

ENH104V1-350/450 Color TFT-LCD Module Features

GENERAL DESCRIPTION

Panelview provides optically enhanced solutions to the standard Sharp LQ104V1DG21 color active matrix LCD module. The first enhancement is an index matching (IM) film lamination to the front surface of the display polarizer. The IM film is available in two surface treatments - IM/Clear and IM/110 (a 10% diffusion). The second enhancement is the incorporation of an enhanced light guide (ELG) providing for up to 30% increase in brightness.

This module is composed of a color TFT-LCD panel, driver ICs, and a backlight unit. Graphics and text can be displayed on a 640 x 3 x 480 dots panel with 262,144 colors by supplying 18 bit data signal (6bit/color), four timing signals, +3.3V/ +5V DC supply voltage for TFT-LCD panel driving and supply voltage for backlight.

The TFT-LCD panel used for this module is a low-reflection and higher-color-saturation type. Therefore, this module is also suitable for multimedia use. Optimum viewing direction is 6 o'clock. Backlight-driving DC/AC inverter is not built in this module.

Panelview assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets. Panelview does assume the responsibility for the warranty of the enhanced product.

MECHANICAL SPECIFICATIONS

Parameter	Specifications	Units
Display size	26 (10.4") Diagonal	cm
Active area	211.2(H) x 158.4 (V)	mm
Pixel format	640(H) x 480(V)	pixel
	(1 pixel = R+G+B dots)	_
Pixel pitch	0.330 (H) x 0.330(V)	mm
Pixel configuration	RGB vertical stripe	_
Display mode	Normally white	_
Unit outline dimensions (1)	265.0(W) x 195.0(H) x 11.5max(D)	mm
Mass	700 (max)	g
Surface treatment	IM/Clear (glossy) or IM/110 and hardcoat 3H	_

Note:

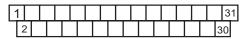
1. Excluding backlight cables. Outline dimensions shown in Fig. 1

INPUT TERMINALS

TFT-LCD panel driving

CN 1 Used connector:
Corresponding connector:

DE0 240 4)//Ulinana


DF9MA-31P-1V (Hirose Electric Co., Ltd.)

DF9- 31S-1V (Hirose Electric Co., Ltd.)

DF9A-31S-1V (Hirose Electric Co., Ltd.)

DF9B-31S-1V (Hirose Electric Co., Ltd.)

DF9M-31S-1V (Hirose Electric Co., Ltd.)

CN1 pin arrangement from module surface (Transparent view)

Pin No.	Symbol	Function	Remark
1	GND		-
2	СК	Clock signal for sampling each data signal	-
3	Hsync	Horizontal synchronous signal	(1)
4	Vsync	Vertical synchronous signal	(1)
5	GND	-	-
6	R0	RED data signal (LSB)	-
7	R1	RED data signal	-
8	R2	RED data signal	-
9	R3	RED data signal	-
10	R4	RED data signal	-
11	R5	RED data signal (MSB)	_
12	GND	-	_
13	G0	GREEN data signal (LSB)	-
14	G1	GREEN data signal	_
15	G2	GREEN data signal	_
16	G3	GREEN data signal	_
17	G4	GREEN data signal	-
18	G5	GREEN data signal (MSB)	_
19	GND	-	_
20	В0	BLUE data signal (LSB)	_
21	B1	BLUE data signal	_
22	B2	BLUE data signal	_
23	B3	BLUE data signal	_
24	B4	BLUE data signal	-
25	B5	BLUE Data signal (MSB)	_
26	GND	-	_
27	ENAB	Signal to settle the horizontal display position	(2)
28	Vcc	+3.3/5.0V power supply	-
29	Vcc	+3.3/5.0V power supply	-
30	R/L	Horizontal display mode select signal	(3)
31	U/D	Vertical display mode select signal	(4)

The shielding case is connected with GND.

Notes:

1) 480 line, 400 line or 350 line mode is selected by the polarity combination of both synchronous signals.

