
										RE	VISK	ONS													
LTR	<u> </u>					C	DESC	RIPT	ION									DATE	(YR-	MO-D	A)	AP	PRO	WED	
]
																	1				ı				
	l																l				ı				
																									ļ
]
								÷.																	
				T							<u> </u>	ГТ	-1								Г				П
REV			↓_	_	<u> </u>				_	_		$\vdash \downarrow$		\dashv		 		_			H				Н
SHEET	Г	\bot	1_	<u> </u>	<u> </u>	_			<u> </u>	<u> </u>	_	⊢∔	_	-			-		<u> </u>	-	_	_		\vdash	Н
REV		+	╀	╄	 	<u> </u>	-	-	-	┝	\vdash	┝╌┼						<u> </u>	┢	H	-			H	H
SHEET		┯┸-		<u> </u>	-	22	_	┝	-	┝	┢	\vdash	_	_		-	_	_		\vdash	-		-	H	-
REV S		_	HEET			23		-	_	-	┢		_			-		-	ار ا	-	ļ.,		,	20	21
			TILL		PRE	PARE	3 D BY	4	5	6		8	9 	LLQ	11	12	13	14	15	LIb	17	18	19	LZU	
PMIC							2		1	it	-				DEF	FENS							NTE	R	
STA	STANDARDIZED MILITARY			CHI	CKE	ВҮ		Α	0			1				DA	YIOI	N, Oł	110 4	5444	,				
					Kο	4	//	1σ	m	<u>~,</u>		М	ICRO	CIR	CUIT	s,	DIGI	TAL	, CM	108	DUAL	SEF	RIAL		
[PAW	ING			AP		1	<u> </u>		7		9	I,	/0 C	ONT	ROLL	ER I	MONC	LIT	HIC	SIL	ICON			
THIS D	RAWING	IS AVAI	LABL	E	DR	AWIN	G AP	PROV	AL D	K			t	SIZE	T		CAGE	CODE		T			-		
I AND	E BY ALL D AGENC	ES OF	THE				JAN							A			372				59	62-	-89	95 1	16
DEPA	RTMENT	OF DEF	ENSE		RE	/ISIO	N LE	ÆL.					1		. L	CT.		<u> </u>		OF		23	3		
AMS	AMSC N/A												1	5	SHE	E (1		UF.					

a U.S. GOVERNMENT PRINTING OFFICE: 1987 - 748-129/60911

5962-E1146

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988--550-547

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.5 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.5. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING	SIZE A	5962-89516				
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL		SHEET 3		

DESC FORM 193A SEP 87

U. S. GCVERNMENT PRINTING OFFICE: 1988—550-547

						Lim	its		
Parameter	Symbol		litions C < +125°C i.O V ±10% wise specified	Group A subgroups 	 Reference number 	Min	Max	Unit 	
Clock input low voltage	V _{IL1}			1, 2, 3		-0.3 1/	0.45	٧	
Clock input high voltage	V _{IH1}			1, 2, 3		V _{CC}	У _{СС+} 0.3 v	٧	
Input low voltage V _{IL}				1, 2, 3		-0.3 1/	0.8	٧	
Input high voltage	V _{IH2}			1, 2, 3		2.2	V _{CC}	٧	
Output low voltage	V _{OL}	I _{OL} = 2.0 mA		1, 2, 3			0.4	٧	
Output high VOH1		I _{OH} = -1.6 mA		1, 2, 3	! 	2.4		٧	
Output high V_{OH2} I_{OH} = -250 μ A voltage				1, 2, 3	 	V _{CC} -0.8		٧	
Power supply ICC1 VCC = 5.0 V VIH = VCC - CL = 100 pF CLK = 6 MHz			'IL = 0.2 V, 2 V,	1, 2, 3			15	mA	
Power supply current	l I _{CC2}	V _{CC} = 5.0 V, V V _I H = V _{CC} - 0.0 CLK = 0 MHz	/IL _v = 0.2 V,	1, 2, 3		 	100	μА	
Output leakage I _{LOL} current low, open drain outputs		V _{OUT} = 0.4 V		1, 2, 3	 	-10	+10	μА	
Output leakage current high, open drain outputs	I LOH	V _{OUT} = 2.4 V		1, 2, 3	 	-10	+10 	μА	
See footnotes at end	of tabl	e.							
STANDA		_	SIZE A		5	962-89	516		
MILITARY DEFENSE ELECTRO		*		REVISION LEV	EL	SHE	ET		

