        |
| Lamp current   |            | IL     | 4.5  | 5.0         | 5.5  | mArms | Normal Operation    |
| Lamp power co  | onsumption | WL     | _    | – 3.5 – W   |      | W     | -                   |
| Lamp frequence | у          | F∟     | 30   | _           | 60   | KHz   | (6)                 |
| Kickoff        | Ta=25°C    | Vs     | _    | -           | 1350 | Vrms  | Sealed is connected |
| voltage        | Ta=-30°C   |        | _    | -           | 1470 | Vrms  | to GND              |

(Inverter: HIU-288 [Output Condenser 22pF] Harison Electric Co., LTD.)

6) Lamp frequency may produce interference with horizontal synchronous frequency, and this may cause horizontal beat on the display. Therefore, lamp frequency shall be detached as much as possible from the horizontal synchronous frequency and from the harmonics of horizontal synchronous to avoid interference. In case of such usage under lower temperature environments, periodic lamp exchange by Panelview is recommended.



## TIMING CHARACTERISTICS OF INPUT SIGNALS

Timing diagrams of input signal are shown below.

#### TIMING CHARACTERISTICS

| Parameter Cloc     | k                  | Symbol | Min. | Тур.  | Max.   | Unit  | Remark |
|--------------------|--------------------|--------|------|-------|--------|-------|--------|
| Clock              | Frequency          | 1/Tc   | _    | 25.18 | 28.33  | MHz   | V/Q=H  |
|                    |                    |        | _    | 6.3   | 7.0    | MHz   | V/Q=L  |
|                    | Duty ratio         | TH/T   | 40   | 50    | 60     | %     |        |
| Data               | Set up time        | Tds    | 5    | _     | _      | ns    |        |
|                    | Hold time          | Tdh    | 10   | _     | _      | ns    |        |
| Horizontal         | Cycle              | TH     | 30.0 | 31.8  | _      | μs    | V/Q=H  |
| sync. signal       |                    |        | 770  | 800   | 900    | clock |        |
|                    |                    | TH     | 50.0 | 63.6  |        | μs    | V/Q=L  |
|                    |                    |        | 360  | 400   | 450    | clock |        |
|                    | Pulse width        | THp    | 2    | 96    | 200    | clock |        |
| Vertical           | Cycle              | TV     | 515  | 525   | 560    | line  | V/Q=H  |
| sync. signal       |                    |        | 251  | 262   | 280    | line  | V/Q=L  |
|                    | Pulse width        | TVp    | 2    | _     | 34     | line  |        |
| Horizontal displa  | y period           | THd    | 320  | 320   | 320    | clock |        |
| Hsync-Clock pha    | ase difference     | THc    | 10   | _     | Tc-10  | ns    |        |
| HsyncVsync. p      | hase difference    | TVh    | 0    | _     | TH-THp | ns    |        |
| Vertical sync. sig | nal start position | TVs    | 34   | 34    | 34     | line  | V/Q=H  |
|                    |                    |        | 7    | 7     | 7      | line  | V/Q=L  |

#### Note:

#### HORIZONTAL DISPLAY POSITION

The horizontal display position is determined by ENAB signal.

| Parameter               |                                      | Symbol | Min. | Тур. | Max.   | Unit  | Remark |
|-------------------------|--------------------------------------|--------|------|------|--------|-------|--------|
| Enable signal           | Set-up time                          | Tes    | 5    | _    | Tc-10  | ns    | ı      |
| Pulse width             |                                      | Тер    | 2    | 320  | TH-10  | clock | -      |
| Hsync-enable signal pha | Hsync-enable signal phase difference |        | 44   | _    | TH-664 | clock | V/Q=H  |
|                         |                                      |        | 2    | -    | TH-340 |       | V/Q=L  |

#### Notes:

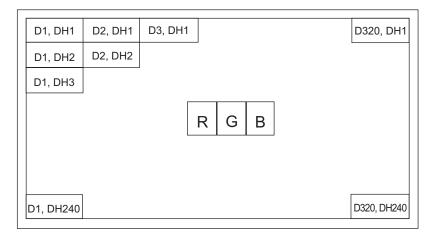
- 1) When ENAB is fixed at "V/Q=Low", the display starts from the data of C52 (clock) as shown in Fig. 8.
- 2) When ENAB is fixed at "V/Q=High", the display starts from the data of C104 (clock) as shown in Fig. 8.

