

24-bit 192kHz 2Vrms Multi-Channel CODEC

•

DESCRIPTION

The WM8594 is a high performance multi-channel audio CODEC with flexible input/output selection and digital and analogue volume control. Features include a 24-bit stereo ADC with digital gain control, two 24-bit DACs with independent digital volume control, and a range of input/output channel selection options with analogue volume control, for flexible routing within current and future audio systems.

The WM8594 accepts five stereo audio inputs at line levels up to 2Vrms. One stereo input can be routed to the ADC. All inputs can be routed to the output.

The WM8594 outputs three stereo audio channels at line levels up to 2Vrms, which can be selected from any of the analogue inputs and DAC outputs. Additionally, one stereo output is available with a headphone driver. The DAC channels include independent digital volume control, and all three stereo output channels include analogue volume control with soft ramp.

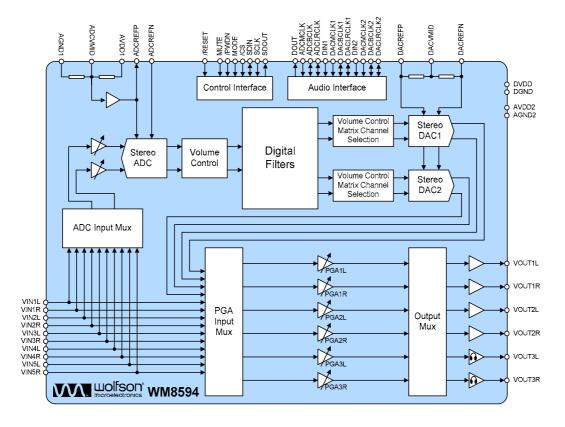
The WM8594 supports up to 2Vrms analogue inputs, 2Vrms outputs, with sampling rates from 32kHz to 192kHz for the DACs, and 32kHz to 96kHz for the ADC.

The WM8594 is ideal for audio applications requiring high performance and flexible routing options, including flat panel digital TV and DVD recorder.

The device is controlled via a serial interface with support for 2-wire and 3-wire control with full readback. Control of mute, powerdown and reset can also be achieved by pin selection.

The WM8594 is available in a 48-lead TQFP package.

FEATURES


- Multi-channel CODEC with 5 stereo input selector and 3 stereo output selector
- 4-channel DAC, 2-channel ADC
- Five stereo 2Vrms stereo inputs with analogue bypass to three stereo 2Vrms outputs
- Stereo headphone driver
- Audio performance
 - DAC: 100dB SNR typical ('A' weighted @ 48kHz)
 - DAC: -90dB THD typical
 - ADC: 100dB SNR typical ('A' weighted @ 48kHz)
 ADC: -90dB THD typical
- Independent sampling rates for ADC, DAC1 and DAC2
- DACs sampling frequency 32kHz to 192kHz
- ADC sampling frequency 32kHz to 96kHz
- ADC digital gain control: +30dB to -97dB
- DAC digital volume control: +12dB to -100dB
- Analogue Volume control with soft ramp: +6dB to -73.5dB
- All volume controls include zero cross detection to prevent pops and clicks
- 2 and 3-wire serial control interface with readback and hardware reset, mute and powerdown pins
- Master or slave clocking modes
- Programmable format audio data interface modes - I²S, LJ, RJ, DSP
- 3.3V / 9V analogue, 3.3V digital supply operation
- 48-lead TQFP package

APPLICATIONS

- Digital Flat Panel TV
- DVD-RW

To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/

BLOCK DIAGRAM



TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	2
TABLE OF CONTENTS	
PIN CONFIGURATION	
ORDERING INFORMATION	
PIN DESCRIPTION	
ABSOLUTE MAXIMUM RATINGS	-
RECOMMENDED OPERATING CONDITIONS	
SUPPLY CURRENT CONSUMPTION	
ELECTRICAL CHARACTERISTICS	
TERMINOLOGY	
MASTER CLOCK TIMING	11
DIGITAL AUDIO INTERFACE TIMING – SLAVE MODE	12
DIGITAL AUDIO INTERFACE TIMING – MASTER MODE	
CONTROL INTERFACE TIMING – 2-WIRE MODE	
CONTROL INTERFACE TIMING – 3-WIRE MODE	
POWER ON RESET (POR)	
DEVICE DESCRIPTION	
2-WIRE (SM-BUS COMPATIBLE) SERIAL CONTROL INTERFACE MODE	
GLOBAL ENABLE CONTROL	
DIGITAL AUDIO INTERFACE	
DIGITAL AUDIO DATA SAMPLING RATES	23
DIGITAL AUDIO DATA FORMATS	
DAC FEATURES	
ADC FEATURES	32
ANALOGUE ROUTING CONTROL	
POP AND CLICK PERFORMANCE	
REGISTER MAP	
DIGITAL FILTER CHARACTERISTICS	
APPLICATIONS INFORMATION	74
RECOMMENDED EXTERNAL COMPONENTS	74
RECOMMENDED ANALOGUE LOW PASS FILTER	
EXTENDED INPUT IMPEDANCE CONFIGURATION	
RELEVANT APPLICATION NOTES	
PACKAGE DIMENSIONS	
ADDRESS:	78

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8594SEFT/V	-25 to +85°C	48-lead TQFP (Pb-free)	MSL1	260°C
WM8594SEFT/RV	-25 to +85°C	48-lead TQFP (Pb-free, tape and reel)	MSL1	260°C

Note:

Reel quantity = 2,200

PIN DESCRIPTION

PIN	NAME	TYPE	DESCRIPTION
1	ADCLRC	Digital Input/Output	ADC audio interface left/right clock input/output
2	ADCBCLK	Digital Input/Output	ADC audio interface bit clock input/output
3	DOUT	Digital Output	ADC data output
4	DACMCLK1	Digital Input	DAC1 master clock
5	DACLRC1	Digital input	DAC1 audio interface left/right clock input
6	DACBCLK1	Digital Input	DAC1 audio interface bit clock input
7	DIN1	Digital Input	DAC 1 data input
8	DACMCLK2	Digital Input	DAC2 master clock
9	DACLRC2	Digital input	DAC2 audio interface left/right clock input
10	DACBCLK2	Digital Input	DAC2 audio interface bit clock input
11	DIN2	Digital Input	DAC 2 data input
12	DVDD	Supply	Digital supply
13	DGND	Supply	Digital ground
14	/PWDN	Digital Input	Hardware standby mode
15	MUTE	Digital Input	Hardware DAC mute
16	/RESET	Digital Input	Hardware reset
17	AVDD2	Supply	Analogue 9V supply
18	AGND2	Supply	Analogue ground
19	VOUT3R	Analogue Output	Output selector channel 3 right output
20	VOUT3L	Analogue Output	Output selector channel 3 left output
21	VOUT2R	Analogue Output	Output selector channel 2 right output
22	VOUT2L	Analogue Output	Output selector channel 2 left output
23	VOUT1R	Analogue Output	Output selector channel 1 right output
24	VOUT1L	Analogue Output	Output selector channel 1 left output
25	VIN1L	Analogue Input	Input selector channel 1 left input
26	VIN1R	Analogue Input	Input selector channel 1 right input
27	VIN2L	Analogue Input	Input selector channel 2 left input
28	VIN2R	Analogue Input	Input selector channel 2 right input
29	VIN3L	Analogue Input	Input selector channel 3 left input
30	VIN3R	Analogue Input	Input selector channel 3 right input
31	VIN4L	Analogue Input	Input selector channel 4 left input
32	VIN4R	Analogue Input	Input selector channel 4 right input
33	VIN5L	Analogue Input	Input selector channel 5 left input
34	VIN5R	Analogue Input	Input selector channel 5 right input
35	ADCREFP	Analogue Input	Positive reference for ADC
36	ADCVMID	Analogue Output	Midrail divider decoupling pin for ADC
37	ADCREFN	Analogue Input	Ground reference for ADC
38	DACREFP	Analogue Input	Positive reference for DACs
39	DACVMID	Analogue Output	Midrail divider decoupling pin for DACs
40	DACCIMID	Analogue Input	Ground reference for DACs
40	AVDD1	Supply	Analogue 3.3V supply
42	AGND1	Supply	Analogue ground
42	MODE	Digital Input	Software mode select (High = 3-wire, Low = 2-wire)
43	SDOUT	Digital Output	Software mode: serial control interface data output
44	/CS		Software mode: serial control interface chip select
45	SCLK	Digital Input	Software mode: serial control interface clock signal
40	JOLN	Digital Input	Sonware mode. Senai control internace Clock Signal
47	SDIN	Digital Input	Software mode: serial control interface data signal

PP Rev 1.0 January 2007

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

$$\label{eq:MSL1} \begin{split} \mathsf{MSL1} &= \mathsf{unlimited floor life at <30^\circ C / 85\% \ Relative \ Humidity. \ Not normally stored in moisture barrier bag. \\ \mathsf{MSL2} &= \mathsf{out of bag storage for 1 year at <30^\circ C / 60\% \ Relative \ Humidity. \ Supplied in moisture \ barrier \ bag. \\ \mathsf{MSL3} &= \mathsf{out of bag storage for 168 \ hours \ at <30^\circ C / 60\% \ Relative \ Humidity. \ Supplied in moisture \ barrier \ bag. \\ \end{split}$$

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Digital supply voltage, DVDD	-0.3V	+4.5V
Analogue supply voltage, AVDD1	-0.3V	+7V
Analogue supply voltage, AVDD2	-0.3V	+15V
Voltage range digital inputs	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs	TBD	AVDD1 + 0.2V
Master Clock Frequency		38.462MHz
Ambient temperature (supplies applied)	-55°C	+125°C
Storage temperature	-65°C	+150°C
Pb free package body temperature (reflow 10 seconds)		+260°C
Package body temperature (soldering 2 minutes)		+183°C

Note:

1. Analogue and digital grounds must always be within 0.3V of each other.

THERMAL PERFORMANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Thermal resistance – junction to ambient	$R_{ extsf{ heta}JA}$			51.7 See note 1		°C/W

Notes:

1. Figure given for package mounted on 4-layer FR4 according to JESD51-7. (No forced air flow is assumed).

2. Thermal performance figures are estimated.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital power supply	DVDD		2.97	3.3	3.6	V
Analogue power supply	AVDD1		2.97	3.3	3.6	V
Analogue power supply	AVDD2		8.1	9	9.9	V
Ground	DGND/AGND1/			0		V
	AGND2					
Operating temperature range	T _A		-25		+85	°C

Notes:

- 1. Digital supply (DVDD) must never be more than 0.3V greater than AVDD1 in normal operation.
- 2. Digital ground (DGND) and analogue grounds (AGND1, AGND2) must never be more than 0.3V apart.