± U. S. GOVERNMENT PRINTING OFFICE: 1988 550-547

TABLE I. Electrical performance characteristics - Continued. Limits Conditions $-55^{\circ}C < T_C + 125^{\circ}C$ $V_{CC} = 5.0 \text{ V } \pm 10\%$ unless otherwise specified Unit Min Max Group A Reference Symbol Pa rameter number subgroups $_{\boldsymbol{\mu}}\boldsymbol{A}$ - 40 1+10 1, 2, 3 $V_{IN} = 0.4 \text{ V to } V_{CC}$ SYNCA pin leakage | IIL1 current low -40 +10 μA 1, 2, 3 $V_{IN} = 2.4 V$ SYNCA pin leakage | IIH1 current high - 10 |+10 μА 1, 2, 3 $V_{IN} = 0.4 V$ Input low current | IIL2 (input and bidirectional) μA -10 [+10 Input high current IIH2 (input and bi-1, 2, 3 $V_{IN} = 2.4 V$ directional) 7 $T_C = +25^{\circ}C$; f = 1 MHz Clock capacitance | CCLK рF 4 see 4.3.1c Unmeasured pins returned to 5 Input capacitance |CI ground 10 Output capacitance | CO 7,8 Functional tests see 4.3.1d MHz 6.17 $C_L = 100 pF \pm 10\%$ 9, 10, 11 Maximum frequency | fmax 1/ 3/ 162 9, 10, 11 1 ns Clock cycle time tcyc1 4/ 5/ 24 330 ns 9, 10, 11 TxC cycle time tcyc2 330 30 ns 9, 10, 11 RxC cycle time tcyc3 20 ns 9, 10, 11 3 Clock fall time tfC 1/ See footnotes at end of table. SIZE **STANDARDIZED** Α 5962-89516 **MILITARY DRAWING** REVISION LEVEL SHEET DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

DESC FORM 193A SEP 87 ± U. S. GOVERNMENT PRINTING OFFICE: 1988-550-547

TABLE I. Electrical performance characteristics - Continued. Limits Conditions $-55^{\circ}C \le T_C + 125^{\circ}C$ $V_{CC} = 5.0 \text{ V } \pm 10\%$ unless otherwise specified Unit Group A Reference Min Max Pa rameter Symbol subgroups number $C_L = 100 pF \pm 10\% 3/$ 20 9, 10, 11 4 Clock rise time ns 1/ 9, 10, 11 2 65 ns Clock width high tpwH1 1/ 6/ 5 65 9, 10, 11 ns Clock width low tpwL1 7/ 200 Pulse width high (CTS, DCD, SYNC) 9, 10, 11 22 ns tPWH2 200 9, 10, 11 23 ns Pulse width low tpWL2 (CTS, DCD, SYNC) 1/ 26 100 9, 10, 11 ns TxC width high tPWH3 9, 10, 11 25 100 ns TxC width low tpwL3 1/ 9, 10, 11 32 100 ns RxC width high tPWH4 9, 10, 11 31 100 ns RxC width low tpwL4 1/ CE, C/D, B/A to clock setup 9, 10, 11 6 60 ns tsHL1 t_{SLH1} 7 160 TURU, RU to clock+ tSHL2 9, 10, 11 ns It_{SLH2} setup See footnotes at end of table. **STANDARDIZED** SIZE Α 5962-89516 DEFENSE ELECTRONICS SUPPLY CENTER **REVISION LEVEL** SHEET DAYTON, OHIO 45444