<sup>1)</sup> In case of lower frequency, deterioration of the display quality, flicker, etc. may occur.

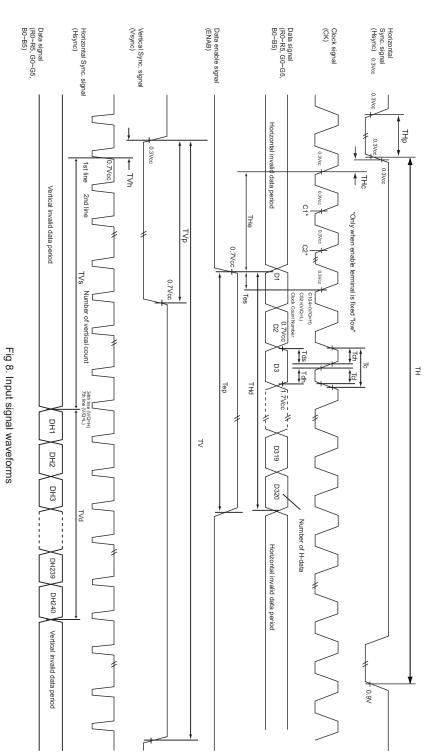


### VERTICAL DISPLAY POSITION

The vertical display position (TVs) is fixed at the 34th line (V/Q=H) and 7th line (V/Q=L).


Note:

1) ENAB signal is independent of the vertical display position.


## INPUT DATA SIGNALS AND DISPLAY POSITION ON THE SCREEN

Display position of input data (H,V)









Original specifications created by Sharp.