WIOGE	400 111163	400 111163	330 111163
Hsync	Negative	Negative	Positive
Vsync	Negative	Positive	Negative

400 lines

400 lines

350 lines

Modo

²⁾ The horizontal display start timing is settled in accordance with a rising timing of ENAB signal. In case ENAB is fixed "Low", the horizontal start timing is determined as described in "Horizontal Display Position", page 6. Do not keep ENAB "High" during operation.

3) R/L = High, U/D = Low

R/L = Low, U/D = Low

4) R/L = High, U/D = High

R/L = Low, U/D = High

BACKLIGHT DRIVING

Used connector: BHR-03VS-1(JST)

CN2, CN3 Corresponding connector :SM02(8.0)B-BHS(JST)

Pin no.	Symbol	Function
1	VHIGH	Power supply for lamp
		(High voltage side)
2	NC	This is electrically opened.
3	VLOW	Power supply for lamp
		(Low voltage side)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage	Vi	Ta=25°C	-0.3 ~ Vcc+0.3	V	(1)
+5V supply voltage	Vcc	Ta=25°C	0 ~ +6	V	_
Storage temperature	Tstg	_	-30 ~ +70	°C	(2)
Operating temperature (Ambient)	Тора	-	-10 ~ +65	°C	

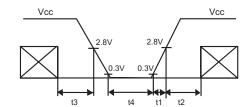
Notes:

1) CK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, ENAB, R/L, U/L

2) Humidity: 95%RH Max. at Ta ≤ 40°C.

Maximum wet-bulb temperature at 39°C or less at Ta > 40°C. No condensation.

ELECTRICAL CHARACTERISTICS

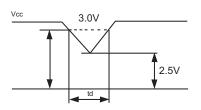

TFT-LCD PANEL DRIVING, TA=25°C

Paramete	er	Symbol	Min.	Ту	p.	Max	Unit	Remark
Power	Supply Voltage	Vcc	+3.0	+3.3	+5.0	+5.5	V	(1)
Supply	Current dissipation	Icc	_	(18	30)	TBD	mA	Vcc=3.3V (2)
		Icc	_	(15	50)	TBD	mA	Vcc=5.0V (2)
Permissiv	ve input ripple voltage	VRF	_	_	-	100	mVp-p	
Input volt	age (Low)	VIL	_	_	-	0.3Vcc	V	(3)
Input volt	age (High)	ViH	0.7Vcc	_	-	_	V	
Input curr	ent (Low)	I _{OL1}	_	_	-	1.0	μΑ	Vi=0V (4)
		lo _{L2}	_	_	-	60.0	μΑ	V _I =0V (5)
Input current (High)		Iон1	_	_	-	1.0	μΑ	Vi=Vcc (6)
		IoH ₂	_	_	-	60.0	μА	V _I =V _{CC} (7)

Notes:

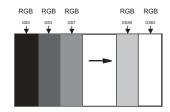
1) Vcc-turn-on conditions

 $T1 \le 15ms$ $0 < T2 \le 100ms$ $0 < T3 \le 1s$ T4 > 200ms



Vcc-dip conditions

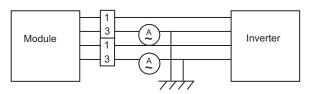
1) $2.5V \le V_{CC} < 3.0V$ $td \le 10ms$


2) $V_{CC} < 2.5V$

Vcc-dip condition should also follow the Vcc-turn-on conditions

- Typical current situation: 16-gray-bar pattern.
 480 line mode/Vcc=+3,3V/+5.0V
- 3) CK, R0~R5, G0~G5, B0~B5, Hsync, Vsytrc, ENAB, R/L, U/D
- 4) CK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, ENAB
- 5) R/
- 6) CK, R0~R5, G0~G5, B0~B5, Hsync, Vsync
- 7) ENAB, U/D

BACKLIGHT DRIVING


The backlight system is an edge-lighting type with double CCFT (Cold Cathode Fluorescent Tube). The characteristics of a single lamp are shown in the following table.