DESC FORM 193A SEP 87

TABLE I. Electrical performance characteristics - Continued. Limits Conditions $-55^{\circ}C < T_C + 125^{\circ}C$ $V_{CC} = 5.0 V \pm 10\%$ Unit |Reference |Min Max Group A Symbol Pa rameter subgroups number unless otherwise specified 9 30 ns 9, 10, 11 $C_{L} = 100 pF \pm 10\% 3/$ Data in to clock + tSHL3 setup (Write or t_{SLH3} MI cycle) 0 ns 9, 10, 11 33 RxD to \overline{RxC} + setup (x1 mode) 1/tsHL4 tSLH4 75 ns 12 9, 10, 11 MI to clock t tSHL5 setup t_{SLH5} 120 ns 13 9, 10, 11 IEI to TORQ + setup (INTA tSHL6 tSLH6 cycle) 9, 10, 11 38 -100 ns SYNC to RXC + tSHL7 setup (External It_{SLH7} SYNC modes) 1/ 34 100 ns 9, 10, 11 RxC + to RxD hold tHHL1 (x1 mode) t_{HLH1} 0 ns 9, 10, 11 21 Any unspecified tHHL2 hold when setup t_{HLH2} specified 1/ 150 9, 10, 11 8 ns Clock * tPHL1 to data out delay |tpLH1 90 9, 10, 11 10 ns RD + to data out ltpHZ1 float delay 1/ tPLZ1 120 11 ns 9, 10, 11 TORQ+to data out tpHL2 delay (INTA cycle) tPLH2 220 27 9, 10, 11 ns TxC [†]to TxD delay (x1 mode) tPHL3 tPLH3 See footnotes at end of table. SIZE STANDARDIZED A 5962-89516 **MILITARY DRAWING** REVISION LEVEL SHEET DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

DESC FORM 193A SEP 87

TABLE I. Electrical performance characteristics - Continued. Limits Conditions -55°C < T_C +125°C V_{CC} = 5.0 V ±10% Unit Max Reference Min Group A Pa rameter Symbol subgroups number unless otherwise specified MT +to IEO+ delay tpHL4 14 160 $C_L = 100 \text{ pF} *10\% 3/$ 9, 10, 11 ns before MI) 1/ IEI+ to IEO+ **やLH4** 9, 10, 11 (After ED decode) 15 70 ns 9, 10, 11 16 70 ns IEI+ to IEO+ tpHL5 delay 9, 10, 11 17 200 Clock+ to INT+ ns tPHL6 delay 1/ 9, 10, 11 18 175 ns TORQ+ to CE+ to tPHL7 W/RDY delay (Wait mode) 1/ Clock+ to W/RDY+ delay (Ready 19 t_{PHL8} 9, 10, 11 ns mode) 1/Clock+ to W/RDY float delay 20 110 9, 10, 11 ns tpLZ2 (Wait mode) 1/ TxC+ to W/RDY+ delay (Ready mode) 1/ 28 5 9 8/ 9, 10, 11 tPHL9 5 9 9, 10, 11 29 8/ TxC+ to INT+ tPHL 10 delay 1/ RxC+ to W/RDY+ delay (Ready 13 8/ 9, 10, 11 35 10 tpHL11 mode) 1/ See footnotes at end of table. STANDARDIZED SIZE A 5962-89516 MILITARY DRAWING REVISION LEVEL SHEET DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

DESC FORM 193A SEP 87

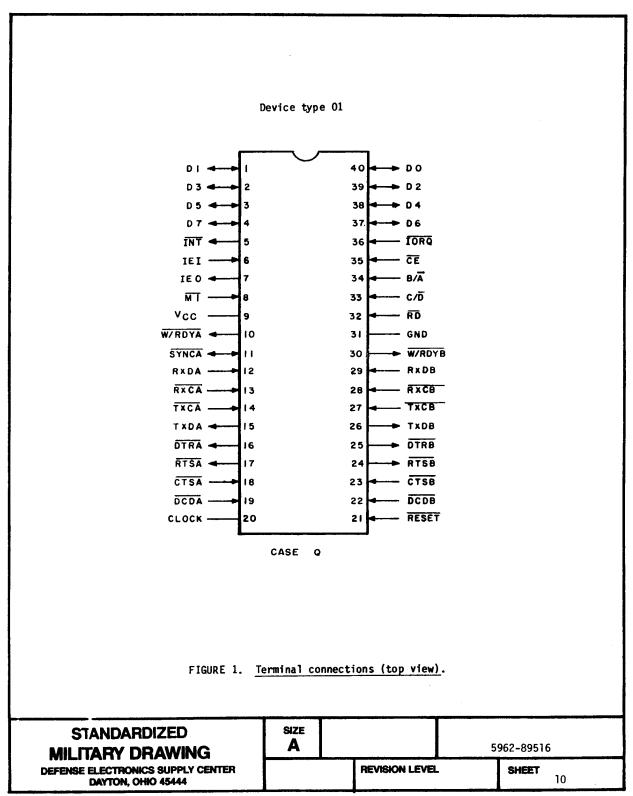
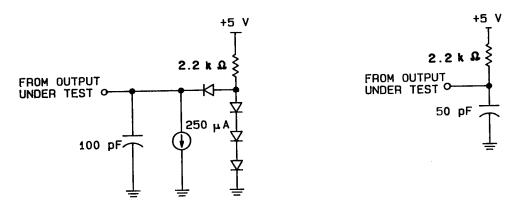