SUPPLY CURRENT CONSUMPTION

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply current	I _{DVDD}			TBD		mA
Analogue supply current	I _{AVDD1}			TBD		mA
Analogue supply current	I _{AVDD2}			TBD		mA
Standby current				TBD		μA

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD2=9V, AVDD1=DVDD=3.3V, AGND1=AGND2=0V, DGND=0V, T_A=+25°C, 1kHz signal, fs=48kHz, MCLK=256fs unless otherwise stated

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital logic levels						
Input low level	VIL				0.3xDVDD	V
Input high level	VIH		0.7xDVDD			V
Output low level	V _{OL}				0.1 x DVDD	V
Output high level	V _{OH}		0.9 x DVDD			V
Digital input leakage current				TBD		μA
Digital input leakage capacitance				TBD		pF
Analogue Reference Levels	•					
ADC Midrail Voltage	ADCVMID			AVDD1/2		V
ADC Buffered Positive Reference Voltage	ADCREFP			ADCVMID		V
DAC Midrail Voltage	DACVMID			DACREFP/2		V
Potential divider resistance		AVDD1 to ADCVMID ADCVMID to AGND1		100		kΩ
		DACVREFP to DACVMID		50		kΩ
		DACVMID to DACVREFN		(Note 2)		
		VMID_SEL[1:0] = 01				
Analogue Line Outputs					·	
Output signal level (0dB)		$R_L = 10k\Omega$	TBD	2.0x AVDD2 / 9	TBD	Vrms
Maximum capacitance load					11	nF
Minimum resistance load			1			kΩ

Test Conditions

AVDD2=9V, AVDD1=DVDD=3.3V, AGND1=AGND2=0V, DGND=0V, T_A=+25°C, 1kHz signal, fs=48kHz, MCLK=256fs unless otherwise stated

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Analogue Headphone Outputs						
Output signal level (0dB)		R _L = 32Ω	TBD	0.8x AVDD2 / 9	TBD	Vrms
Minimum resistance load			16			Ω
Analogue Inputs						
Input signal level (0dB)				2.0 x AVDD1/3.3	TBD	Vrms
Input impedance			10	11	12	kΩ
Extended input impedance (Note 3)		External resistor = 10kΩ		21		kΩ
Input capacitance				TBD		nF
DAC Performance						
Signal to Noise Ratio ^{1,5}	SNR	A-weighted @ fs = 48kHz	TBD	100		dB
		A-weighted @ fs = 96kHz		100		dB
		A-weighted @ fs = 192kHz		100		dB
Dynamic Range ^{2,5}	DNR	A-weighted, -60dB full scale input	TBD	100		dB
Total Harmonic Distortion ^{3,5}	THD	1kHz, 0dBFS @ fs = 48kHz		-90	TBD	dB
		1kHz, 0dBFS @ fs = 96kHz		-90		dB
		1kHz, 0dBFS @ fs = 192kHz		-90		dB
Channel Separation ^{4,5}				100		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation				0.05		Degree
Power supply rejection ratio	PSRR	1kHz, 100mVpp	TBD	50		dB
		20Hz to 20kHz, 100mVpp		TBD		dB
ADC Performance	<u>.</u>					
Signal to Noise Ratio ^{1,5}	SNR	A-weighted, 0dB gain @ fs = 48kHz	TBD	100		dB
		A-weighted, 0dB gain @ fs = 96kHz		97		dB
Dynamic Range ^{2,5}	DNR	A-weighted, -60dB full scale input	TBD	100		dB
Total Harmonic Distortion ^{3,5}	THD	1kHz, -1dBFS @ fs = 48kHz		-90	TBD	dB
		1kHz, -1dBFS @ fs = 96kHz		-87		dB
Channel Separation ^{4,5}				100		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation				0.05		Degree
Power Supply Rejection Ratio	PSRR		TBD	50		dB
				TBD		dB
Analogue Bypass Paths						
Signal to Noise Ratio ^{1,5}	SNR	A-weighted		100		dB
Dynamic Range ^{2,5}	DNR	A-weighted		100		dB
Total Harmonic Distortion ^{3,5}	THD			90		dB

PP Rev 1.0 January 2007

Product Preview						WM8594
Test Conditions AVDD2=9V, AVDD1=DVDD=3.3V, AG	ND1=AGND2=0V.	DGND=0V. T₄=+25°C. 1kHz :	sianal. fs=48kł	Hz. MCLK=256fs	unless otherwi	se stated
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Channel Separation ^{4,5}				100		dB
Channel Level Matching				0.1		dB
Channel Phase Deviation				0.05		Degree
Headphone Amplifier		•				
Output signal level (0dB)				0.8		Vrms
Signal to Noise Ratio ^{1,5}	SNR	A-weighted				dB
Total Harmonic Distortion	THD	$P_0=20mW, R_L=16\Omega$				dB
		$P_0=20mW, R_L=32\Omega$				dB
Channel Separation ^{4,5}						dB
Power Supply Rejection Ratio	PSRR			TBD		dB
Digital Volume Control						•
ADC minimum digital volume				-97		dB
ADC maximum digital volume				+30		dB
ADC volume step size				0.5		dB
DAC minimum digital volume				-100		dB
DAC maximum digital volume				+12		dB
DAC volume step size				0.5		dB
Analogue Volume Control		•				
Minimum gain				-73.5		dB
Maximum gain				+6		dB
Step size				0.5		dB
Mute attenuation				TBD		dB
Crosstalk	-	· ·				
DAC to ADC		1kHz signal,		100		dB
		ADC fs=48kHz,				
		DAC fs=44.1kHz		400		-10
		20kHz signal, ADC fs=48kHz.		100		dB
		DAC fs=48kHz,				
ADC to DAC		1kHz signal,		100		dB
		ADC fs=48kHz.		100		ub
		DAC fs=44.1kHz				
	1	5, 10 10=44. HULL				

TERMINOLOGY

Signal-to-noise ratio (dBFS) - SNR is the difference in level between a reference full scale output signal and the 1. device output with no signal applied. This ratio is also called idle channel noise. (No Auto-zero or Automute function is employed in achieving these results).

20kHz signal,

ADC fs=48kHz, DAC fs=44.1kHz 100

- 2. Dynamic range (dBFS) DNR is a measure of the difference in level between the highest and lowest components of a signal. Normally a THD measurement at -60dBFS. The measured signal is then corrected by adding 60dB to the result, e.g. THD @ -60dBFS = -30dB, DNR = 90dB.
- Total Harmonic Distortion (dBFS) THD is the difference in level between a reference full scale output signal and the 3. first seven odd harmonics of the output signal. To calculate the ratio, the fundamental frequency of the output signal is notched out and an RMS value of the next seven odd harmonics is calculated.
- Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from 4. the other. Normally measured by sending a full scale signal down one channel and measuring the other.

dB

5. All performance measurements carried out with 20kHz low pass filter, and where noted an A-weighted filter. Failure to use such a filter will result in higher THD and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.

Notes:

- 1. All minimum and maximum values are subject to change.
- 2. This resistance is selectable using VMID_SEL[1:0] see Figure 49 for full details.
- 3. See p75 for details of extended input impedance configuration.

MASTER CLOCK TIMING

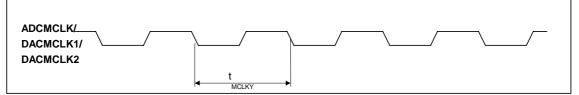
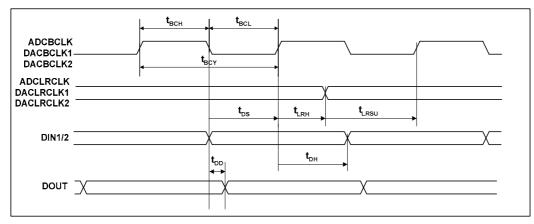


Figure 1 MCLK Timing

Test Conditions


AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, $T_A = +25^{\circ}C$

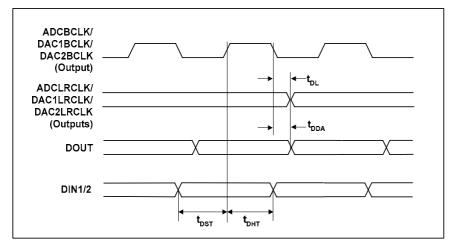
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Master Clock Timing Information					
MCLK System clock cycle time	t _{MCLKY}	27		120	ns
MCLK Duty cycle		40:60		60:40	%
MCLK Period Jitter				200	ps
MCLK Rise/Fall times				10	ns

Table 1 Master Clock Timing Requirements

DIGITAL AUDIO INTERFACE TIMING – SLAVE MODE

Figure 2 Slave Mode Digital Audio Data Timing

Test Conditions


AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = $+25^{\circ}C$, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT
Audio Data Input Timing Information					
ADCBCLK / DACBCLK1 / DACBCLK2 cycle time	t _{BCY}	80			ns
ADCBCLK / DACBCLK1 / DACBCLK2 pulse width high	t _{BCH}	30			ns
ADCBCLK / DACBCLK1 / DACBCLK2 pulse width low	t _{BCL}	30			ns
ADCBCLK / DACBCLK1 / DACBCLK2 rise/fall times				5	ns
ADCLRCLK / DACLRCLK1 / DACLRCLK2 set-up time to ADCBCLK / DACBCLK1 / DACLRCLK2 rising edge	t _{LRSU}	22			ns
ADCLRCLK / DACLRCLK1 / DACLRCLK2 hold time from ADCBCLK / DACBCLK1 / DACBCLK2 rising edge	t _{LRH}	25			ns
ADCLRCLK / DACLRCLK1 / DACLRCLK2 rise/fall times				5	ns
DIN1/2 hold time from DACBCLK1 / DACBCLK2 rising edge	t _{DH}	25			ns
DOUT propagation delay from ADCBCLK falling edge	t _{DD}	4		16	ns

Table 2 Slave Mode Audio Interface Timing

DIGITAL AUDIO INTERFACE TIMING – MASTER MODE

Figure 3 Master Mode Digital Audio Data Timing

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, T_A = $+25^{\circ}C$, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
ADCLRCLK / DACLRCLK1 / DACLRCLK2 propagation delay from ADCBCLK / DACBCLK1 / DACLRCLK2 falling edge	t _{DL}	4		16	ns
DOUT propagation delay from ADCBCLK falling edge	t _{DDA}	4		16	ns
DIN1 / DIN2 setup time to DACBCLK1 / DACBCLK2 rising edge	t _{DST}	22			ns
DIN1 / DIN2 hold time to DACBCLK1 / DACBCLK2 rising edge	t _{DHT}	25			ns

Table 3 Master Mode Audio Interface Timing

CONTROL INTERFACE TIMING – 2-WIRE MODE

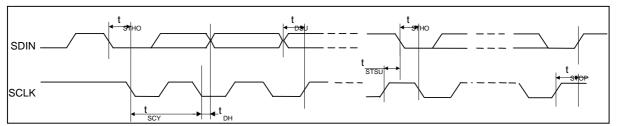


Figure 4 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, $T_A = +25^{\circ}C$, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT				
Program Register Input Information									
SCLK pulse cycle time	t _{SCY}	2500			ns				
SCLK duty cycle		40/60		60/40	%				
SCLK frequency				400	kHz				
Hold Time (Start Condition)	t _{sтно}	600			ns				
Setup Time (Start Condition)	tstsu	600			ns				
Data Setup Time	t _{DSU}	100			ns				
SDIN, SCLK Rise Time				300	ns				
SDIN, SCLK Fall Time				300	ns				
Setup Time (Stop Condition)	t _{STOP}	600			ns				
Data Hold Time	t _{DHO}			900	ns				
Pulse width of spikes that will be suppressed	t _{ps}	2		8	ns				

Table 4 Control Interface Timing – 2-Wire Serial Control Mode

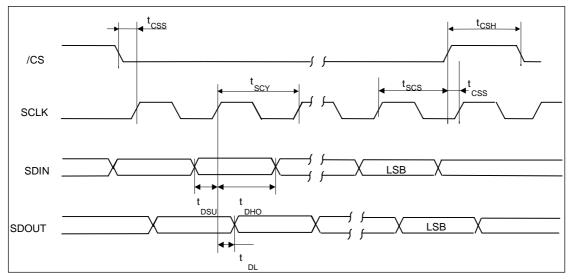
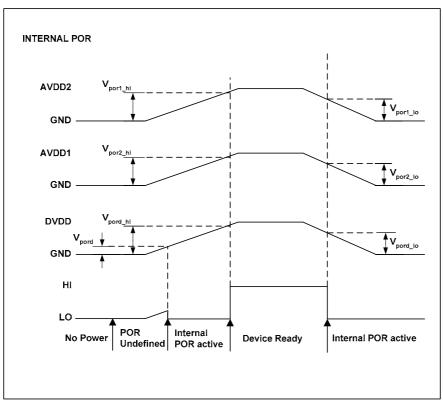


Figure 5 Control Interface Timing – 3-Wire Serial Control Mode

Test Conditions


AVDD1, DVDD = 3.3V, AVDD2 = 9V, AGND1, AGND2, DGND = 0V, $T_A = +25$ °C, Slave Mode, fs = 48kHz, ADCMCLK, DACMCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT				
Program Register Input Information									
SCLK rising edge to CSB rising edge	t _{SCS}	60			ns				
SCLK pulse cycle time	t _{SCY}	80			ns				
SCLK duty cycle		40/60		60/40	%				
SDIN to SCLK set-up time	t _{DSU}	20			ns				
SDIN hold time from SCLK rising edge	t _{DHO}	20			ns				
SDOUT propagation delay from SCLK rising edge	t _{DL}			5	ns				
CSB pulse width high	t _{CSH}	20			ns				
CSB rising/falling to SCLK rising	tcss	20			ns				
Pulse width of spikes that will be suppressed	t _{ps}	2		8	ns				

Table 5 Control Interface Timing – 3-Wire Serial Control Mode

POWER ON RESET (POR)