Ta=25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp current	IL	2.0	6.0	6.5	mArms	(1)
Lamp power consumption	PL	_	3.0	_	W	(2)
Lamp frequency	FL	20	35	60	KHz	(3)
Kick-off voltage	Vs	_	_	(950)	Vrms	Ta = 25°C
		_	_	(1250)	Vrms	Ta = 0°C (4)
		_	_	(1500)	Vrms	Ta = -10°C (4)
Lamp life time	LL	50000	_	_	hour	(5)

Notes:

1) Lamp current is measured with current meter for high frequency as shown below.

* 3pin is VLOW

- 2) At the condition of I_L = 6.0mArms
- 3) Lamp frequency may produce interference with horizontal synchronous frequency, and this may cause horizontal beat on the display. Therefore lamp frequency shall be detached as much as possible from the horizontal synchronous frequency and from the harmonics of horizontal synchronous to avoid interference.
- 4) The open output voltage of the inverter shall be maintained for more than 1 sec; otherwise the lamp may not be turned on.
- 5) Since the lamp is consumable, the life time written above is a referential value and it is not guaranteed in this specification sheet by Panelview.
 - Lamp life time is defined that it applied either (1) or (2) under this condition (Continuous turning on at Ta=25°C, IL=6.0mArms) (1) Brightness becomes 50% of the original value under standard condition.
 - (2) Kick-off voltage at Ta = -10°C exceeds maximum value, 1500 Vrms.

When operating under lower temp environments, the lamp degradation is accelerated and the brightness becomes lower.

- (Continuous operating for a minimum of one month under lower temp conditions may reduce the brightness to half of the original brightness.) If using in lower temp environments, periodic lamp exchange by Panelview is recommended.
- 6) The performance of the backlight, for example life time or brightness, is extremely influenced by the characteristics of the DC-AC inverter for the lamp. When designing or ordering the inverter, make certain that poor lighting caused by the mismatch of the backlight and the inverter (miss-lighting, flicker, etc.) do not occur. Once this is verified, the module should be operated in the same condition as it is installed in the instrument.
- It is required to have the inverter designed to allow the impedance deviation of the two CCFT lamps and the capacity deviation of barast capacitor.

TIMING CHARACTERISTICS OF INPUT SIGNALS

Timing diagrams of input signal are shown in Fig.2 - (1)~(3).

TIMING CHARACTERISTICS

Paramete	er	Symbol	Mode	Min.	Тур.	Max.	Unit
Clock	Frequency	1/Tc	all	-	25.18	28.33	MHz
	High time	Tch	all	5	-	-	ns
	Low time	Tcl	all	10	-	-	ns
Data	Setup time	Tds	all	5	-	-	ns
	Hold time	Tdh	all	10	-	-	ns
Horizontal	Cycle	TH	all	30.00	31.78	-	μs
sync. signal			all	750	800	900	clock
	Pulse width	THp	all	2	96	200	clock
Vertical	Cycle	TV	480	515	525	560	line
sync. signal			400	446	449	480	line
			350	447	449	510	line
	Pulse width	TVp	all	1	-	34	line
Horizontal display	period	THd	all	640	640	640	clock
Hsync-Clock		THc	all	10	-	Tc-10	ns
phase difference							
Hsync-Vsync	Hsync-Vsync		all	0	-	TH-THp	clock
phase difference							

Note: In case of lower frequency, the deterioration of display quality, flicker, etc., may occur.

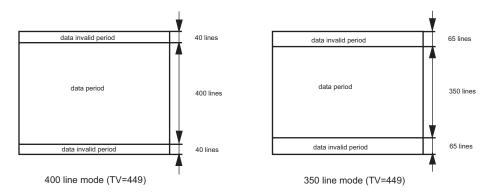
Horizontal Display Position

The horizontal display position is determined by ENAB signal and the input data corresponding to the rising edge of ENAB signal is displayed at the left end of the active area.