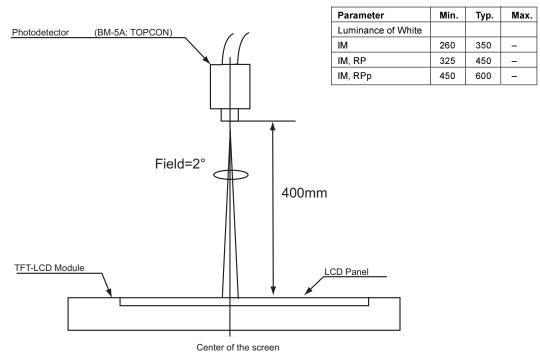
## INPUT SIGNALS, BASIC DISPLAY COLORS AND GRAY SCALE OF EACH COLOR

|                     | Colors &   |            |    |    |    |              |    | Da | ıta Siç | ınal |    |              |    |    |    |    |    |              |    |    |
|---------------------|------------|------------|----|----|----|--------------|----|----|---------|------|----|--------------|----|----|----|----|----|--------------|----|----|
|                     | Gray Scale | Gray Scale | R0 | R1 | R2 | R3           | R4 | R5 | G0      | G1   | G2 | G3           | G4 | G5 | В0 | В1 | B2 | В3           | В4 | В5 |
|                     | Black      | -          | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
|                     | Blue       | -          | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 1  | 1  | 1  | 1            | 1  | 1  |
| ļ ģ                 | Green      | -          | 0  | 0  | 0  | 0            | 0  | 0  | 1       | 1    | 1  | 1            | 1  | 1  | 0  | 0  | 0  | 0            | 0  | 0  |
| ပိ                  | Cyan       | -          | 0  | 0  | 0  | 0            | 0  | 0  | 1       | 1    | 1  | 1            | 1  | 1  | 1  | 1  | 1  | 1            | 1  | 1  |
| .2                  | Red        | -          | 1  | 1  | 1  | 1            | 1  | 1  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| Basic Color         | Magenta    | -          | 1  | 1  | 1  | 1            | 1  | 1  | 0       | 0    | 0  | 0            | 0  | 0  | 1  | 1  | 1  | 1            | 1  | 1  |
| _                   | Yellow     | -          | 1  | 1  | 1  | 1            | 1  | 1  | 1       | 1    | 1  | 1            | 1  | 1  | 0  | 0  | 0  | 0            | 0  | 0  |
|                     | White      | -          | 1  | 1  | 1  | 1            | 1  | 1  | 1       | 1    | 1  | 1            | 1  | 1  | 1  | 1  | 1  | 1            | 1  | 1  |
| 70                  | Black      | GS0        | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| ) Se                | 1          | GS1        | 1  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| Gray Scale of Red   | Darker     | GS2        | 0  | 1  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| <u>0</u>            | 1          | <b>\</b>   |    |    |    | $\downarrow$ |    |    |         |      |    | $\downarrow$ |    |    |    |    |    | $\downarrow$ |    |    |
| Sca                 | ↓ ↓        | <b>\</b>   |    |    |    |              |    |    |         |      |    | $\downarrow$ |    |    |    |    |    | $\downarrow$ |    |    |
| ) >                 | Brighter   | GS61       | 1  | 0  | 1  | 1            | 1  | 1  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| Jra                 | ↓ ↓        | GS62       | 0  | 1  | 1  | 1            | 1  | 1  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
|                     | Red        | GS63       | 1  | 1  | 1  | 1            | 1  | 1  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| Ę,                  | Black      | GS0        | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| <u>e</u>            | 1          | GS1        | 0  | 0  | 0  | 0            | 0  | 0  | 1       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| l 6                 | Darker     | GS2        | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 1    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| 0                   | 1          | <b>1</b>   |    |    |    | $\downarrow$ |    |    |         |      |    |              |    |    |    |    |    |              |    |    |
| Gray Scale of Green | ↓ ↓        | <b>↓</b>   |    |    |    | $\downarrow$ |    |    |         |      |    |              |    |    |    |    |    |              |    |    |
| Š                   | Brighter   | GS61       | 0  | 0  | 0  | 0            | 0  | 0  | 1       | 0    | 1  | 1            | 1  | 1  | 0  | 0  | 0  | 0            | 0  | 0  |
| a                   | ↓ ↓        | GS62       | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 1    | 1  | 1            | 1  | 1  | 0  | 0  | 0  | 0            | 0  | 0  |
| Ō                   | Green      | GS63       | 0  | 0  | 0  | 0            | 0  | 0  | 1       | 1    | 1  | 1            | 1  | 1  | 0  | 0  | 0  | 0            | 0  | 0  |
| Φ                   | Black      | GS0        | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 0  | 0  | 0            | 0  | 0  |
| ) ng                | 1          | GS1        | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 1  | 0  | 0  | 0            | 0  | 0  |
| ) Je                | Darker     | GS2        | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 1  | 0  | 0            | 0  | 0  |
| <u>e</u>            | 1          | <b>\</b>   |    |    |    |              |    |    |         |      |    |              |    |    |    |    |    |              |    |    |
| Ca                  | ↓          | <b>\</b>   |    |    |    |              |    |    |         |      |    |              |    |    |    |    |    |              |    |    |
| \ \ \ \ \           | Brighter   | GS61       | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 1  | 0  | 1  | 1            | 1  | 1  |
| Gray Scale of Blue  | ↓          | GS62       | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 0  | 1  | 1  | 1            | 1  | 1  |
|                     | Blue       | GS63       | 0  | 0  | 0  | 0            | 0  | 0  | 0       | 0    | 0  | 0            | 0  | 0  | 1  | 1  | 1  | 1            | 1  | 1  |

#### Notes:

- 1) 0: Low level voltage 1: High level voltage.
- 2) Each basic color can be displayed in 64 gray scales from 6 bit data signals.
- 3) With the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.