Figure 1 Power Supply Timing Requirements

Test Conditions

 $DVDD = 3.3V, AVDD1 = 3.3V, AVDD2 = 9V DGND = AGND1 = AGND2 = 0V, T_A = +25^{\circ}C, T_{A_max} = +125^{\circ}C, T_{A_min} = -25^{\circ}C = AVDD1_{max} = DVDD_{max} = 3.63V, AVDD1_{min} = DVDD_{mim} = 2.97V, AVDD2_{max} = 9.9V, AVDD2_{min} = 8.1V = 8.1V = 10^{\circ}C$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Input Timing	Information					
VDD level to POR defined (DVDD rising)	V _{pord}	Measured from DGND	0.27	0.36	0.60	V
VDD level to POR rising edge (DVDD rising)	V _{pord_hi}	Measured from DGND	1.34	1.88	2.32	V
VDD level to POR falling edge (DVDD falling)	V _{pord_lo}	Measured from DGND	1.32	1.86	2.30	V
VDD level to POR rising edge (AVDD1 rising)	V _{por1_hi}	Measured from DGND	1.65	1.68	1.85	V
VDD level to POR falling edge (AVDD1 falling)	V _{por1_lo}	Measured from DGND	1.63	1.65	1.83	V
VDD level to POR rising edge (AVDD2 rising)	V _{por2_hi}	Measured from DGND	1.80	1.86	2.04	V
VDD level to POR falling edge (AVDD2 falling)	V _{por2_lo}	Measured from DGND	1.76	1.8	2.02	V

Table 6 Power on Reset

DEVICE DESCRIPTION

INTRODUCTION

The WM8594 is a high performance multi-channel audio CODEC with 2Vrms line level inputs and outputs and flexible analogue input / output switching. The device comprises a 24-bit stereo ADC, two 24-bit stereo DACs with independent sampling rates and digital volume control, and a flexible analogue input and output multiplexer. Analogue inputs and outputs are all at 2Vrms line level, minimising external component count.

The DACs can operate from independent left/right clocks, bit clocks and master clocks with independent data inputs. Alternatively, the DACs can be synchronised to use the same clocks with independent data inputs. Each of the DAC audio interfaces can be configured to operate in ether master or slave clocking modes. In master mode, left/right clocks and bit clocks are all outputs. In slave mode, left/right clocks and bit clocks are all inputs.

The ADC uses a separate left/right clock, bit clock and master clock, allowing independent recording and playback in audio applications. The ADC audio interface can be configured to operate in either master or slave clocking mode. In master mode, left/right clocks and bit clocks are all outputs. In slave mode, left/right clocks and bit clocks are all inputs.

The ADC includes digital gain control, allowing signals to be gained and attenuated between +30dB and -97dB in 0.5dB steps.

The DACs include independent digital volume control, which is adjustable between +12dB and -100 dB in 0.5dB steps. The DACs can be configured to output stereo audio data and a range of mono audio options.

The input multiplexer accepts five stereo line level inputs at up to 2Vrms. One stereo input can be routed to the ADC, and all five stereo inputs can be routed to the output multiplexer.

The output multiplexer includes analogue volume control with zero cross, adjustable between +6dB and -73.5dB in 0.5dB steps, and configurable soft ramp rate. Analogue audio is output at 2Vrms line level.

Control of the internal functionality of the device is by 2-wire serial control interface with readback. The interface may be asynchronous to the audio data interface as control data will be resynchronised to the audio processing internally. In addition, control of mute, power-down and reset may also be achieved by pin selection.

Operation using system clocks of 128fs, 192fs, 256fs, 384fs, 512fs, 768fs or 1152fs is provided. ADC and both DACs may be clocked independently. Sampling rates from 32kHz to 192kHz are supported for both DACs provided the appropriate master clocks are input. Sampling rates from 32kHz to 96kHz are supported for the ADC provided the appropriate master clock is input.

The audio data interface supports right justified, left justified, and I^2S interface formats along with a highly flexible DSP serial port interface format.

CONTROL INTERFACE

Control of the WM8594 is achieved by a 2-wire SM-bus-compliant or 3-wire SPI compliant serial interface with readback. Software interface mode is selected using the MODE pin as shown in Table 7 below:

MODE	INTERFACE FORMAT
Low	2 wire
High	3 wire

Table 7 Control Interface Mode Selection

2-WIRE (SM-BUS COMPATIBLE) SERIAL CONTROL INTERFACE MODE

Many devices can be controlled by the same bus, and each device has a unique 7-bit address.

REGISTER WRITE

The controller indicates the start of data transfer with a high to low transition on SDIN while SCLK remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDIN (7-bit address and read/write bit, MSB first). If the device address received matches the address of the WM8594, the WM8594 responds by pulling SDIN low on the next clock pulse (ACK). If the address is not recognised, the WM8594 returns to the idle condition and waits for a new start condition with valid address.

When the WM8594 has acknowledged a correct address, the controller sends the first byte of control data (B23 to B16, i.e. the WM8594 register address). The WM8594 then acknowledges the first data byte by pulling SDIN low for one SCLK pulse. The controller then sends a second byte of control data (B15 to B8, i.e. the first 8 bits of register data), and the WM8594 acknowledges again by pulling SDIN low for one SCLK pulse. Finally, the controller sends a third byte of control data (B7 to B0, i.e. the final 8 bits of register data), and the WM8594 acknowledges again by pulling SDIN low for one SCLK pulse.

The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high. After receiving a complete address and data sequence the WM8594 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e. SDIN changes while SCLK is high), the WM8594 reverts to the idle condition.

The WM8594 device address is 34h (0110100) or 36h (0110110), selectable by control of /CS.

/CS (PIN 45)	2-WIRE BUS ADDRESS
0	34h (0110100)
1	36h (0110110)

Table 8 2-Wire Control Interface Bus Address Selection

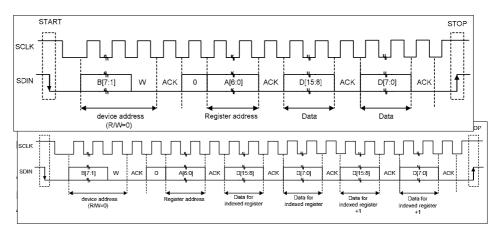


Figure 7. As with normal register writes, the controller indicates the start of data transfer with a high to low transition on SDIN while SCLK remains high, and all devices on the bus receive the device address.

When the WM8594 has acknowledged a correct address, the controller sends the first byte of control data (A6 to A0, i.e. the WM8594 initial register address). The WM8594 then acknowledges the first control data byte by pulling SDIN low for one SCLK pulse. The controller then sends a byte of register data. The WM8594 acknowledges the first byte of register data, auto-increments the register address to be written to, and waits for the next byte of register data. Subsequent bytes of register data can be written to consecutive registers of the WM8594 without setting up the device and register address.

The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.

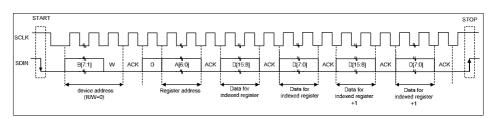


Figure 7 2-Wire Auto-Increment Register Write

REGISTER READBACK

The WM8594 allows readback of all registers with data output on the bidirectional SDIN pin. The protocol is similar to that used to write to the device. The controller will issue the device address followed by a write bit, and the register index will then be passed to the WM8594.

At this point the controller will issue a repeated start condition and resend the device address along with a read bit. The WM8594 will acknowledge this and the WM8594 will become a slave transmitter.

The WM8594 will place the data from the indexed register onto SDIN MSB first. When the controller receives the first byte of data, it acknowledges it. When the controller receives the second and final byte of data it will not acknowledge receipt of the data indicating that it will resume master transmitter control of SDIN. The controller will then issue a stop command completing the read cycle.

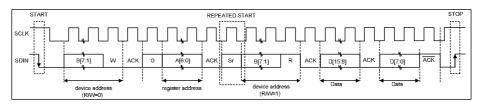


Figure 8 2-wire Read Protocol

AUTO-INCREMENT REGISTER READBACK

It is possible to read from multiple consecutive registers in continuous readback mode. Continuous readback mode is selected by setting AUTO_INC.

In continuous readback mode, the WM8594 will return the indexed register first, followed by consecutive registers in increasing index order until the controller issues a stop sequence.

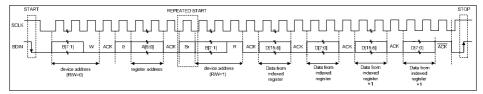


Figure 9 2-Wire Auto-Increment Register Readback

3-WIRE (SPI COMPATIBLE) SERIAL CONTROL INTERFACE MODE

REGISTER WRITE

SDIN is used for the program data, SCLK is used to clock in the program data and /CS is use to latch in the program data. SDIN is sampled on the rising edge of SCLK. The 3-wire interface write protocol is shown in Figure 10.

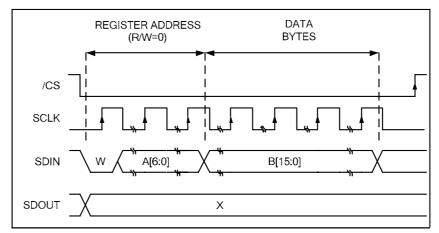


Figure 10 3-Wire Serial Interface Write Protocol

- W indicates write operation.
- A[6:0] is the register index.
- B[15:0] is the data to be written to the register indexed.
- /CS is edge sensitive the data is latched on the rising edge of /CS.

REGISTER READ-BACK

The read-only status registers can be read back via the SDOUT pin. Read Back is enabled when the R/W bit is high. The data can then be read by writing to the appropriate register address, to which the device will respond with data.

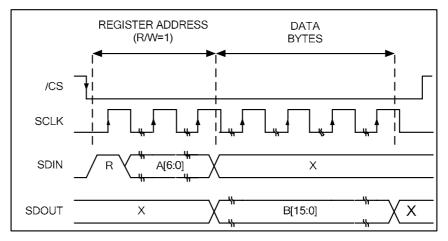


Figure 11 3-Wire Serial Interface Readback Protocol

REGISTER RESET

Any write to register R0 (00h) will reset the WM8594. All register bits are reset to their default values.

DEVICE ID AND REVISION

Reading from register R0 returns the device ID. Reading from register R1 returns the device revision number.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R0	15:0	DEVICE_ID	10000101	Device ID
DEVICE_ID		[15:0]	10010100	A read of this register will return the device
00h				ID, 0x8594.
R1	7:0	REVNUM	N/A	Device Revision
REVISION		[7:0]		A read of this register will return the device
01h				revision number. This number is sequentially
				incremented if the device design is updated.

Table 9 Device ID and Revision Number

GLOBAL ENABLE CONTROL

The WM8594 includes a number of enable and disable mechanisms to allow the device to be powered on and off in a pop-free manner. A global enable control bit enables the ADC, DAC and analogue paths. For full details of pop-free operation, see 'Pop and Click Performance' on page 44.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R12	0	GLOBAL_	0	Device Global Enable
ENABLE 0Ch		EN		0 = ADC, DAC and PGA ramp control circuitry disabled
				1 = ADC, DAC and PGA ramp control circuitry enabled

Table 10 Global Enable Control

DIGITAL AUDIO INTERFACE

Digital audio data is transferred to and from the WM8594 via the digital audio interface. The DACs have independent data inputs and master clocks, bit clocks and left/right frame clocks, and operate in both master or slave mode The ADC has independent master clock, bit clock and left/right frame clock in addition to its data output, and can operate in both master and slave modes.

MASTER MODE

The ADC audio interface requires both a left/right frame clock (ADCLRCLK) and a bit clock (ADCBCLK). These can be supplied externally (slave mode) or they can be generated internally (master mode). Selection of master and slave mode is achieved by setting ADC_MSTR in ADC Control Register 15.

The frequency of ADCLRCLK in master mode is dependent upon the ADC master clock frequency and the ADC_SR[2:0] bits.

The frequency of ADCBCLK in master mode can be selected by ADC_BCLKDIV[1:0].

The DAC audio interfaces require both left/right frame clocks (DACLRCLK1, DACLRCLK2) and bit clocks (DACBCLK1, DACBCLK2). These can be supplied externally (slave mode) or they can be generated internally (master mode). Selection of master and slave mode is achieved by setting DAC1_MSTR in DAC1 Control Register 4 and DAC2_MSTR in DAC2 Control Register 9.