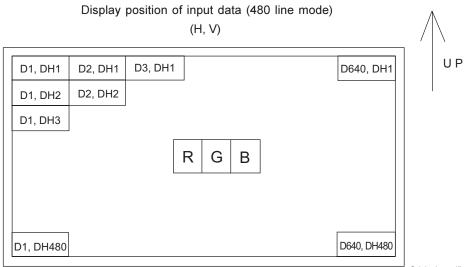
Parameter	Parameter		Min.	Тур.	Max.	Unit
Enable signal	Setup time	Tes	5	-	Tc-10	ns
	Pulse width	Тер	2	640	640	clock
Hsync-Enable signal		THe	44	-	TH-664	clock
phase difference						

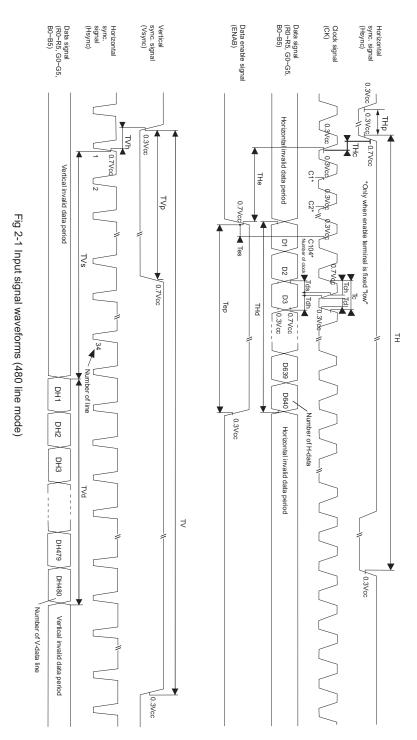
Note: When ENAB is fixed "Low", the display starts from the data of C104 (clock) as shown in Fig.2 - (1) \sim (3). Be careful that the module does <u>not</u> work when ENAB is fixed "High". When the phase difference is below 104 clock, keep the High level of ENAB signal longer than 104-The. If it is not kept, the display starts from the data of C104 (clock).

Vertical Display Position

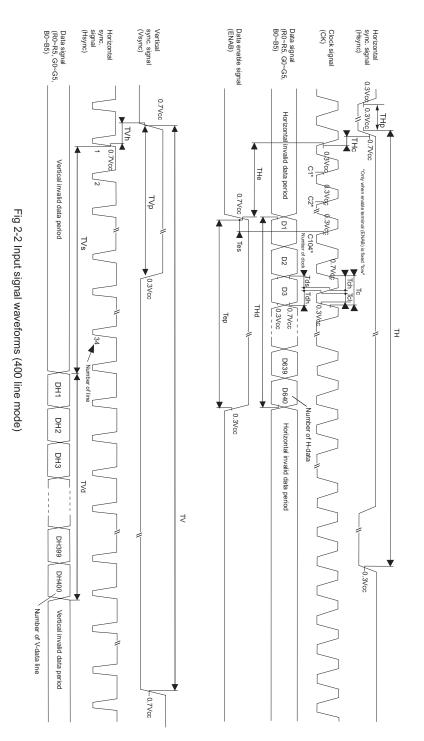

The vertical display position is automatically centered in the active area at each mode of VGA, 480-, 400-, and 350-line mode. Each mode is selected depending on the polarity of the synchronous signals described in Note 1, page 2.

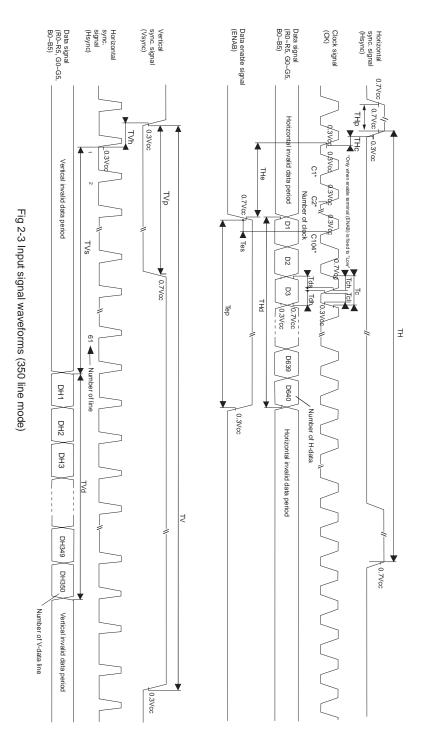
In each mode, the data of TVn is displayed at the top line of the active area. And the display position will be


centered on the screen like the following figure when the period of vertical synchronous signal, TV, is typical value.