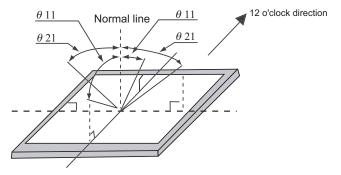

## OPTICAL CHARACTERISTICS TA=25°C, Vcc=+3.3V

| Para               | meter      | Symbol     | Condition          | Min.   | Тур.   | Max.  | Unit              | Remark |
|--------------------|------------|------------|--------------------|--------|--------|-------|-------------------|--------|
| Viewing            | Horizontal | θ 21, θ 22 | (CR≥5)             | 60     | 65     | -     | Deg.              | (1)    |
| Angle              | Vertical   | θ 11       |                    | 60     | 65     | _     | Deg.              | 1      |
| Range              |            | θ 12       | 7                  | 35     | 40     | _     | Deg.              | 1      |
| Contrast Ratio     | ·          | CR max     | Best Viewing Angle | 60     | _      | -     | _                 | (2)    |
| Response           | Rise       | τι         | θ = 0°             | _      | 30     | 60    | ms                | (3)    |
| Time               | Decay      | τd         |                    | _      | 50     | 100   | ms                | ]      |
| Chromaticity of V  | White      | Х          | IL=5.0mArms        | 0.263  | 0.313  | 0.363 | -                 | (4)    |
|                    |            | у          |                    | 0.279  | 0.329  | 0.379 | _                 | 1      |
| Luminance of White |            | Υ          |                    | 260    | 350    | -     | cd/m <sup>2</sup> | †      |
| Lamp               | +25°C      | _          | Continuous         | 40,000 | 50,000 | -     | hour              | (5)    |
| Endurance          |            |            | Operation          |        |        |       |                   |        |

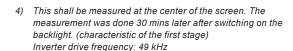
#### Notes:

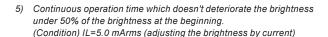
- 1) The inverter was used to evaluate the backlight unit.
- 2) The measurements were done 30 mins later after switching on the backlight.

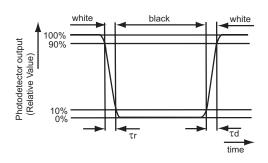
# HIU-288 (Output condenser 22pF) (Harison Electric Co., LTD.)




Optical Characteristics Measurement Method





Notes:


1) Definition of viewing angle range:



- Definition of contrast ratio
  The contrast ratio is defined as follows.
  Contrast Ratio (CR) = Luminance (brightness) with all pixels white Luminance (brightness) with all pixels black
- 3) Definition of response time The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".









#### HANDLING PRECAUTIONS

Installing the TFT-LCD module

- TFT-LCD module has holes at the corner of the reverse side of the module to install. M2.6 tapping screw is recommended. (torque: 0.25 ~ 0.30 N × m) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist. Also, make certain to design the cabinet so that the switch does not apply pressure on the module.
- Be sure to turn off the power supply when inserting or disconnecting the cable.
- Connect GND of Inverter to the metal sealed case of the module. If the connection is not sufficient, it may cause the following:
  - a) Increase of noise from backlight.
  - b) Unstable inverter output.
  - c) Partial heating up.

## INSTALLATION OF THE TFT-LCD MODULE

Installation Precautions

- Since the front polarizer is easily damaged, avoid rubbing against anything hard or sharp. Use ionized nitrogen to blow off the particles. If polarizer is soiled, wipe lenses with soft cloth.
- Wipe off any water immediately. Long contact with water may cause discoloration or spots.
- Since TFT-LCD modules consist of glass and refined wires and components, it may break or crack if dropped or bumped on hard surface. Handle with care.
- Since CMOS LSI is used in this module, use caution with static electricity and make certain one is grounded when handling.
- 5) Do not use the LCD module in the vicinity of corrosive gases such as sulfide or chlorine gases. Polarizers may deteriorate or cause a chemical reaction that can lead to short circuits at the terminal points. Do not use material containing sulfide or chlorine articles in the vicinity of LCD module. At high temperature, these compounds produce corrosive gases.