The frequency of DACLRCLK1 in master mode is dependent upon the DAC1 master clock frequency and the DAC1_SR[2:0] bits. Similarly the frequency of DACLRCLK2 in master mode is dependent upon the DAC2 master clock frequency and the DAC2_SR[2:0] bits.

The frequency of DACBCLK1 and DACBCLK2 in master mode can be selected by DAC1_BCLKDIV[1:0] and DAC2_BCLKDIV[1:0].

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3	2:0	DAC1	000	DAC MCLK:LRCLK Ratio
DAC1_CTRL2	2.0	SR[2:0]	000	000 = Auto detect
03h		01([2:0]		001 = 128 fs
0011				010 = 192 fs
				011 = 256fs
				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = 1152fs
	5:3	DAC1_	000	DAC1 BCLK Rate
	0.0	BCLKDIV		000 = MCLK / 4
		[2:0]		001 = MCLK / 8
		[=:0]		010 = 32fs
				011 = 64fs
				100 = 128 fs
				All other values of DAC1_BCLKDIV[2:0] are
				reserved
R4	0	DAC1_	0	DAC1 Master Mode Select
DAC1_CTRL3		MSTR		0 = Slave mode, DACBCLK1 and
04h				DACLRCLK1 are inputs to WM8594
				1 = Master mode, DACBCLK1 and
				DACLRCLK1 are outputs from WM8594
R8	2:0	DAC2_	000	DAC MCLK:LRCLK Ratio
DAC1_CTRL2		SR[2:0]		000 = Auto detect
08h				001 = 128fs
				010 = 192fs
				011 = 256fs
				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = 1152fs
	5:3	DAC2_	000	DAC2 BCLK Rate
		BCLKDIV		000 = MCLK / 4
		[2:0]		001 = MCLK / 8
				010 = 32fs
				011 = 64fs
				100 = 128fs
				All other values of DAC2_BCLKDIV[2:0] are
		D • • • •	-	reserved
R9	0	DAC2_	0	DAC2 Master Mode Select
DAC2_CTRL3		MSTR		0 = Slave mode, DACBCLK2 and DACI BCLK2 are input to WM8504
09h				DACLRCLK2 are inputs to WM8594
				1 = Master mode, DACBCLK2 and DACLRCLK2 are outputs from WM8594
R14	2:0	ADC_	000	ADC MCLK:LRCLK Ratio
ADC_CTRL2	2.0	SR[2:0]	000	000 = Auto detect
0Eh		0. ([2.0]		001 = 128 fs
				010 = 192fs
				010 = 1921s 011 = 256fs
				100 = 384fs
				100 = 30413 101 = 512fs
				110 = 768fs
				111 = Reserved

PP Rev 1.0 January 2007

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
	5:3	ADC_BCLK	000	ADC BCLK Rate
		DIV[2:0]		000 = MCLK / 4
				001 = MCLK / 8
				010 = 32fs
				011 = 64fs
				100 = 128fs
				All other values of ADC_BCLKDIV[2:0] are reserved
R15	0	ADC_	0	ADC Master Mode Select
ADC_CTRL3 0Fh		MSTR		0 = Slave mode, ADCBCLK and ADCLRCLK are inputs to WM8594
				1 = Master mode, ADCBCLK and ADCLRCLK are outputs from WM8594

Table 11 ADC Master Mode Control

SLAVE MODE

In slave mode, the master clock to left/right clock ratio can be auto-detected or set manually by register write.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3	2:0	DAC1_	000	DAC MCLK:LRCLK Ratio
DAC1_CTRL2		SR[2:0]		000 = Auto detect
03h				001 = 128fs
R8	2:0	DAC2_	000	010 = 192fs
DAC2_CTRL2		SR[2:0]		011 = 256fs
08h				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = 1152fs
R14	2:0	ADC_	000	ADC MCLK:LRCLK Ratio
ADC_CTRL2		SR[2:0]		000 = Auto detect
0Eh				001 = reserved
				010 = reserved
				011 = 256fs
				100 = 384fs
				101 = 512fs
				110 = 768fs
				111 = Reserved

Table 12 Slave Mode MCLK to LRCLK Ratio Control

DIGITAL AUDIO DATA SAMPLING RATES

In a typical digital audio system there is one central clock source producing a reference clock to which all audio data processing is synchronised. This clock is often referred to as the audio system's master clock. The WM8594 uses independent master clocks for ADC and DACs. The external master clocks can be applied directly to the ADCMCLK, DACMCLK1 and DACMCLK2 input pins. In a system where there are a number of possible sources for the reference clock, it is recommended that the clock source with the lowest jitter be used for the master clock to optimise the performance of the WM8594.

In slave clocking mode the WM8594 has a master detection circuit that automatically determines the relationship between the master clock frequency (ADCMCLK, DACMCLK1, DACMCLK2) and the sampling rate (ADCLRCLK, DACLRCLK1, DACLRCLK2), to within +/- 32 system clock periods. The master clocks must be synchronised with the left/right clocks, although the device is tolerant of phase variations or jitter on the master clocks.

The ADC supports master clock to sampling clock ratios of 256fs to 768fs and sampling rates of 32kHz to 96kHz, provided the internal signal processing of the ADC is programmed to operate at the correct rate. The DACs support master clock to sampling clock ratios of 128fs to 1152fs and sampling rates of 32kHz to 192kHz, provided the internal signal processing of the DACs is programmed to operate at the correct rate.

Table 13 shows typical master clock frequencies and sampling rates supported by the WM8594 ADC. Table 14 shows typical master clock frequencies and sampling rates supported by the WM8594 DACs.

	MASTER CLOCK FREQUENCY (MHZ)					
Sampling Rate (ADCLRCLK)	256fs	384fs	512fs	768fs		
32kHz	8.192	12.288	16.384	24.576		
44.1kHz	11.2896	16.9344	22.5792	33.8688		
48kHz	12.288	18.432	24.576	36.864		
88.2kHz	22.5792	33.8688	Unavailable	Unavailable		
96kHz	24.576	Unavailable	Unavailable	Unavailable		

Table 13 ADC Master Clock Frequency Versus Sampling Rate

Sampling Rate	MASTER CLOCK FREQUENCY (MHZ)								
(DACLRCLK1 DACLRCLK2)	128fs	192fs	256fs	384fs	512fs	768fs	1152fs		
32kHz	Unavailable	Unavailable	8.192	12.288	16.384	24.576	36.864		
44.1kHz	Unavailable	8.4672	11.2896	16.9344	22.5792	33.8688	Unavailable		
48kHz	Unavailable	9.216	12.288	18.432	24.576	36.864	Unavailable		
88.2kHz	11.2896	16.9344	22.5792	33.8688	Unavailable	Unavailable	Unavailable		
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable	Unavailable		
176.4kHz	22.5792	33.8688	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable		
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable	Unavailable		

Table 14 DAC Master Clock Frequency Versus Sampling Rate

DIGITAL AUDIO DATA FORMATS

The WM8594 supports a range of common audio interface formats:

- I²S
- Left Justified (LJ)
- Right Justified (RJ)
- DSP Mode A
- DSP Mode B

All formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the exception of 32 bit RJ mode, which is not supported.

Audio data for each stereo channel is time multiplexed with the interface's left/right clock indicating whether the left or right channel is present. The left/right clock is also used as a timing reference to indicate the beginning or end of the data words.

In LJ, RJ and I²S modes, the minimum number of bit clock periods per left/right clock period is two times the selected word length. The left/right clock must be high for a minimum of bit clock periods equivalent to the word length, and low for the same period. For example, for a word length of 24 bits, the left/right clock must be high for a minimum of 24 bit clock periods and low for a minimum of 24 bit clock periods. Any mark to space ratio is acceptable for the left/right clock provided these requirements are met.

In DSP modes A and B, left and right channels must be time multiplexed and input on DIN1. LRCLK is used as a frame synchronisation signal to identify the MSB of the first input word. The minimum number of bit clock periods per left/right clock period is two times the selected word length. Any mark to space ratio is acceptable for the left/right clock provided the rising edge is correctly positioned.

I2S MODE

In I²S mode, the MSB of input data is sampled on the second rising edge of bit clock following a left/right clock transition. The MSB of output data changes on the first falling edge of bit clock following a left/right clock transition, and may be sampled on the next rising edge of bit clock. Left/right clocks are low during the left channel audio data samples and high during the right channel audio data samples.

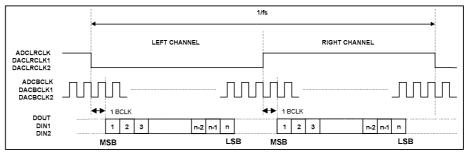


Figure 12 I2S Mode Timing

LEFT JUSTIFIED (LJ) MODE

In LJ mode, the MSB of the input data is sampled by the WM8594 on the first rising edge of bit clock following a left/right clock transition. The MSB of output data changes on the same falling edge of bit clock as left/right clock and may be sampled on the next rising edge of bit clock. Left/right clock is high during the left channel audio data samples and low during the right channel audio data samples.

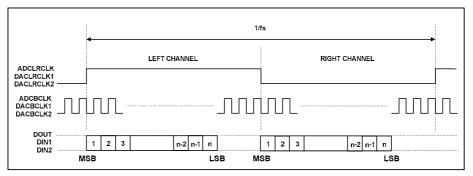


Figure 13 LJ Mode Timing

RIGHT JUSTIFIED (RJ) MODE

In RJ mode the LSB of input data is sampled on the rising edge of bit clock preceding a left/right clock transition. The LSB of output data changes on the falling edge of bit clock preceding a left/right clock transition, and may be sampled on the next rising edge of bit clock. Left/right clock is high during the left channel audio data samples and low during the right channel audio data samples.

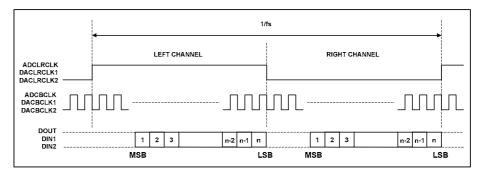


Figure 14 RJ Mode Timing

DSP MODE A

In DSP Mode A, the MSB of channel 1 left data input is sampled on the second rising edge of bit clock following a left/right clock rising edge. Channel 1 right data then follows. The MSB of output data changes on the first falling edge of bit clock following a left/right clock transition and may be sampled on the rising edge of bit clock. The right channel data is contiguous with the left channel data.

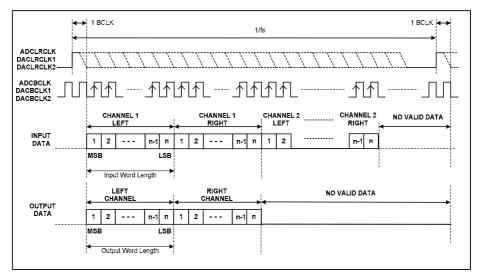


Figure 15 DSP Mode A Timing

DSP MODE B

In DSP Mode B, the MSB of channel 1 left data input is sampled on the first bit clock rising edge following a left/right clock rising edge. Channel 1 right data then follows. The MSB of output data changes on the same falling edge of BCLK as the low to high left/right clock transition and may be sampled on the rising edge of bit clock. The right channel data is contiguous with the left channel data.

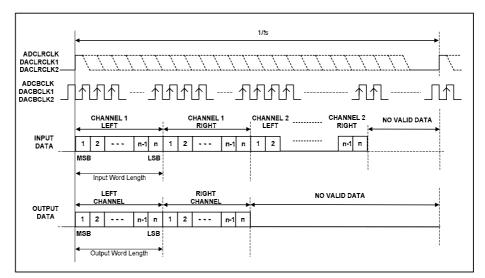


Figure 16 DSP Mode B Timing

DIGITAL AUDIO INTERFACE CONTROL

The control of the audio interface formats is achieved by register write. Dynamically changing the audio data format may cause erroneous operation and is not recommended.

Interface timing is such that the input data and left/right clock are sampled on the rising edge of the interface bit clock. Output data changes on the falling edge of the interface bit clock. By setting the appropriate bit clock and left/tight clock polarity bits, the WM8594 ADC and DACs can sample data on the opposite clock edges.