In 400-, and 350-line mode, the data in the vertical data invalid period is also displayed. Therefore, inputting all data "0" is recommended during vertical data invalid period. ENAB signal has no relation to the vertical display position.

mode	V-data start (TVs)	V-data period (TVd)	V-display start (TVn)	V-display period	Unit
480	34	480	34	480	line
400	34	400	443-TV	480	line
350	61	350	445-TV	480	line




Input Data Signals and Display Position on the screen

Original specifications created by Sharp.

Original specifications created by Sharp.

INPUT SIGNALS, BASIC DISPLAY COLORS AND GRAY SCALE OF EACH COLOR

	Colors &							Da	ta siç	ınal										
	Gray scale	Gray	RA0	RA1	RA2	RA3	RA4	RA5	GA0	GA1	GA2	GA3	GA4	GA5	BA0	BA1	BA2	BA3	BA4	BA5
		Scale	RB0	RB1	RB2	RB3	RB4	RB5	GB0	GB1	GB2	GB3	GB4	GB5	BB0	BB1	BB2	BB3	BB4	BB5
	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Green	-	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Cyan	-	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Color	Red	-	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	-	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	↑ [\downarrow	↓				\													
of Red	↓ [\downarrow				l					`	l					1	l		
	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	↓ ↓	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Scale	1 1	\downarrow				l l					,	l l					1	l		
of Green	↓	\downarrow			,	l					`	l l					1	l		
	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
	↓	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↑	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gray	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Scale	1 1	\downarrow			1	,					,	l					1	ļ		
of Blue	↓	\downarrow			1	,					,	ļ.					<u> </u>			
	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	↓	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GSG3	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

^{0:} Low level voltage 1: High level voltage

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.

OPTICAL CHARACTERISTICS TA=25°C, V_{CC}=+5V

Para	meter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ 21, θ 22	CR >10	60	70	-	Deg.	(1, 4)
angle	Vertical	θ 11		35	40	-	Deg.	
range		θ12		55	70	-	Deg.	
Contrast ratio		CR	θ = 0°	150	-	-	-	(2, 4)
			Best Viewing Angle	-	300	-	-	
Response	Rise	tr	tr θ = 0° -		20	-	ms	(3, 4)
time	Decay	td		-	40	-	ms	
Chromaticity of		X		-	0.313	-	-	(4)
white		Υ		-	0.329	-	-	IL=6.0mArms
Luminance of w	hite	YL		280	350	-	cd/m ²	f=35kHz
White Uniformit	у	δw		-	-	1.45	-	(5)
Viewing angle	Horizontal	θ 21, θ 22	50% of	-	50	-	Deg.	(1)
range as a			the maximum					
brightness	Vertical	θ 11	brightness	-	40	-	Deg.	
definition		θ 12		-	35	_	Deg.	

The measurement shall be executed 30 minutes after lighting at rating. (condition: IL=6.0mArms) The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig.3 below.

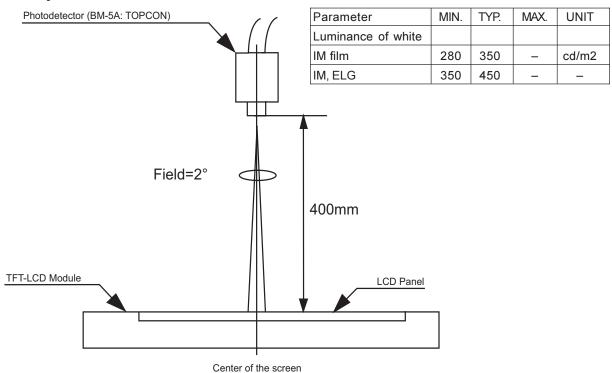
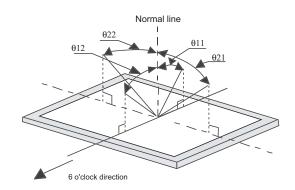
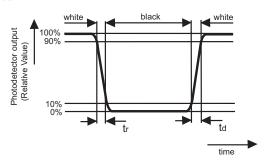



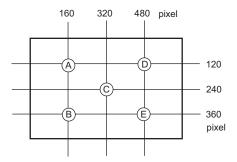
Fig. 3 Optical characteristics measurement method

Notes:

1) Definitions of viewing angle range:



2) Definition of contrast ratio:


Contrast Ratio (CR) = Luminance (brightness) with all pixels white Luminance (brightness) with all pixels black

3) Definition of response time:

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

- 4) This shall be measured at center of the screen.
- Definition of white uniformity: White uniformity is defined as the following with five measurements (A~E).

