# National Semiconductor

## **TV Circuits**

.M1017

11

## LM1017 4-Bit Binary 7-Segment Decoder/Driver

## **General Description**

The LM1017 is a monolithic IC which decodes 4-bit "binary plus one" coded input signals and supplies 1 1/2-digit TV channel display information. The outputs are designed to drive a 7-segment common cathode LED display with up to 25 mA depending on thermal dissipation requirements. Improvements in circuit design enable the device to operate from 5V to 12V supply. A brightness control facility is included.

#### Features

- A direct replacement for SN29764 but with 12V supply capability
- TTL compatible inputs with high input voltage immunity
- Channel displays are from 1 to 16
- Current-driven output stages for LEDs protect against excess thermal dissipation
- Continuously variable brightness control
- Low stand-by quiescent current supply consumption
- Suitable for NSN583 0.5 inch LED display
- Inputs are suitable for direct drive from MOS outputs



## **Absolute Maximum Ratings**

| Supply Voltage, Pin 16      | 13.5V        | St |
|-----------------------------|--------------|----|
| Input Voltage, Pins 2–5     | 30V          | Ju |
| Input Voltage, Pin 1        | 13.5V        | Le |
| Operating Temperature Range | 0°C to +70°C |    |

-55°C to +150°C torage Temperature Range unction Temperature ead Temperature (Soldering, 10 seconds)

150°C 300°C

## Electrical Characteristics V16 = 5V, TA = 25°C

| PARAMETER                                        | CONDITIONS     | MIN | ТҮР  | MAX                         | UNITS |
|--------------------------------------------------|----------------|-----|------|-----------------------------|-------|
| Current per Segment Quiescent Current, Pin 16    | Pin 1 = 2V     |     | 12   | 20                          | mA    |
|                                                  | Pin 1 = 5V     |     | 4    |                             | mA    |
| Input Logic Voltage                              | Pins 2-5       |     |      |                             |       |
| H Signal                                         |                | 2   |      |                             | v     |
| L Signal                                         |                |     | -    | 0.8                         | V     |
| Input Current, Pins 2–5                          | V2-5 = 2.4V    |     |      | 1 1                         | μA    |
|                                                  | V2-5 = 0V      |     |      | -5                          | μA    |
| Input Current, Pin 1                             | l7-15 = -15 mA |     | -350 | · .                         | μA    |
| Output Current, Pins 7–15                        | V1 = 0V        | -16 | -22  |                             | mA    |
|                                                  | V1 = 2V        |     | -12  | 20<br>0.8<br>1<br>-5<br>-20 | mA    |
|                                                  |                | μΑ  |      |                             |       |
| Minimum Saturation Between Output Terminals      | IOUT =20 mA    | 1   | 1.4  |                             | v     |
| 7–15 and 16                                      |                |     |      |                             |       |
| Package Thermal Resistance, $	heta_{	extsf{JA}}$ |                |     |      | 100                         | °C/W  |

Note. To limit device temperature at supply voltages > 5V, the following condition must be maintained: 8 (V<sub>SUPPLY</sub> - V<sub>OUT</sub>)  $I_{OUT} < \frac{150 - T_A}{\theta_{JA}}$ Eg. For 12V supply and 20 mA  $I_{OUT}$  into 2V LED,  $T_A = 25^{\circ}$ C: 8 (12 - V<sub>O</sub>)  $0.02 < \frac{125}{100}$ 

i.e.,  $V_{O}>4.2V$   $\therefore$  series output resistance =  $\frac{2.2V}{20\mbox{ mA}}$  = 110  $\Omega$  .

See application notes for use of common series resistance between LED cathodes and ground.

#### **Truth Table**

| CHANNEL | INPUT |   |   |   |    | OUTPUT |    |    |    |    |    |    |    |   |
|---------|-------|---|---|---|----|--------|----|----|----|----|----|----|----|---|
|         | D     | С | в | Α | BR | а      | b  | C  | d  | е  | f  | g  | h  | i |
| 1       | L     | L | L | L | L  |        | ON | ON |    |    |    |    |    |   |
| 2       | L     | L | L | н | L  | ON     | ON |    | ON | ON |    | ON |    |   |
| 3       | L L   | L | н | L | L  | ON     | ON | ON | ON |    |    | ON |    |   |
| 4       | L     | L | н | н | L  |        | ON | ON |    |    | ON | ON |    |   |
| 5       | L     | н | L | L | L  | ON     |    | ON | ON |    | ON | ON |    |   |
| 6       | L     | H | L | н | L  | ON     |    | ON | ON | ON | ON | ON |    |   |
| 7       | L     | н | н | L | L  | ON     | ON | ON |    |    |    |    |    |   |
| 8       | L     | н | н | н | L  | ON     | ON | ON | ON | ON | ON | ON |    |   |
| 9       | н     | L | L | L | L  | ON     | ON | ON | ON |    | ON | ON |    |   |
| 10      | н     | L | L | н | L  | ON     | ON | ON | ON | ON | ON |    | ON | 0 |
| 11      | н     | L | н | L | L  |        | ON | ON |    |    |    |    | ON | С |
| 12      | н     | L | н | Н | L  | ON     | ON |    | ON | ON |    | ΟN | ON | С |
| 13      | н     | н | L | L | L  | ON     | ON | ON | ON |    |    | ON | ON | С |
| 14      | н     | н | L | н | L  |        | ON | ON |    |    | ON | ON | ON | С |
| 15      | н     | н | н | L | L  | ON     |    | ON | ON |    | ON | ON | ON | C |
| 16      | н     | н | н | н | L  | ON     |    | ON | ON | ON | ON | ON | ON | C |
| OFF     | X     | х | х | х | н  |        |    |    |    |    |    |    |    |   |

11-4





## **Typical Applications**

When operating with a 12V supply line, it is necessary to limit the power dissipation in the IC by means of external resistance in series with the LED segments. (Max package dissipation at  $70^{\circ}$ C = 800 mW.)

A minimum voltage of 2.5V should be allowed across the output driver pins between supply and outputs. Allowing 1.4V for the LED segments, a simple economical solution using *only 1 resistor* can be proposed as follows:



Maximum no of ON segments = 8

For 20 mA/segment, maximum voltage allowed across  $R_{L}$  will be:

$$12 - 2.5 - 1.4 \cong 8V$$
  
∴ R<sub>1</sub> max = 8/8 x 0.02 ≏ 47Ω

For 15 mA/segment (max), RL max = 56 $\Omega$ .

Alternative methods of limiting PD at 12V supply.

With a series resistance between each output and segment, the recommended resistance per segment at 20 mA maximum will be:

$$(12 - 2.5 - 1.4)/0.02 \cong 390\Omega$$

If a zener is used, maximum zener voltage = 8V. (The zener can be common between LED display cathode and ground.)





Powered by ICminer.com Electronic-Library Service CopyRight 2003

11-6