The control of audio interface formats and clock polarities is summarised in Table 15.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	1:0	DAC1_	10	DAC1 Audio Interface Format
DAC1_CTRL1		FMT[1:0]		00 = Right Justified
02h				01 = Left Justified
				$10 = I^2 S$
				11 = DSP
	3:2	DAC1_	10	DAC1 Audio Interface Word Length
		WL[1:0]		00 = 16-bit
				01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified mode)
	4	DAC1_BCP	0	DAC1 BCLK Polarity
				0 = DACBCLK not inverted - data latched on rising edge of BCLK
				1 = DACBCLK inverted - data latched on falling edge of BCLK
	5	DAC1_LRP	0	DAC1 LRCLK Polarity
				0 = DACLRCLK not inverted
				1 = DACLRCLK inverted
R7	1:0	DAC2_	10	DAC2 Audio Interface Format
DAC2_CTRL1		FMT[1:0]		00 = Right Justified
07h				01 = Left Justified
				$10 = I^2 S$
				11 = DSP
	3:2	DAC2_	10	DAC2 Audio Interface Word Length
		WL[1:0]		00 = 16-bit
				01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified mode)
	4	DAC2_BCP	0	DAC2 BCLK Polarity
				0 = DACBCLK not inverted - data latched on rising edge of BCLK
				1 = DACBCLK inverted - data latched on falling edge of BCLK
	5	DAC2_LRP	0	DAC2 LRCLK Polarity
				0 = DACLRCLK not inverted
				1 = DACLRCLK inverted

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	1:0	ADC_	10	ADC Audio Interface Format
ADC_CTRL1		FMT[1:0]		00 = Right Justified
0Dh				01 = Left Justified
				$10 = I^2 S$
				11 = DSP
	3:2	ADC_	10	ADC Audio Interface Word Length
		WL[1:0]		00 = 16-bit
				01 = 20-bit
				10 = 24-bit
				11 = 32-bit (not available in Right Justified mode)
	4	ADC_BCP	0	ADC BCLK Polarity
				0 = ADCBCLK not inverted - data latched on rising edge of BCLK
				1 = ADCBCLK inverted - data latched on falling edge of BCLK
	5	ADC_LRP	0	ADC LRCLK Polarity
				0 = ADCLRCLK not inverted
				1 = ADCLRCLK inverted

Table 15 Audio Interface Control

DAC FEATURES

The WM8594 includes two 24-bit DACs with independent clocks and independent data inputs. The DACs include digital volume control with zero cross and soft mute, de-emphasis support, and the capability to select the output channels to be stereo or a range of mono options. The DACs are enabled by writing to DAC1_EN and DAC2_EN.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	8	DAC1_EN	0	DAC1 Enable
DAC1_CTRL1				0 = DAC disabled
02h				1 = DAC enabled
R7	8	DAC2_EN	0	DAC2 Enable
DAC2_CTRL1				0 = DAC2 disabled
07h				1 = DAC2 enabled

Table 16 DAC Enable Control

DIGITAL VOLUME CONTROL

The WM8594 DACs include independent digital volume control, allowing the digital gain to be adjusted between -100dB and +12dB in 0.5dB steps. All four DAC channels can be controlled independently. Alternatively, global update bits allow the user to write all volume changes before the volume is updated.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses VMID. Zero cross helps to prevent pop and click noise when changing volume settings.

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 DAC1L_VOL 05h	7:0	DAC1L _VOL[7:0]	11001000	DAC Digital Volume 0000 0000 = -100dB 0000 0001 = -99.5dB
R6 DAC1R_VOL 06h R10 DAC2L_VOL	7:0	DAC1R _VOL[7:0] _DAC2L _VOL[7:0]		0000 0001 = -99.5dB 0000 0010 = -99dB 0.5dB steps 1100 1000 = 0dB 0.5dB steps 1101 1111 = +11.5dB 111X XXXX = +12dB
0Ah R11 DAC2R_VOL 0Bh	7:0	DAC2R _VOL[7:0]		
R5 DAC1L_VOL 05h	8	DAC1L_VU	0	DAC Digital Volume Update 0 = Latch DAC volume setting into Register Map but do not update volume
R6 DAC1R_VOL 06h	8	DAC1R_VU		1 = Latch DAC volume setting into Register Map and update left and right channels simultaneously
R10 DAC2L_VOL 0Ah	8	DAC2L_VU		
R11 DAC2R_VOL 0Bh	8	DAC2R_VU		
R2 DAC1_CTRL1 02h	7	DAC1 _ZCEN	1	DAC Digital Volume Control Zero Cross Enable 0 = Do not use zero cross
R7 DAC2_CTRL1 07h	7	DAC2 _ZCEN		1 = Use zero cross

Table 17 DAC Digital Volume Control

SOFTMUTE

A soft mute can be applied to DAC1 and DAC2 independently.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	9	DAC1_	0	DAC Softmute
DAC1_CTRL1		MUTE		0 = Normal operation
02h				1 = Softmute applied
R7	9	DAC2_	0	
DAC2_CTRL1		MUTE		
07h				

Table 18 DAC Softmute Control

DIGITAL MONOMIX CONTROL

Each DAC can be independently set to output a range of mono and stereo options. Each DAC output channel can output left channel data, right channel data or a mix of left and right channel data.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	11:10	DAC1_OP	00	DAC1 Digital Monomix
DAC1_CTRL1		_MUX[1:0]		00 = Stereo (Normal Operation)
02h				01 = Mono (Left data to DAC1R)
				10 = Mono (Right data to DAC1L)
				11 = Digital Monomix, (L+R)/2
R7	11:10	DAC2_OP	00	DAC2 Digital Monomix
DAC2_CTRL1		_MUX[1:0]		00 = Stereo (Normal Operation)
07h				01 = Mono (Left data to DAC2R)
				10 = Mono (Right data to DAC2L)
				11 = Digital Monomix, (L+R)/2

Table 19 Digital Monomix Control

DE-EMPHASIS

A digital de-emphasis filter may be applied to the DAC outputs when the sampling frequency is 44.1kHz. The de-emphasis filter for each DAC can be applied independently.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2	6	DAC1	0	DAC1 De-emphasis
DAC1_CTRL1		_DEEMPH		0 = No de-emphasis
02h				1 = Apply 44.1kHz de-emphasis
R7	6	DAC2	0	DAC2 De-emphasis
DAC2_CTRL1		_DEEMPH		0 = No de-emphasis
07h				1 = Apply 44.1kHz de-emphasis

Table 20 De-emphasis Control

CLOCK SWITCHING

The input clocks to the DAC (DACMCLK1, DACMCLK2, DACBCLK1, DACBCLK2, DACLRCLK1, DACLRCLK2) can be switched between sources if the DACs are required to source data from multiple DSPs or application processors. Uncontrolled switching of clocks is not recommended as this can result in glitches being applied to the DACs.

The WM8594 can be configured to ignore the clock inputs so that the clocks can be switched externally. This means that the WM8594 is not affected by any glitches that arise as a result of switching clocks. The DACs should be configured to ignore the input clocks for the duration of the period taken to switch the clocks.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R38	0	DAC1_	0	DAC Clock Input Safe Switching
DAC1_CLK		SAFE_SW		0 = Ignore DAC clock inputs
26h				1 = Use DAC clock inputs
R39	0	DAC2_	0	
DAC2_CLK		SAFE_SW		

Table 21 DAC Clock Switching Control

ADC FEATURES

The WM8594 features a stereo 24-bit sigma-delta ADC, digital volume control with zero cross, a selectable high pass filter to remove DC offsets, and support for both master and slave clocking modes.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	6	ADC_EN	0	ADC Enable
ADC_CTRL1				0 = ADC disabled
0Dh				1 = ADC enabled

Table 22 ADC Enable Control

DIGITAL VOLUME CONTROL

The ADC digital volume can be adjusted between +30dB and -97dB in 0.5dB steps. Left and right channels can be controlled independently. Volume changes can be applied immediately to each channel, or volume changes can be written to both channels before writing to an update bit in order to change the volume in both channels simultaneously.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses the DC level of the ADC output. Zero cross helps to prevent pop and click noise when changing volume settings.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R16	7:0	ADCL	11000011	ADC Digital Volume
ADCL_VOL		_VOL[7:0]		0000 0000 = Digital mute
10h				0000 0001 = -97dB
R17	7:0	ADCR	11000011	0000 0010 = -96.5dB
ADCR_VOL		_VOL[7:0]		0.5dB steps
11h				1100 0011 = 0dB
				0.5dB steps
				1111 1110 = +29.5dB
				1111 1111 = +30dB
R16	8	ADCL_VU	0	ADC Digital Volume Update
ADCL_VOL				0 = Latch ADC volume setting into Register
10h				Map but do not update volume
R17	8	ADCR_VU	0	1 = Latch ADC volume setting into Register
ADCR_VOL				Map and update left and right channels simultaneously
11h				Simulateously
R13	13	ADC_ZC_	1	ADC Digital Volume Control Zero Cross
ADC_CTRL1		EN		Enable
0Dh				0 = Do not use zero cross, change volume instantly
				1 = Use zero cross, change volume when data crosses zero

Table 23 ADC Digital Volume Control

CHANNEL SWAP AND INVERSION

The WM8594 ADC input channels can be inverted and swapped in a number of ways to provide maximum flexibility of input path to the ADC. The default configuration provides stereo output data with the left and right channel data in the left and right channels. It is possible to swap the left and right channels, invert them independently, or select the same data from both channels.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	7	ADC_	0	ADC Left/Right Swap
ADC_CTRL1		LRSWAP		0 = Normal
0Dh				1 = Swap left channel data into right channel and vice-versa
	8	ADCR_	0	ADCL and ADCR Output Signal Inversion
		INV		0 = Output not inverted
	9	ADCL_	0	1 = Output inverted
		INV		
	11:10	ADC_	00	ADC Data Output Select
		DATA_ SEL[1:0]		00 = left data from ADCL, right data from ADCR
				01 = left data from ADCL, right data from ADCL
				10 = left data from ADCR, right data from ADCR
				11 = left data from ADCR, right data from ADCL

Table 24 ADC Channel Swap Control

HIGH PASS FILTER

The WM8594 includes a high pass filter to remove DC offsets. The high pass filter response is shown on page 73. It is possible to disable the high pass filter by writing to ADC_HPD.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R13	12	ADC_HPD	0	ADC High Pass Filter Disable
ADC_CTRL1				0 = High pass filter enabled
0Dh				1 = High pass filter disabled

Table 25 High Pass Filter Disable Control

CLOCK SWITCHING

The input clocks to the ADC (ADCMCLK, ADCBCLK, ADCLRCLK) can be switched between sources if the ADC is used to supply data to multiple DSPs or application processors. Uncontrolled switching of clocks is not recommended as this may result in clock glitches being applied to the ADC.

The WM8594 can be configured to ignore the clock inputs so that the clocks can be switched externally. This means that the WM8594 is not affected by any glitches that arise as a result of switching clocks. The ADC should be configured to ignore the input clocks for the duration of the period taken to switch the clocks.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R37	0	ADC_	0	ADC Clock Input Safe Switching
ADC_CLK		SAFE_SW		0 = Ignore ADC Clock Inputs
25h				1 = Use ADC Clock Inputs

Table 26 ADC Clock Switching Control

ANALOGUE ROUTING CONTROL

The WM8594 has a number of analogue paths, allowing flexible routing of a number of analogue input signals and DAC output signals at levels up to 2Vrms. The analogue paths include volume control with zero cross, optional soft ramp and soft mute, and flexible routing of analogue inputs and DAC outputs to analogue outputs.

There are a total of ten (five stereo) analogue input channels and four (two stereo) DAC output channels. Two of the ten input channels can be routed to the ADC. Six of the 14 total channels can be routed to the analogue outputs.

Figure 17 illustrates the various blocks of the analogue routing paths within the WM8594. The following sections describe the control bits associated with the WM8594 analogue paths. Figure 17 also shows where these control bits take affect on the WM8594.

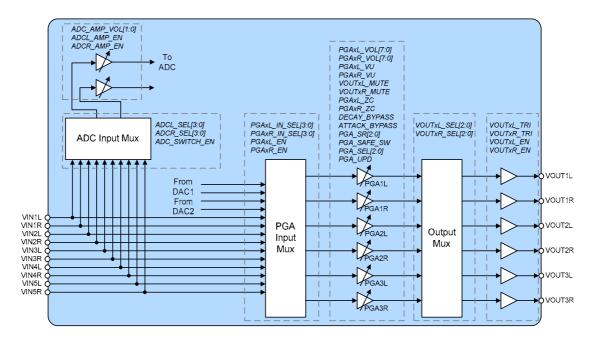


Figure 17 Analogue Routing Paths and Control

ANALOGUE VOLUME CONTROL

Each analogue bypass channel includes analogue volume control. Volume changes can be applied to each channel immediately as they are written. Alternatively, all volume changes can be written, and then all volume changes can be applied simultaneously using the volume update feature.