Maximum Luminance of five point (brightness)

 $\delta_{w=}$

Minimum Luminance of five point (brightness)

DISPLAY QUALITY

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

HANDLING PRECAUTIONS

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Avoid contact with water. Prolonged exposure with water may cause discoloration or spots.
- e) If surface becomes soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on a hard surface. Handle with care
- g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling.
- h) Laminated film is attached to the front and back of the module surface to prevent it from being scratched . Peel the film off slowly, just before use, with strict attention to electrostatic charges. lonized air should be blown over during the action. Blow off 'dust' on the polarizer by using an ionized nitrogen gun, etc.
- i) The polarizer surface on the panel is treated with Anti-Glare for low reflection.
- j) Do not expose the LCD panel to direct sunlight. Lightproof shade etc. should be attached when LCD panel is used under such environment.
- k) Connect GND to the 4 mounting holes to stabilize against EMI and external noise.
- I) There are high voltage portions on the backlight and are very dangerous. Careless handling may lead to electrical shock. When exchanging lamps or service, turn off the power without fail.
- m) When handling LCD modules and assembling them into cabinets, be aware that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause

corrosion and discoloration of the LCD modules.

n) Cold cathode fluorescent lamp in LCD panel contains a small amount of mercury, follow local ordinances or regulations for disposal.

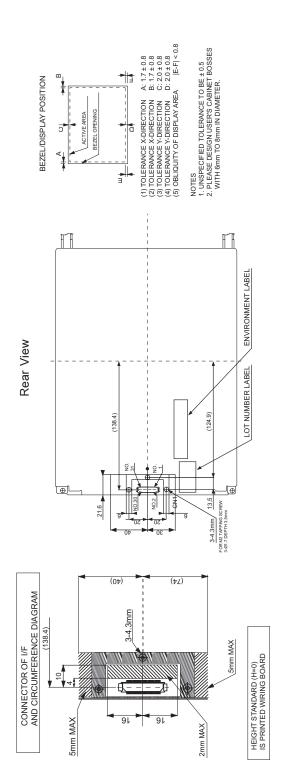
PACKING FORM

Piling number of cartons	7(Max)
Packing quantity in one carton	20
Carton size (mm)	525(W) x 309(D) x 377(H)
Total mass of one carton filled	17.5kg
with full modules	

RELIABLITY TEST ITEMS

No.	Test item	Conditions
1	High temperature storage test	Ta = 70°C 240h
2	Low temperature storage test	Ta = -30°C 240h
3	High temperature	Ta = 40°C; 95%RH 240h
	& high humidity operation test	(No condensation)
4	High temperature operation test	Ta = 65°C 240h
5	Low temperature operation test	Ta = -10°C 240h
6	Vibration test	Frequency: 10~57Hz/Vibration width (one side): 0.075mm
	(non-operating)	: 58~500Hz/Gravity: 9.8m/s ²
		Sweep time : 11 minutes
		Test period : 3 hours
		(1 hour for each direction of X, Y, Z)
7	Shock test	Max. gravity: 490m/s ²
	(non-operating)	Pulse width : 11ms, half sine wave
		Direction: ±X, ±Y, ±Z
		once for each direction.

(Result Evaluation Criteria)


Under the display quality test conditions with normal operation state, there shall be no change which may affect practical display function.

OTHERS

- 1) Disassembling the module can cause permanent damage and should be strictly avoided.
- 2) Be advised that image retention may occur when a fixed pattern is displayed for a long period of time.

Fig. 1 Outline Dimensions