# NOTICE FOR THE DESIGN OF PRODUCTS

- Design the product to keep the TFT-LCD module from sodium chloride or water.
- When designing, consider sufficient EMI countermeasures from LCD module to application.

### **OTHERS**

- Ultraviolet rays deteriorate Liquid-crystal. Do not leave it in direct sun light or in strong ultraviolet rays.
- 2) If liquid-crystal is kept below the rated storage temperature the isotropic liquid becomes coagulated and may become permanently damaged. Therefore, it is recommended to keep it at room temperature as much as possible.
- Kick-off voltage of backlight may be required over rated voltage, due to the leakage current from the lamp cable.
- 4) If the LCD breaks, liquid-crystal may leak from the panel. Be careful so that it does not enter one's eyes and mouth.



### **PACKING FORM**

Piling number of cartons : MAX. 12 pcs.
 Package quantity in one carton : MAX. 20 pcs.

3) Carton size : 442 (W) X 390 (D) X 170 (H)mm

4) Conditions for storage

Temperature : 0~40°C

Humidity : 60%RH or less

Atmosphere : Display should not be exposed to harmful gases.

Period : 3 months

Opening of the package : In order to prevent the LCD module from breakdown by electrostatic

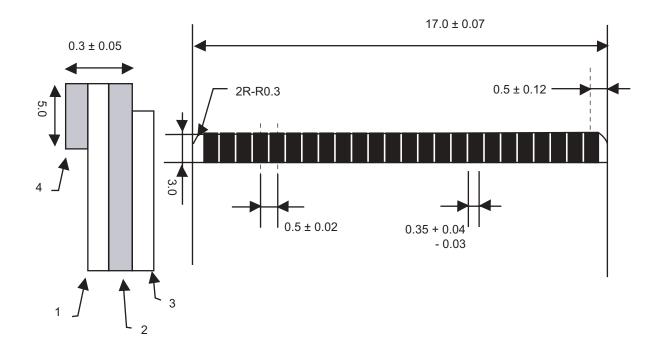
charges, control room humidity over 50%RH and one must be grounded

when opening the package.

#### **OTHERS**

3) Image retention may occur when a fixed pattern is displayed for a long period of time.

4) TFT-LCD drive input and output connector. (33 pins Kyocera elco corporation :08.6210-033-340-800)


a) Adapted FPC

b) Holding power of the terminal : 0.9 N/pin or over (pulling out each terminal at 25±3 mm/min)

c) Durability against inserting and extracting : Double of the beginning data or less

(Difference of the contact resistance after 20 times of inserting and extracting using adapted FPC.)

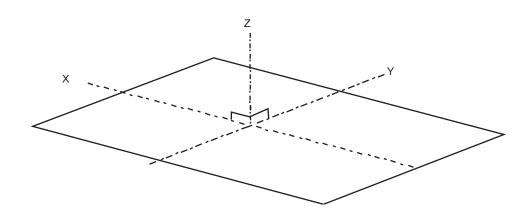




| Number | Name          | Material                                                 |  |  |  |  |
|--------|---------------|----------------------------------------------------------|--|--|--|--|
| 1      | Base          | Polyimide or the same kind of material (25 μm thickness) |  |  |  |  |
| 2      | Copper layer  | Thin copper film (35 μm thickness)                       |  |  |  |  |
|        |               | Solder plating 2 μm or more                              |  |  |  |  |
| 3      | Cover layer   | Polyimide or same kind of material                       |  |  |  |  |
| 4      | Support board | Polyester, Polyimide or the same kind of material        |  |  |  |  |
|        |               | (188 μm thickness)                                       |  |  |  |  |