Volume control includes optional zero cross functionality. When zero cross is enabled, volume changes are not applied until the output level crosses the DC level of the analogue channel (VMID). Zero cross helps to prevent pop and click noise when changing volume settings.

The zero cross function includes a timeout which forces volume changes if a zero cross event does not occur. The timeout period is a maximum of 278ms.

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R19	7:0	PGA1L_	00001100	Input PGA Volume
PGA1L_VOL		VOL[7:0]		0000 0000 = +6dB
13h				0000 0001 = +5.5dB
R20	7:0	PGA1R_		0.5dB steps
PGA1R_VOL		VOL[7:0]		00001100 = 0dB
14h				
R21	7:0	PGA2L_		1001 1110 = -73.5dB
PGA2L_VOL		VOL[7:0]		1001 1111 = PGA Mute
15h				
R22	7:0	PGA2R_		
PGA2R_VOL		VOL[7:0]		
 16h				
R23	7:0	PGA3L_	-	
PGA3L_VOL		VOL[7:0]		
17h				
R24	7:0	PGA3R_	1	
PGA3R_VOL		VOL[7:0]		
18h				
R19	8	PGA1L	0	Input PGA Volume Update
PGA1L_VOL	Ū	VU	, C	0 = Latch corresponding volume setting into
13h				Register Map but do not update volume
R20	8	PGA1R	-	1 = Latch corresponding volume setting
PGA1R_VOL	Ū	VU		into Register Map and update all channels
14h		10		simultaneously
R21	8	PGA2L_	-	
PGA2L_VOL	Ũ	VU		
15h				
R22	8	PGA2R_	-	
PGA2R_VOL	Ū	VU		
16h		ve		
R23	8	PGA3L_	-	
PGA3L_VOL	Ū	VU		
17h		10		
R24	8	PGA3R_	4	
PGA3R_VOL		VU		
18h				
R25	2	PGA1L_	1	PGA Gain Zero Cross Enable
PGA_CTRL1		ZC		0 = PGA gain updates occur immediately
19h	3	PGA1R_	-	1 = PGA gain updates occur on zero cross
. 511		ZC		
	4	PGA1L_	-	
	- T	ZC		
	5	PGA1R	-	
		ZC		
	6	PGA1L	4	
		ZC		
	7	PGA1R_	-	
	'	ZC		
		20		

Table 27 Analogue Volume Control

VOLUME RAMP

Analogue volume can be adjusted by step change or by soft ramp. The ramp rate is dependent upon the sampling rate. The sampling rate upon which the volume ramp rate is based can be selected between the DAC sampling rate or the ADC sampling rate in either slave mode or master mode. The ramp rates for common audio sample rates are shown in Table 28:

SAMPLE RATE FOR PGA (kHz)	DIVIDE BY	PGA Ramp Rate (ms/dB)
32	8	0.50
44.1	8	0.36
48	8	0.33
88.2	16	0.36
96	16	0.33
176.4	32	0.36
192	32	0.33

Table 28 Analogue Volume Ramp Rate

For example, when using a sample rate of 48kHz, the time taken for a volume change from and initial setting of 0dB to -20dB is calculated as follows:

Volume Change (dB) x PGA Ramp Rate (ms/dB) = 20 x 0.33 = 6.6ms

When changing from one PGA ramp clock source to another, it is recommended that PGA_SAFE_SW is set to 0. This forces the clock switch over to occur at a point where all relevant clock signals are zero, ensuring glitch-free operation. This process can take up to 32 left/right clock cycles.

If a faster change in PGA ramp rate clock source is required, PGA_SAFE_SW can be set to 1. This forces the change in clock source to occur immediately regardless of the state of the relevant clock signals internally. Glitch-free operation is not guaranteed under these conditions.

If the volume ramp function is not required when increasing or decreasing volume, this block can be bypassed by setting ATTACK_BYPASS or DECAY_BYPASS to 1. Figure 18 shows the effect of these register settings:

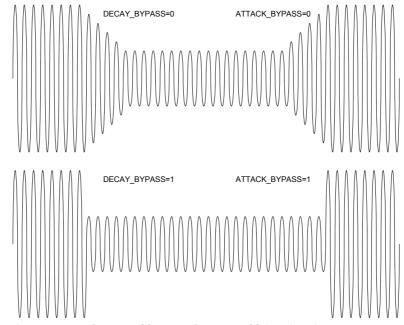


Figure 18 ATTACK_BYPASS and DECAY_BYPASS functionality

Note: When ATTACK_BYPASS=1 or DECAY_BYPASS=1, it is recommended that the zero cross function for the PGA is used to eliminate click noise when changing volume settings.

PP Rev 1.0 January 2007

Product Preview

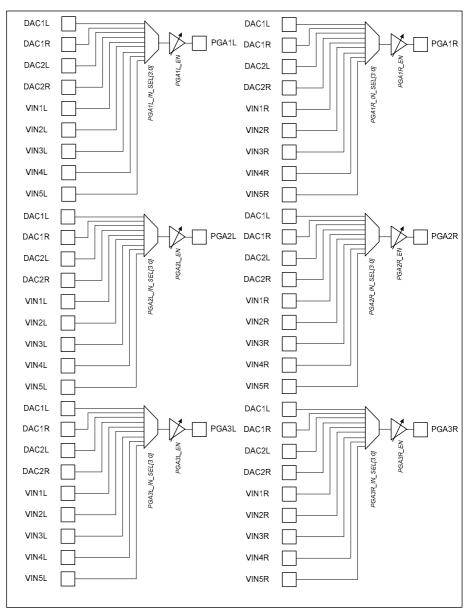
REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R25	0	DECAY_	0	PGA Gain Decay Mode
PGA_CTRL1		BYPASS		0 = PGA gain will ramp down
19h				1 = PGA gain will step down
	1	ATTACK_	0	PGA Gain Attack Mode
		BYPASS		0 = PGA gain will ramp up
				1 = PGA gain will step up
R27	6:4	PGA_	001	Sample Rate for PGA
ADD_CTRL1		SR[2:0]		000 = 32kHz
1Bh				001 = 44.1kHz
				010 = 48kHz
				011 = 88.2kHz
				100 = 96kHz
				101 = 176.4kHz
				11X = 192kHz
				See Table 28 for further information on PGA
				sample rate versus volume ramp rate.
R36 PGA_CTRL3	0	PGA_ SAFE_SW	0	PGA Ramp Control Clock Source Mux Force Update
24h		_		0 = Wait until clocks are safe before switching PGA clock source
				1 = Force PGA clock source to change immediately
	3:1	PGA_	000	PGA Ramp Control Clock Source
		SEL[2:0]		000 = ADCLRCLK
				001 = DACLRCLK1
				010 = DACLRCLK2
				011 = reserved
				100 = reserved
				101 = DACLRCLK1 (when DAC1 is being
				used in master mode)
				110 = DACLRCLK2 (when DAC2 is being
				used in master mode)
				111 = ADCLRCLK (when ADC is being used in master mode)
	10	PGA_UPD	0	PGA Ramp Control Clock Source Mux Update
				0 = Do not update PGA clock source
				1 = Update clock source

Table 29 Analogue Volume Ramp Control

ANALOGUE MUTE CONTROL

The analogue channel PGAs can be muted independently and are muted by default. Alternatively, all mute bits can be set using a master mute bit, MUTE_ALL.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R26	0	MUTE_	0	Master PGA Mute Control
PGA_CTRL2		ALL		0 = Unmute all PGAs
1Ah				1 = Mute all PGAs
	1	VOUT1L_	1	Individual PGA Mute Control
		MUTE		0 = Unmute PGA
	2	VOUT1R_	1	1 = Mute PGA
		MUTE		
	3	VOUT2L_	1	
		MUTE		
	4	VOUT2R_	1	
		MUTE		
	5	VOUT3L_	1	
		MUTE		
	6	VOUT3R_	1	
		MUTE		


Table 30 Analogue Mute Control

INPUT SELECTOR CONTROL

Each left channel input PGA can select between all left channel analogue inputs, and both left and right DAC inputs. Each right channel input PGA can select between all right channel analogue inputs, and both left and right DAC inputs. All PGAs can be enabled and disabled independently.

Note: It is recommended to mute the PGA before changing the input to the PGA to avoid pop/click noises when selecting a different input source.

Figure 19 Input Selector Control

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R28	3:0	PGA1L_	0000	Left Input PGA Source Selection
INPUT_CTRL1		IN_		0000 = No input selected
1Ch		SEL[3:0]		0001 = VIN1L selected
	11:8	PGA2L_	0000	0010 = VIN2L selected
		IN_		0011 = VIN3L selected
		SEL[3:0]		0100 = VIN4L selected
R29	7:4	PGA3L_	0000	0101 = VIN5L selected
INPUT_CTRL2		IN_		0110 to 1000 = reserved
1Dh		SEL[3:0]		1001 = DAC1L output selected
				1010 = DAC1R output selected
				1011 = DAC2L output selected
				1100 = DAC2R output selected
				1101 to 1111 = reserved
R28	7:4	PGA1R_	0000	Right Input PGA Source Selection
INPUT_CTRL1		IN_		0000 = No input selected
1Ch		SEL[3:0]		0001 = VIN1R selected
R29	3:0	PGA2R_	0000	0010 = VIN2R selected
INPUT_CTRL2		IN_		0011 = VIN3R selected
1Dh		SEL[3:0]		0100 = VIN4R selected
	11:8	PGA3R_	0000	0101 = VIN5R selected
		IN_		0110 to 1000 = reserved
		SEL[3:0]		1001 = DAC1L output selected
				1010 = DAC1R output selected
				1011 = DAC2L output selected
				1100 = DAC2R output selected
				1101 to 1111 = reserved
R31	0	PGA1L_	0	Input PGA Enable Controls
INPUT_CTRL4		EN		0 = PGA disabled
1Fh	1	PGA1R_		1 = PGA enabled
		EN		
	2	PGA2L_		
		EN		
	3	PGA2R_		
		EN		
	4	PGA3L_	1	
		EN		
	5	PGA3R_]	
		EN		

Table 31 PGA Input Select Control

ADC INPUT SELECTOR CONTROL

The ADC input switch can be configured to allow any combination of two inputs to be input to the ADC. Each input switch channel can be controlled independently.

The input switch also includes PGAs to provide a range of analogue gain settings between -6dB and +6dB prior to the ADC. These PGAs can be enabled and disabled independently.

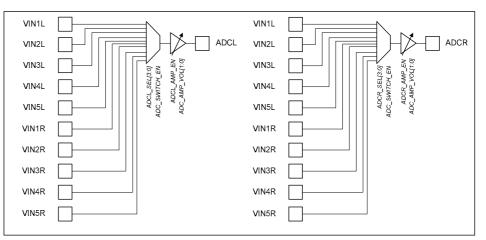


Figure 20 ADC Input Selector Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R30	3:0	ADCL	0000	ADC Input Select
INPUT CTRL3		SEL[3:0]		0000 = VIN1L
1Eh	7:4	ADCR	0000	0001 = VIN2L
		SEL[4:0]		0010 = VIN3L
		,		0011 = VIN4L
				0100 = VIN5L
				0101 to 1000 = reserved
				1000 = VIN1R
				1001 = VIN2R
				1010 = VIN3R
				1011 = VIN4R
				1100 = VIN5R
				1101 to 1111 = reserved
	9:8	ADC_AMP	10	ADC Amplifier Gain Control
		_VOL[1:0]		00 = 0dB
				01 = +3dB
				10 = +6dB
				11 = +12dB
	10	ADC_	0	ADC Input Switch Control
		SWITCH_		0 = ADC input switches open
		EN		1 = ADC input switches closed
R31	6	ADCL_	0	ADC Input Amplifier Enable Controls
INPUT_CTRL4		AMP_EN		0 = Amplifier disabled
1Fh	7	ADCR_	0	1 = Amplifier enabled
		AMP_EN		

Table 32 ADC Input Switch Control

OUTPUT SELECTOR CONTROL

Any analogue PGA channel can be routed to any analogue output. All analogue outputs can be independently enabled and disabled. Additionally, all outputs can be tri-stated to allow the output to be connected to applications where ports can either be inputs or outputs.