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

	TABLE I.	Electrical performance charac	teristics -	Continued.			
	1	Conditions	7		Lim	its	Unit
Parameter	Symbol 	Conditions $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Group A subgroups	Reference number 	Min 	Max	
RXC↑ to INT↓ delay <u>1</u> /	tPHL12	C _L = 100 pF ±10% 3/	9, 10, 11	36	10	13	<u>8</u> /
RxC↑ to SYNC↓ delay (output mode) 1/	tPHL13		9, 10, 11	37	 4 	 7 	<u> </u> <u>8</u> /

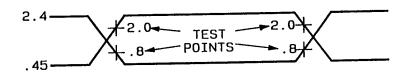
- 1/ If not tested, shall be guaranteed to the specified limits.
- $\frac{2}{}$ The reference number refers to the position where the parameters being tested appears on figure 2.
- $\frac{3}{2}$ Figure 2 represents the electrical performance characteristics associated with the ac limits shown in table I.
- 4/ In all modes, the system clock rate must be at least five times the maximum data rate.
- 5/ RESET must be active a minimum of one complete clock cycle.
- $\underline{6}$ / tpwH1 = tcyc tpwL1 trc tfC
- 7/ tpwL1 = tcyc tpwH1 trc tfC
- 8/ Clock periods (system clock).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARDIZED MILITARY DRAWING	SIZE A		59	962-89516		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	•	SHEET 9		

