
GaAs MMIC Driver Amplifier, 5-6GHz

Features

- · 24 dB Gain typical
- · F20 MESFET Technology
- · 21dBm Output Power Typ @6V
- · High & Low Gain States
- · PAE (Max) 25%

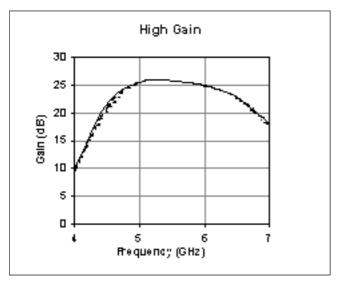
Description

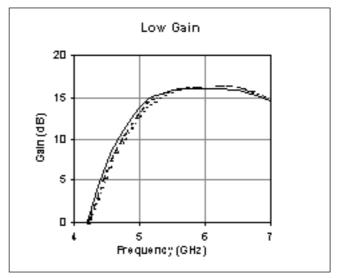
The P35-4720-000-200 is a high performance Gallium Arsenide Driver Amplifier MMIC. It is primarily intended for wireless applications in the 5-6 GHz bandwidth such as U-NII (Unlicensed National Information Infrastructure) and HIPERLAN (High Performance Local Area Network).

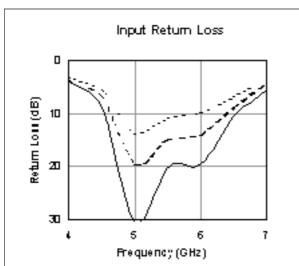
The three-stage amplifier requires plus and minus 5V power supplies. Also incorporated into the design is the ability to switch between two gain states, High and Low Gain, as well as a chip standby mode which typically draws 0.1mA. In addition the design has been optimised for the effects of a single bondwire at both the input and output.

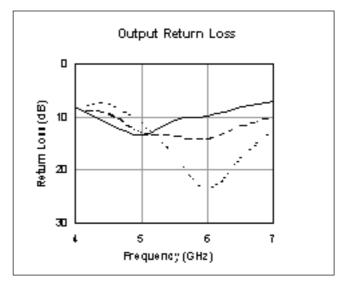
The die is fabricated using MOC's F20 Gallium Arsenide MESFET MMIC process and is fully protected using Silicon Nitride passivation for excellent performance and reliability.

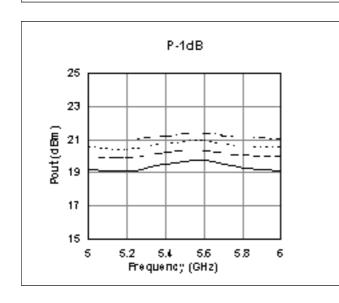
Electrical Performance

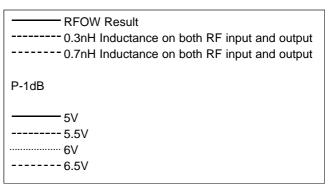

Ambient temperature = $22\pm3^{\circ}$ C, $Z_{O} = 50\Omega$, Vgg = -5V, Vdd = +5V

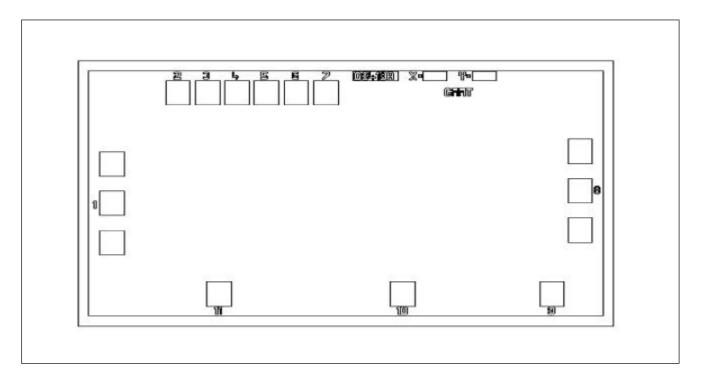

5GHz - 6GHz	22	24	-	dB
5GHz - 6GHz	-	±1.0	-	dB
5GHz - 6GHz	10	20	-	dB
5GHz - 6GHz	8	12	-	dB
5GHz - 6GHz	-	4.5	-	dB
5GHz - 6GHz	-	19	-	dBm
5.5GHz	-	29	-	dBm
Disabled	-	0.1	1	mA
Enabled (No RF)	-	118		mA
	5GHz - 6GHz 5GHz - 6GHz 5GHz - 6GHz 5GHz - 6GHz 5GHz - 6GHz 5.5GHz Disabled	5GHz - 6GHz - 5GHz - 6GHz 10 5GHz - 6GHz 8 5GHz - 6GHz - 5GHz - 6GHz - 5.5GHz - 6GHz - 5.5GHz - Disabled	5GHz - 6GHz - ±1.0 5GHz - 6GHz 10 20 5GHz - 6GHz 8 12 5GHz - 6GHz - 4.5 5GHz - 6GHz - 19 5.5GHz - 29 Disabled - 0.1	5GHz - 6GHz - ±1.0 - 5GHz - 6GHz 10 20 - 5GHz - 6GHz 8 12 - 5GHz - 6GHz - 4.5 - 5GHz - 6GHz - 19 - 5.5GHz - 29 - Disabled - 0.1 1


Notes


- 1 High Gain State
- 2 All Parameters Measured on Wafer


Typical Performance at 22°C





Die Outline

Die size: 1.34 x 2.71 mm DC Bond pad size: 120 μ m square RF Bond pad size: 120 μ m square Die thickness: 200 μ m

Pad Details

Pad	Function
1	RF Input
2	NC
3	Vgg = -5V
4	Vg1 Sense N/C
5	Vg2 Vg3 Sense N/C
6	High/ Low Enable
7	High/ Low Enable
8	RF Output
9	Gnd
10	Vdd = +5V
11	Gnd

Switching Truth Table

Pad 6	Pad 7	Function
0V	O/C	High Gain Enabled
O/C	0V	Low Gain Enabled
-5V	0V	Amplifier Disabled

Absolute Maximum Ratings

Max Vd	+7.0V
Max Vgg	-5.0V
Operating temperature	-55°C to 125°C
Storage temperature	-65°C to +150°

Ordering Information: P35-4720-000-200

The data and product specifications are subject to change without notice. These devices should not be used for device qualification and production without prior notice.

<u>Marconi</u>

462/SM/02229/200 Issue 2