Note: It is recommended to mute all the outputs before changing the output selector to avoid pop/click noises when selecting a different output source.

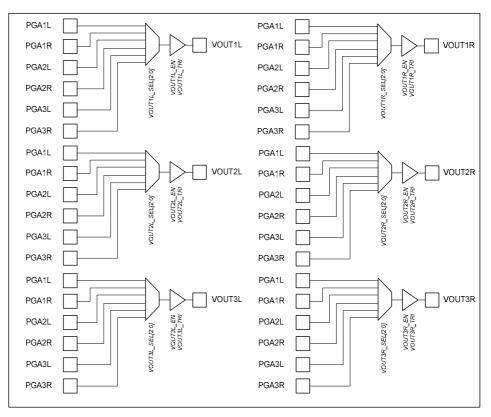


Figure 21 Output Selector Control

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R32 OUTPUT_	2:0	VOUT1L_ SEL[2:0]	000	Output Mux Selection 000 = PGA1L
CTRL1 20h	5:3	VOUT1R_ SEL[2:0]	001	001 = PGA1R 010 = PGA2L
2011	8:6	VOUT2L_ SEL[2:0]	010	011 = PGA2R 100 = PGA3L
R33 OUTPUT_	2:0	VOUT2R_ SEL[2:0]	011	101 = PGA3R
CTRL2 21h	5:3	VOUT3L_ SEL[2:0]	100	11X = Reserved
2	8:6	VOUT3R_ SEL[2:0]	101	
R34 OUTPUT_	0	VOUT1L_ TRI	0	Output Amplifier Tristate Control 0 = Normal operation
CTRL3 22h	1	VOUT1R_ TRI		1 = Output amplifier tristate enable (Hi-Z)
	2	VOUT2L_ TRI		
	3	VOUT1R_ TRI		
	4	VOUT3L_ TRI		
	5	VOUT3R_ TRI		
	7	VOUT1L_ EN	0	Output Amplifier Enables 0 = Output amplifier disabled
	8	VOUT1R_ EN		1 = Output amplifier enabled
	9	VOUT2L_ EN		
	10	VOUT2R_ EN		
	11	VOUT3L_ EN		
	12	VOUT3R_ EN		

Table 33 Output Selection

POP AND CLICK PERFORMANCE

The WM8594 includes a number of features designed to minimise pops and clicks in various phases of operation including power up, power down, changing analogue paths and starting/stopping clocks. In order to ensure optimum performance, the following sequences should be followed.

POWERUP SEQUENCE

- 1. Apply power to the WM8594 (see Power On Reset).
- 2. Set-up initial internal biases:
 - SOFT_ST=1
 - FAST_EN=1
 - POBCTRL=1
- Enable output drivers to allow the AC coupling capacitors at the output stage to be precharged to DACVMID:
 - VOUTxL_EN=1
 - VOUTxR_EN=1
- 4. Enable DACVMID. 500k Ω selected here for optimum pop reduction:
 - VMID_SEL=10
- 5. Wait until DACVMID has fully charged. The time is dependent on the capacitor values used to AC-couple the outputs and to decouple DACVMID, and the VMID_SEL value chosen. An approximate delay of 6xRCms can be used, where R is the DACVMID resistance and C is the decoupling capacitor on DACVMID. For DACVMID resistance of 50kΩ and C=4.7uF, the delay should be approximately 1.5 seconds.
 - Insert delay
- 6. Enable the master bias and DACVMID buffer:
 - BIAS_EN=1
 - BUFIO_EN=1
- 7. Switch the output drivers to use the master bias instead of the power up (fast) bias:
 - POBCTRL=0
- 8. Enable all functions (DACs, ADC, PGAs) required for use. Outputs are muted by default so the write order is not important.
- 9. Unmute the outputs and switch DACVMID resistance to 50k for normal operation:
 - VOUTxL_MUTE=0
 - VOUTxR_MUTE=0
 - VMID_SEL=01

POWERDOWN SEQUENCE

- 1. Mute all outputs:
 - MUTE_ALL=1
- 2. Set up biases for power down mode:
 - FAST_EN=1
 - VMID_SEL=01
 - BIAS_EN=1

- BUFIO_EN=1
- VMIDTOG=1
- SOFT_ST=0
- 3. Switch outputs to use fast bias instead of master bias:
 - POBCTRL=1
- 4. Power down all WM8594 functions (ADC, DACs, PGAs etc.). The outputs are muted so the write order is not important.
- 5. Power down VMID to allow the analogue outputs to ramp gently to ground in a pop-free manner.
 - VMID_SEL=00
- 6. Wait until DACVMID has fully discharged. The time taken depends on system capacitance.
 - Insert delay
- 7. Clamp outputs to ground.
 - APE_B=0
- 8. Power down outputs.
 - VOUTxL_EN=0
 - VOUTxR_EN=0
- 9. Disable remaining bias control bits.
 - FAST_EN=0
 - POBCTRL=0
 - BIAS_EN=0

Power supplies can now be safely removed from the WM8594 if desired. Table 34 describes the various bias control bits for power up/down control.

Product Preview

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R35	0	POBCTRL	0	Bias Source for Output Amplifiers
BIAS				0 = Output amplifiers use master bias
23h				1 = Output amplifiers use fast bias
	1	VMIDTOG	0	VMID Power Down Characteristic
				0 = Slow ramp
				1 = Fast ramp
	2	FAST_EN	0	Fast Bias Enable
				0 = Fast bias disabled
				1 = Fast bias enabled
	3	BUFIO_	0	VMID Buffer Enable
		EN		0 = VMID Buffer disabled
				1 = VMID Buffer enabled
	4	SOFT_ST	1	VMID Soft Ramp Enable
				0 = Soft ramp disabled
				1 = Soft ramp enabled
	5	BIAS_EN	0	Master Bias Enable
				0 = Master bias disabled
				1 = Master bias enabled
				Also powers down ADCVMID
	7:6	VMID_ SEL[1:0]	00	VMID Resistor String Value Selection (DACVMID only)
		022[110]		00 = off (no VMID)
				01 = 100kΩ
				$10 = 500 \mathrm{k}\Omega$
				11 = 10kΩ
				The selection is the total resistance of the
				string from DACREFP to DACREFN. The ADCVMID resistance is fixed at $200k\Omega$.

Table 34 Bias Control

Product Preview

WM8594

REGISTER MAP

r PCRL VOL 0 0 8 PCAR. VOL 0 0 9 PCA. CTRL1 0 0 9 PCA. CTRL2 0 0 9 PCA. CTRL3 0 0 9 PCIT_CTRL3 0 0 9 NPUT_CTRL4 0 0 20 OUTPUT_CTRL4 0 0 21 OUTPUT_CTRL2 0 0
VOL 0 RAVQL 0 CTRL1 0 CTRL2 0 IT_CTRL3 0 IT_CTRL4 0 IT_CTRL3 0 IT_CTRL4 0
ZC PGA3_ZC PGA2R_ZC
PGA3L_VOL[7:0] PGA3R_VOL[7:0]
/OL[7:0]

PP Rev 1.0 January 2007

47

R0 (0h) –	0 (0h) – Software Reset / Device ID Register (DEVICE_ID)										
Bit #	15	14	13	12	11	10	9	8			
Read		DEVICE_ID[15:8]									
Write		SW_RST									
Default	1	0	0	0	0	1	0	1			
Bit #	7	6	5	4	3	2	1	0			
Read				DEVICE	_ID[7:0]						
Write				SW_	RST						
Default	1	0	0	1	0	1	0	0			
					N/A	= Not Applicat	ole (no function	implemented)			
Fu	nction				Description						
DEVIC	EID[15:0]	Device ID									
		A read of this	register will ret	urn the device	ID. In this case	0x8594.					
SW	/_RST	Software Res	set								
		A write of any	value to this re	gister will gene	rate a software	reset.					

Figure 22 R0 – Software Reset / Device ID

R1 (01h) -	 Device Re 	vision Register	(REVISION)	-		-	-		
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
						·	•	•	
Bit #	7	6	5	4	3	2	1	0	
Read				REVN	UM[7:0]				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Default	-	-	-	-	-	-	-	-	
					N//	A = Not Applicat	ole (no functior	n implemented)	
Fur	nction				Description				
REVN	IUM[7:0]	Device Revision							
		A read of this register will return the device revision number. This number is sequentially incremented if the device design is updated.							

Figure 23 R1 – Device Revision Register

Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0				-				
Write	N/A	N/A	N/A	N/A	DAC1_O	P_MUX[1:0]	DAC1_MUTE	DAC1_EN				
Default	0	0	0	0	0	0	0	0				
Delaun	Ŭ	U	v	Ŭ	U	Ŭ	•	v				
Bit #	7	6	5	4	3	2	1	0				
Read		DAC1										
Write	DAC1_ZCEN	DEEMPH	- I DAC1 LRP I DAC1 BCP I DAC1 WI [1:0] I DAC1 EMT[1:0]									
Default	1	0										
					N/	A = Not Applic	able (no function	implemented				
Fu	Inction				Description							
DAC1	_FMT[1:0]	DAC1 Audio	Interface Forn	nat								
		00 = Right Ju	stified									
		01 = Left Just	ified									
		$10 = l^2 S$										
		11 = DSP										
DAC1	_WL[1:0]	DAC1 Audio Interface Word Length										
		00 = 16-bit										
		01 = 20-bit										
		10 = 24-bit										
				Right Justified m	ode)							
DAC	C1_BCP	DAC1 BCLK										
				data latched on								
		1 = DACBCLK inverted - data latched on falling edge of BCLK										
DAG	C1_LRP	DAC1 LRCLK Polarity										
		0 = DACLRCLK not inverted										
		1 = DACLRCI										
DAC1	_DEEMPH	DAC1 Deemphasis										
		0 = No deemphasis										
		1 = Apply 44.1kHz deemphasis										
DAC	1_ZCEN	DAC1 Digital Volume Control Zero Cross Enable										
		0 = Do not use zero cross										
		1 = Use zero cross										
DA	C1_EN	DAC1 Enable 0 = DAC disa										
		0 = DAC uisa 1 = DAC enat										
DAC	1_MUTE	DAC1 Softmute 0 = Normal operation										
		0 = Normal op 1 = Softmute										
DACI_C	P_MUX[1:0]	DAC1 Digital	Normal Operati	on)								
			eft data to DAC									
		10 = Mono (Right data to DAC1L) 11 = Digital Monomix, (L+R)/2										

Figure 24 R2 – DAC1 Control Register 1

Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Default	0	0	0 0 0 0 0 0									
Bit #	7	6	5	4	3	2	1	0				
Read	0	0										
Write	N/A	N/A	DA	C1_BCLKDIV[2:0]		DAC1_SR[2:0]					
Default	0	0	0	0	0	0	0	0				
					N/A	A = Not Applicat	ole (no function	implemented				
Fu	nction				Description							
DAC1	_SR[2:0]	DAC1 MCLK:	LRCLK Ratio									
		000 = Auto de	etect									
		001 = 128fs										
		010 = 192fs										
		011 = 256fs										
		100 = 384fs										
		101 = 512fs										
		110 = 768fs										
		111 = 1152fs										
D	AC1_	DAC1 BCLK	Rate									
	AC1_ LKDIV	DAC1 BCLK 000 = MCLK /										
BC	LKDIV	000 = MCLK /	4									
BC		000 = MCLK / 001 = MCLK /	4									
BC	LKDIV	000 = MCLK / 001 = MCLK / 010 = 32fs	4									
BC	LKDIV	000 = MCLK / 001 = MCLK /	4									

Figure 25 R3 – DAC1 Control Register 2

R4 (04h) ·	- DAC1 Contr	ol Register 3 (I	DAC1_CTRL3)							
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC1_MSTR		
Default	0	0	0	0	0	0	0	0		
					N/A	= Not Applicat	le (no function	implemented)		
Fu	nction				Description					
DAC	1_MSTR	DAC1 Master	DAC1 Master Mode Select							
		0 = Slave mo	0 = Slave mode, DACBCLK1 and DACLRCLK1 are inputs to WM8594							
		1 = Master mode, DACBCLK1 and DACLRCLK1 are outputs from WM8594								