± U. S. GOVERNMENT PRINTING OFFICE: 1968—550-547



☆ U. S. GOVERNMENT PRINTING OFFICE: 1988--550-5


Switching test circuits

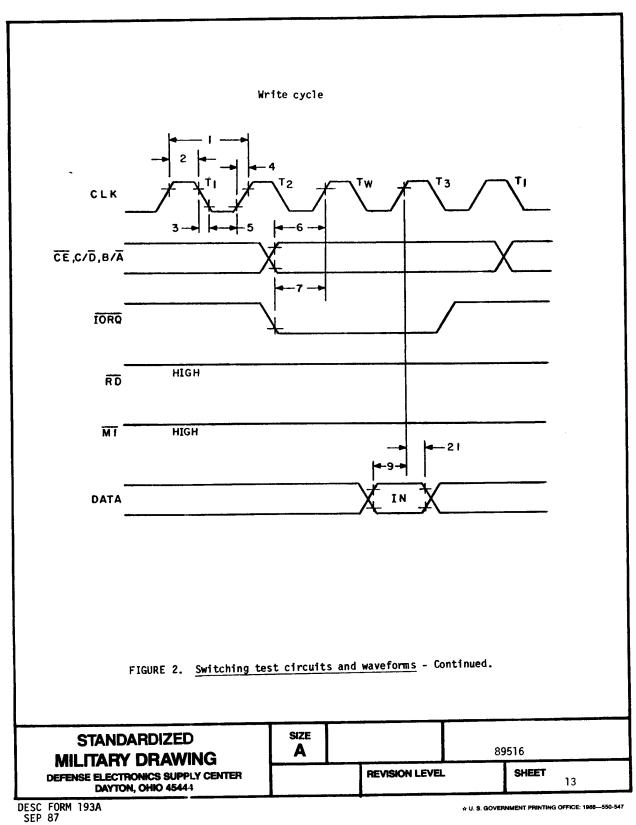
Standard test load

Open drain test load

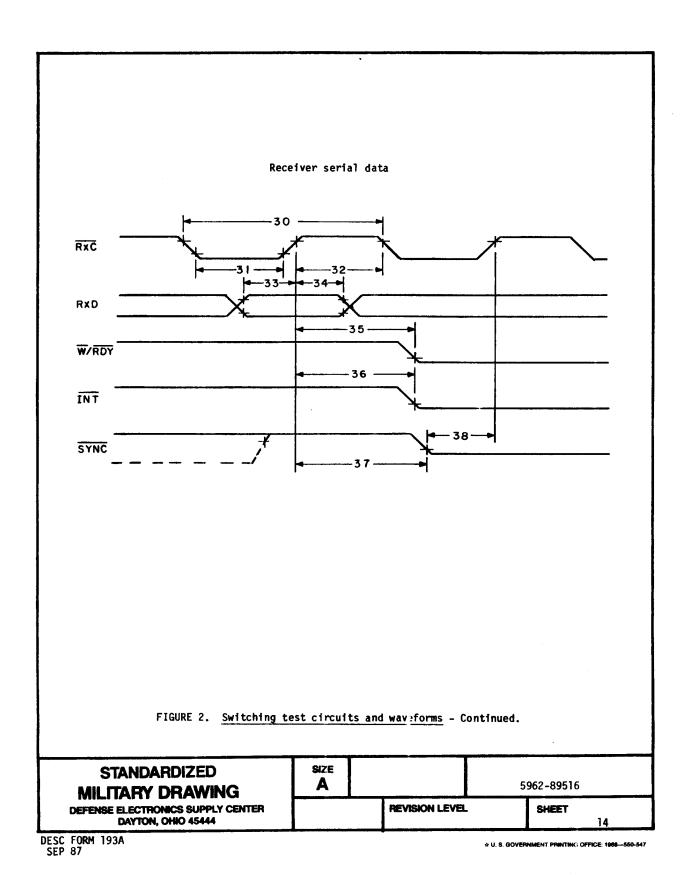
Switching test input output waveform

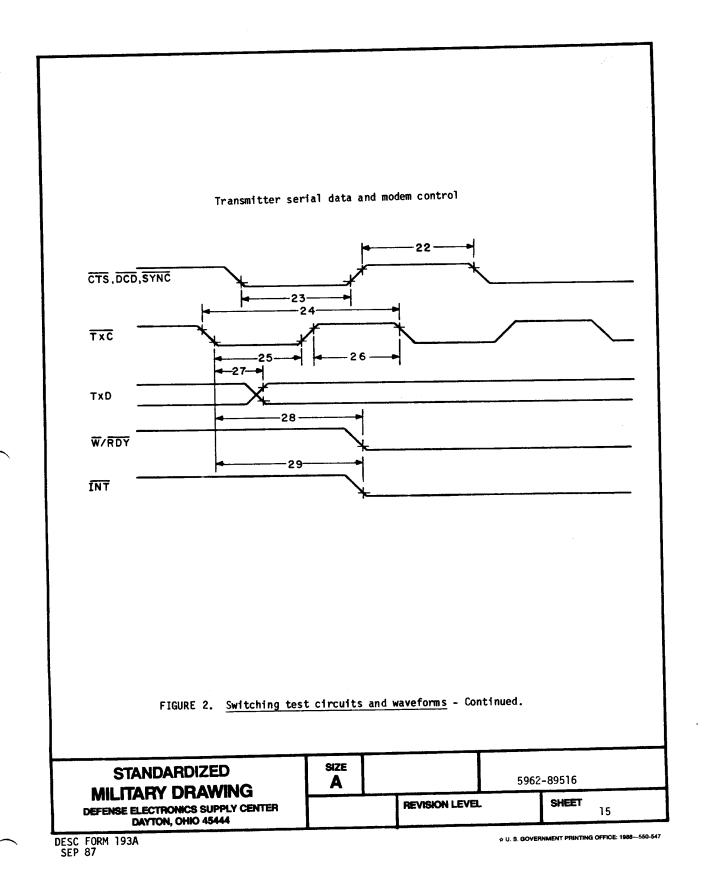

AC testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at 2.0 V for a logic "1" and 0.8 V for logic "0".

FIGURE 2. Switching test circuits and waveforms.