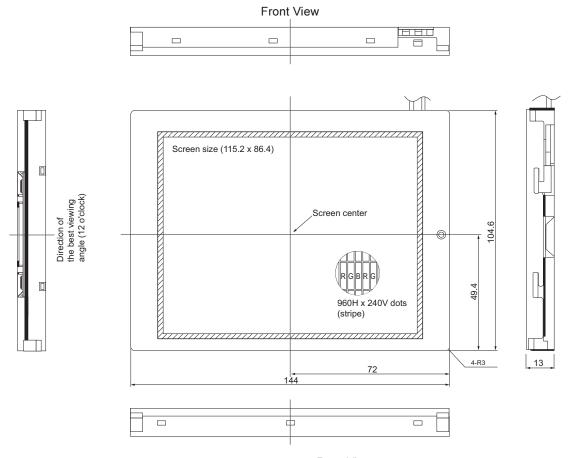
Note:

1) FPC adapted to Input/Output connector (0.5 mm pitch)



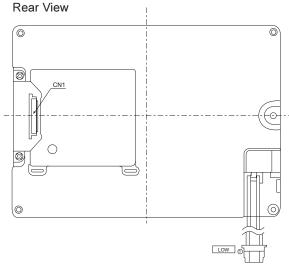

## **CONDITIONS OF RELIABLITY TESTS**

| No. | Test Items                      |                                    | Conditions      | 3                                 |  |  |  |  |
|-----|---------------------------------|------------------------------------|-----------------|-----------------------------------|--|--|--|--|
| 1   | High temperature storage test   | Ta=80°C                            | 240h            |                                   |  |  |  |  |
| 2   | Low temperature storage test    | Ta=-30°C                           | 240h            |                                   |  |  |  |  |
| 3   | High temperature                | Ta=40°C, 95%RH                     | 240h            |                                   |  |  |  |  |
|     | & high humidity operation test  | (No condensation)                  |                 |                                   |  |  |  |  |
| 4   | High temperature operation test | Ta=70°C                            | 240h            |                                   |  |  |  |  |
| 5   | Low temperature operation test  | Ta=-10°C                           | 240h            | Lamp endurance is excepted        |  |  |  |  |
| 6   | Electrostatic discharge test    | ± 200V, 200pF (0Ω) 1 time for each |                 |                                   |  |  |  |  |
| 7   | Shock test                      | Max gravity                        | : 490m/s² · 6ms |                                   |  |  |  |  |
|     | (non-operating)                 | Direction                          | : ± X, ± Y, ± Z |                                   |  |  |  |  |
|     |                                 |                                    | 3 minutes fo    | or each direction (JIS C0041)     |  |  |  |  |
| 8   | Vibration test                  | Frequency                          | : 5~57Hz/Vi     | bration width: 0.15mm             |  |  |  |  |
|     | (non-operating)                 |                                    | : 58~500Hz/     | /Acceleration:9.8m/s <sup>2</sup> |  |  |  |  |
|     |                                 | Sweep time                         | : 11 minutes    | S                                 |  |  |  |  |
|     |                                 | Test period                        | : 3 hours (1    | hour in each direction of X,Y,Z)  |  |  |  |  |
| 9   | Heat shock test                 | Ta= -30°C ~ +80°C/100 cycles       |                 |                                   |  |  |  |  |
|     |                                 | (0.5h) (0.5h)                      |                 |                                   |  |  |  |  |
|     |                                 |                                    |                 |                                   |  |  |  |  |


#### Note:

1) The following figure shows the definition of X axis, Y axis, and Z axis.






## **OUTLINE DIMENSIONS OF 5.7 TFT MODEL**



#### Notes:

- 1) The tolerance is  $\pm$  0.5 except when specified.
- 2) The tolerance width of the module excludes warping of the case.
- 3) CN1 connecter: ELCO 08-6210-033-340-800
- 4) 8L connecter : JST BHR-02VS-- N
- 5) Unit: mm



Original specifications created by Sharp.