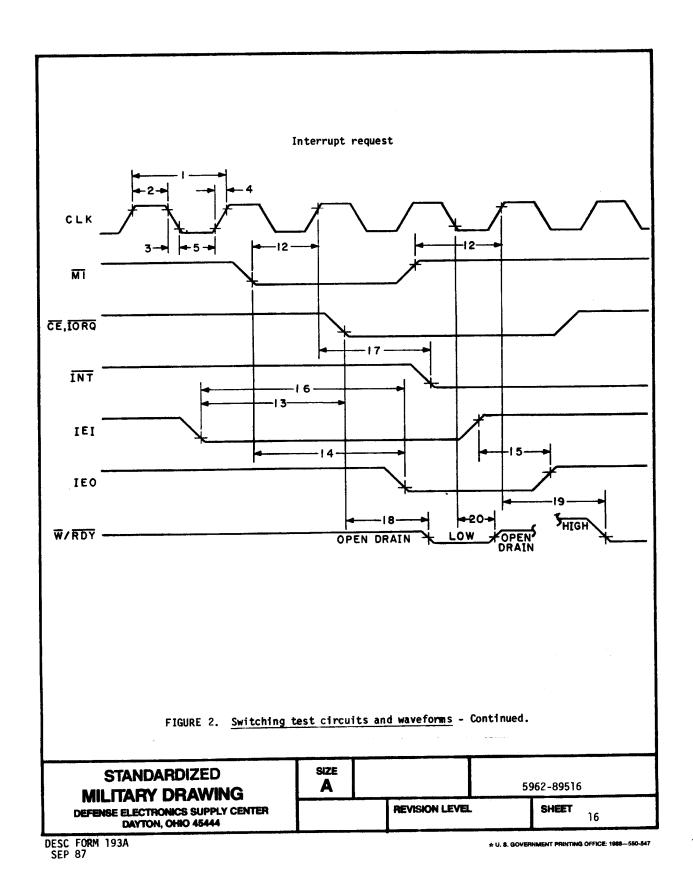

STANDARDIZED MILITARY DRAWING	SIZE A	5962-89516				
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		 REVISION LEVEL		SHEET 11		

DESC FORM 193A SEP 87

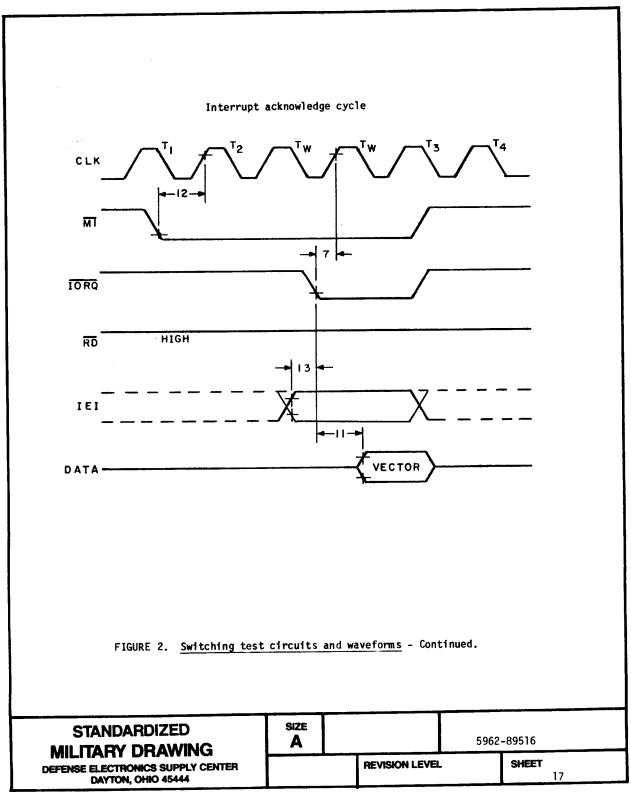

± U. S. GOVERNMENT PRINTIN 3 OFFICE: 1988—550-547

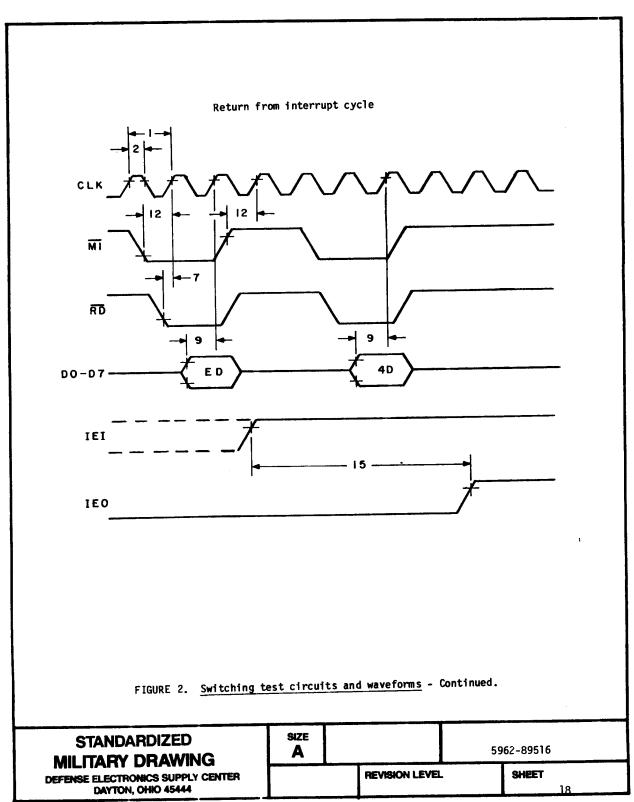


Powered by ICminer.com Electronic-Library Service CopyRight 2003



₩ U. S. GOVERNMENT PRINTING OFFICE: 1988--550-547




Powered by ICminer.com Electronic-Library Service CopyRight 2003

Powered by ICminer.com Electronic-Library Service CopyRight 2003

\$cu.s. Government printing office: 1987 - 748-129-60913

± U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply:
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{CLK} , C_{I} , and C_{O} measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance. A minimum sample size of 5 with zero rejects shall be required.
 - d. Subgroups 7 and 8 functional testing shall include verification of instruction set. The instruction set forms a part of the vendors test tape and shall be maintained and available from the approved sources of supply.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
 Interim electrical parameters (method 5004)	
 Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9, 10, 11
	1, 2, 3, 4, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-89516

REVISION LEVEL
SHEET
19

DESC FORM 193A SEP 87 ± U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
 - 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.4 Symbols, definitions, and functional descriptions. The symbols, definitions, and functional description for this device shall be as follows:

SYSTEM DEFINITIONS

SYMBOL

FUNCTION

B/Ā (Channel A or B select)

Input, high selects Channel B. This input defines which channel is accessed during a data transfer between the CPU and the SIO. Address bit Ao from the CPU is often used for the selection function.

C/D (Control or Data Select)

Input, high selects Control. This input defines the type of information transfer performed between the CPU and the SIO. A high at this input during a CPU write to the SIO causes the information on the data bus to be interpreted as a command for the channel selected by the B/ $\overline{\rm A}$. A low at C/ $\overline{\rm D}$ means that the information on the data bus is data. Address bit A₁ is often used for this function.

(Chip Enable)

Input, active low. A low level at this input enables the SIO to accept command or data input from the CPU during a write cycle, or to transmit data to the CPU during a ready cycle.

CLK (System Clock) Input. The SIO uses the standard System Clock to synchronize internal signals. This is a single-phase clock.

CTSA, CTSB (Clear to Send) Inputs, active low. When programmed as Auto Enables, a low on these inputs enables the respective transmitter. If not programmed as Auto Enables, these inputs may be programmed as general-purpose inputs. Both inputs are Schmitt-trigger buffered to accommodate slow-rise time signals. The SIO detects pulses on these inputs and interrupts the CPU on both logic level transitions. The Schmitt-trigger buffering does not guarantee a specified noise-level margin.

STANDARDIZED

MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

DESC FORM 193A SEP 87

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988--550-547

D_O - D₇ (System Data Bus) Bidirectional, three-state. The system data bus transfers data and commands between the CPU and the SIO. D_0 is the least significant bit.

DCDA, DCDB (Data Carrier Detect) Inputs, active low. These pins function as Receiver Enables if the SIO is programmed for Auto Enables; otherwise they may be used as general-purpose input pins. Both pins are Schmitt-trigger buffered to accommodate slow-rise time signals. The SIO detects pulses on these pins and interrupts the CPU on both logic level transitions. Schmitt-trigger buffering does not guarantee a specific noise-level margin.

DTRA, DTRB (Data Terminal Ready) Outputs, active low. These outputs follow the state programmed into SIO. They can also be programmed as general-purpose outputs.

IEI (Interrupt Enable In) Input, active high. This signal is used with IEO to form a priority daisy chain when there is more than one interrupt-driven device. A high on this line indicates that no other device of high priority is being serviced by a CPU interrupt service routine.

IEO (Interrupt Enable Out)

Output, active high. IEO is high only if IEI is high and the CPU is not servicing an interrupt from this SIO. Thus, this signal blocks lower priority devices from interrupting while a higher priority device is being serviced by its CPU interrupt service routine.

INT
(Interrupt Request)

Output, open drain, active low. When the SIO is requesting an interrupt, it pulls $\overline{\text{INT}}$ low.

TORQ (Input/Output Request)

Input from CPU, active low. \overline{IORQ} is used in conjunction with B/A, C/D, CE and RD to transfer commands and data between the CPU and the SIO. When CE, RD and \overline{IORQ} are all active, the channel selected by B/A transfers data to the CPU (a read operation). When \overline{CE} and \overline{IORQ} are active, but \overline{RD} is inactive, the channel selected by B/A is written to by the CPU with either data or control information as specified by C/D. As mentioned previously, if \overline{IORQ} and \overline{MI} -are active simultaneously, the CPU is acknowledging an interrupt and the SIO automatically places its interrupt vector on the CPU data bus if it is the highest priority device requesting an interrupt.

MT (Machine Cycle) Input from CPU, active low. When MI is active and RD is also active, the CPU is fetching an instruction from memory; when MI is active while $\overline{\text{IORQ}}$ is active, the SIO accepts $\overline{\text{MI}}$ and $\overline{\text{IORQ}}$ as an interrupt acknowledge if the SIO is the highest priority device that has interrupted the CPU.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

DESC FORM 193A SEP 87 RxCA, RxCB (Receiver Clocks) Inputs. Receive data is sampled on the rising edge of $\overline{\text{RxC}}$. The Receiver Clocks may be 1, 16, 32, or 64 times the data rate in asynchronous modes. These clocks may be driven by the CTC Counter Timer Circuit for programmable baud rate generation. Both inputs are Schmitt-trigger buffered (no noise level margin is specified).

RD (Read Cycle Status) Input from CPU, active low. If \overline{RD} is active, a memory or I/O read operation is in progress. \overline{RD} is used with B/A, \overline{CE} , and \overline{IORQ} to transfer data from the SIO to the CPU.

RxDA, RxDB (Receive Data) Inputs, active high. Serial data at TTL levels.

RESET (Reset)

Input, active low. A low RESET disables both receivers and transmitters, forces TxDA and TxDB marking, forces the modem controls high and disables all interrupts. The control registers must be rewritten after the SIO is reset and before data is transmitted or received.

RTSA, RTSB (Request to Send)

Outputs, active low. When the RTS bit in Write Register 5 is set, the RTS output goes low. When the RTS bit is reset in the asynchronous mode, the output goes high after the transmitter is empty. In synchronous modes, the RTS pin strictly follows the state of the RTS bit. Both pins can be used as general-purpose outputs.

SYNCA (Synchronization)

Input/output, active low. This pin can act either as input or output. In the asynchronous receive mode, it is an input similar to CTS and DED. In this mode, the transitions on this line affect the state of the Sync/Hunt status bits in Read Register 0, but have no other function. In the External Sync mode, this line also acts as input. When external synchronization is achieved, SYNC must be driven low on the second rising edge or RxC after that rising edge of RxC on which the last bit of the sync character was received. In other words, after the sync pattern is detected, the external logic must wait for the two full Receive Clock cycles to activate the SYNC input. Once SYNC is forced low, it should be kept low until the CPU informs the external synchronization detect logic that synchronization has been lost or a new message is about to start. Character assembly begins on the rising edge of RXC that immediately precedes the falling edge of SYNC in the External Sync mode. In the internal synchronization mode (Monosync and Bisync), this pin acts as an output that is active during the part of the receive clock (\overline{RxC}) cycle in which sync characters are recognized. The sync condition is not latched, so this output is active each time a sync pattern is recognized, regardless of character boundaries.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1988-550-547

TXCA, TXCB (Transmitter Clocks) TxD changes from the falling edge of $\overline{\text{TxC}}$. In asynchronous modes, the Transmitter Clocks may be 1, 16, 32, or 64 times the data rate; however, the clock multiplier for the transmitter and the receiver must be the same. The Transmit Clock inputs are Schmitt-trigger buffered for relaxed rise- and fall-time requirements (no noise level margin is specified). Transmitter Clocks may be driven by the CTC Counter Timer Circuit for programmable baud rate generation.

TxDA, TxDB (Transmit Data) Outputs, active high. Serial data at TTL levels.

W/RDYA, W/RDTB (Wait/Ready A, Wait/Ready B)

Outputs, open drain, when programmed for Wait function; driven high and low when programmed for Ready function. These dualpurpose outputs may be programmed as Ready lines for a DMA controller or as Wait lines that synchronize the CPU to the SIO data rate. The reset state is open drain.

6.5 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /
5962-8951601QX	56708	Z84C42O6CMB

1/ Caution: Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

56708

Vendor name and address

Zilog, Inc. 210 Hacienda Ave. Campbell, CA 95008

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE Α **REVISION LEVEL**

5962-89516

SHEET

23

DESC FORM 193A **SEP 87**

± U. S. GOVERNMENT PRINTING OFFICE: 1988--550-547