Figure 26 R4 – DAC1 Control Register 3

Product Preview

R5 (05h) ·	- DAC1L Digit	al Volume Cor	trol Register (DAC1L_VOL)							
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	DAC1L_VU			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DACIL_VU			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read											
Write		DAC1L_VOL[7:0]									
Default	1	1	1 0 0 1 0 0 0								
					N/A	a = Not Applicat	le (no function	n implemented)			
Fu	nction				Description						
DAC1L	_VOL[7:0]	DAC1L Digita	al Volume								
		0000 0000 = -	100dB								
		0000 0001 = -	99.5dB								
		0000 0010 = -	99dB								
		0.5dB steps	6								
		1100 1000 = 0)dB								
		0.5dB steps	6								
	1101 1111 = +11.5dB										
		111X XXXX =	+12dB								
DAC	C1L_VU	DAC1L Digita	al Volume Upd	ate							
		0 = Latch DA	C1L_VOL[7:0] i	nto Register Ma	ap but do not up	odate volume					
		1 = Latch DA	C1L_VOL[7:0] i	nto Register Ma	ap and update I	eft and right cha	annels simulta	neously			

Figure 27 R5 – DAC1L Digital Volume Control Register

R6 (06h) -	- DAC1R Digi	tal Volume Co	ntrol Register	(DAC1R_VOL)								
Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	DAC1R_VU				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DACIK_VU				
Default	0	0	0	0	0	0	0	0				
Bit #	7	6	5	4	3	2	1	0				
Read	1											
Write		DAC1R_VOL[7:0]										
Default	1	1	0	0	1	0	0	0				
		-			N/A	A = Not Applicat	ole (no functio	n implemented)				
Fui	nction				Description							
DAC1R	_VOL[7:0]	DAC1R Digit	al Volume									
		0000 0000 =	-100dB									
		0000 0001 = -	-99.5dB									
		0000 0010 =	-99dB									
		0.5dB steps	6									
		1100 1000 =	DdB									
		0.5dB steps	6									
	1101 1111 = +11.5dB											
	111X XXXX = +12dB											
DAC	1R_VU	DAC1R Digit	al Volume Upd	late								
		0 = Latch DA	CR_VOL[7:0] in	ito Register Ma	p but do not up	date volume						
		1 = Latch DA	CR_VOL[7:0] in	ito Register Ma	p and update le	eft and right cha	innels simulta	neously				

Figure 28 R6 – DAC1R Digital Volume Control Register

R7 (07h) ·	- DAC2 Contro	ol Register 1 (I	DAC2_CTRL1)							
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	D 400 0					
Write	N/A	N/A	N/A	N/A	DAC2_O	P_MUX[1:0]	DAC2_MUTE	DAC2_EN		
Default	0	0	0	0	0	0	0	0		
	•									
Bit #	7	6	5	4	3	2	1	0		
Read		DAC2_								
Write	DAC2_ZCEN	DEEMPH	DAC2_LRP DAC2_BCP DAC2_WL[1:0] DAC2_FMT[1:0]							
Default	1	0	0 0 0 1 0 1 0							
	N/A = Not Applicable (no function implement							implemented)		
Fu	nction				Description	l				
DAC2	_FMT[1:0]	DAC2 Audio	Interface Forn	nat						
		00 = Right Ju	stified							
		01 = Left Justified								
		$10 = I^2 S$								
		11 = DSP								
DAC2	_WL[1:0]	DAC2 Audio	Interface Word	d Length						
		00 = 16-bit								
		01 = 20-bit								
		10 = 24-bit								
		11 = 32-bit (n	ot available in F	Right Justified n	node)					
DAC	2_BCP	DAC2 BCLK								
		0 = DACBCL	K not inverted -	data latched or	n rising edge o	of BCLK				
				a latched on fal	ling edge of B	CLK				
DAC	C2_LRP	DAC2 LRCL	-							
			K not inverted							
		1 = DACLRCI								
DAC2_	_DEEMPH	DAC2 Deemp								
		0 = No deem								
			1kHz de-empha							
DAC	2_ZCEN			rol Zero Cross	Enable					
		0 = Do not us								
		1 = Use zero								
DAG	C2_EN	DAC2 Enable	-							
		0 = DAC2 disabled								
		1 = DAC2 ena								
DAC	2_MUTE	DAC2 Softm 0 = Normal op								
		0 = Normal op 1 = Softmute								
		DAC2 Digital								
DACZ_O	P_MUX[1:0]	-	Normal Operati	on)						
			eft data to Righ							
			ight data to Lef							
			onomix, (L+R)							

Figure 29 R7 – DAC2 Control Register 1

Product Preview

R8 (08h) -	- DAC2 Cont	rol Register 2 (I	DAC2_CTRL2)								
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0	0			
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Default	0	0	0	0	0	0	0	0			
							1	I			
Bit #	7	6	5	4	3	2	1	0			
Read	0	0	DA	C2_BCLKDIV	2:01		DAC2_SR[2:0]				
Write	N/A	N/A									
Default	0	0	0 0 0 0 0 0								
			N/A = Not Applicable (no function implement								
Fur	nction		Description								
DAC2	_SR[2:0]	DAC2 MCLK	LRCLK Ratio								
		000 = Auto de	etect								
		001 = 128fs									
		010 = 192fs									
		011 = 256fs									
		100 = 384fs									
		101 = 512fs									
		110 = 768fs									
		111 = 1152fs									
		DAC2 BCLK	Rate								
		000 = MCLK /	4								
		001 = MCLK /	8								
DAC2_B	CLKDIV[2:0]	010 = 32fs									
		011 = 64fs									
		100 = 128fs									
		All other value	es of DAC2_B	CLKDIV[2:0] are	e reserved						

Figure 30 R8 – DAC2 Control Register 2

R9 (09h) -	- DAC2 Contro	ol Register 3 (I	DAC2_CTRL3)									
Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Default	0	0	0 0 0 0 0 0									
Bit #	7	6	6 5 4 3 2 1 0									
Read	0	0										
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2_MSTR				
Default	0	0	0	0	0	0	0	0				
					N/A	= Not Applicat	le (no function	implemented)				
Fu	nction	Description										
DAC	2_MSTR	DAC2 Master Mode Select										
		0 = Slave mode, DACBCLK2 and DACLRCLK2 are inputs to WM8594										
		1 = Master mode, DACBCLK2 and DACLRCLK2 are outputs from WM8594										

Figure 31 R9 – DAC2 Control Register 3

R10 (0Ah)) – DAC2L Di	gital Volume C	ontrol Registe	r (DAC2L_VOL	.)						
Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2L_VU			
Default	0	0	0	0	0	0	0	0			
			•			•					
Bit #	7	6	5	4	3	2	1	0			
Read					VOL[7:0]						
Write				DAO2L_	00000						
Default	1	1	0	0	1	0	0	0			
					N/#	A = Not Applica	ble (no functio	n implemented)			
Fui	nction				Description						
DAC2L	_VOL[7:0]	DAC2 Digita	Volume								
		0000 0000 =	-100dB								
		0000 0001 =	-99.5dB								
		0000 0010 =	-99dB								
		0.5dB step	S								
		1100 1000 =	0dB								
		0.5dB step	S								
	1101 1111 = +11.5dB										
	111X XXXX = +12dB										
DAC	2L_VU	DAC2 Digita	Volume Upda	te							
		0 = Latch DA	C2L_VOL[7:0] i	nto Register M	ap but do not u	pdate volume					
		1 = Latch DAC2L_VOL[7:0] into Register Map and update left and right channels simultaneously									

Figure 32 R10 – DAC2L Digital Volume Control Register

R11 (0Bh)) – DAC2R Dig	gital Volume C	ontrol Registe	r (DAC2R_VOL	.)							
Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	DAC2R_VU				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	DAC2R_VU				
Default	0	0	0	0	0	0	0	0				
Bit #	7	6	5	4	3	2	1	0				
Read												
Write		DAC2R_VOL[7:0]										
Default	1	1	0	0	1	0	0	0				
		•			N/A	a = Not Applicat	ole (no functio	n implemented)				
Fui	nction				Description							
DAC2R	_VOL[7:0]	DAC2R Digit	al Volume									
		0000 0000 =	-100dB									
		0000 0001 =	-99.5dB									
		0000 0010 =	-99dB									
		0.5dB steps	3									
		1100 1000 =	DdB									
		0.5dB steps	3									
	1101 1111 = +11.5dB											
	111X XXXX = +12dB											
DAC	2R_VU	DAC2R Digit	al Volume Upd	late								
		0 = Latch DA	C2R_VOL[7:0]	into Register M	ap but do not u	pdate volume						
		1 = Latch DA	C2R_VOL[7:0] i	into Register M	ap and update	eft and right ch	annels simulta	aneously				

Figure 33 R11 – DAC2R Digital Volume Control Register

R12 (0Ch) – Device En	able Register (ENABLE)									
Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Default	0	0	0 0 0 0 0 0									
Bit #	7	6	6 5 4 3 2 1 0									
Read	0	0	0 0 0 0 0 0									
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	GLOBAL_EN				
Default	0	0	0	0	0	0	0	0				
					N/A	= Not Applicat	le (no function	implemented)				
Fu	nction		Description									
GLO	BAL_EN	Device Globa	Device Global Enable									
		0 = ADC, DA0) = ADC, DAC and PGA ramp control circuitry disabled									
		1 = ADC, DAC and PGA ramp control circuitry enabled										

Figure 34 R12 – Device Enable Register

R13 (0Dh)) – ADC Conti	rol Register 1 (ADC_CTRL1)							
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	ADC ZCEN				ADCL INV			
Write	N/A	N/A	ADC_ZCEN	ADC_HPD	ADC_DAT/	A_SEL[1:0]	ADCL_INV	ADCR_INV		
Default	0	0	1	0	0	0	0	0		
				-						
Bit #	7	6	5	4	3	2	1	0		
Read	ADC_	ADC_EN	ADC_LRP	ADC_BCP	ADC_V	VI [1·0]	ADC F	MT[1:0]		
Write	LRSWAP	ADO_EN	ADO_EIN		AD0_1	12[1.0]	ADO_I	WI[1.0]		
Default	0	0	0	0	1	0	1	0		
		•			N/A	a = Not Applicat	ole (no function	implemented)		
Fui	nction				Description					
ADC_	FMT[1:0]		nterface Forma	at						
		-	00 = Right Justified							
		01 = Left Just	tified							
		$10 = I^2 S$								
		11 = DSP								
ADC_	_WL[1:0]		nterface Word	Length						
		00 = 16-bit								
		01 = 20-bit								
		10 = 24-bit								
100		· · ·		Right Justified m	iode)					
ADC	C_BCP	ADC BCLK P	•			DOLK				
				data latched or a latched on fall						
	C_LRP				Ing edge of BC					
AD	J_LKF		ADC LRCLK Polarity							
			0 = ADCLRCLK not inverted 1 = ADCLRCLK inverted							
Δ۵	C_EN	ADC Enable								
AD		0 = ADC disa	bled							
		1 = ADC uisa								
			5100							

PP Rev 1.0 January 2007

ADC_LRSWAP	ADC Left/Right Swap
	0 = Normal
	1 = Swap left channel data into right channel and vice-versa
ADCR_INV	ADCL and ADCR Output Signal Inversion
ADCL_INV	0 = Output not inverted
	1 = Output inverted
ADC_DATA_SEL[1:0]	ADC Data Output Select
	00 = left data from ADCL, right data from ADCR (Normal Stereo)
	01 = left data from ADCL, right data from ADCL (Mono Left)
	10 = left data from ADCR, right data from ADCR (Mono Right)
	11 = left data from ADCR, right data from ADCL (Reverse Stereo)
ADC_HPD	ADC High Pass Filter Disable
	0 = High pass filter enabled
	1 = High pass filter disabled
ADC_ZC_EN	ADC Digital Volume Control Zero Cross Enable
	0 = Do not use zero cross, change volume instantly
	1 = Use zero cross, change volume when data crosses zero

Figure 35 R13 – ADC Control Register 1

R14 (0Eh)	- ADC Cont	rol Register 2 (ADC_CTRL2)							
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	0	0	ΔΙ	DC_BCLKDIV[2	∩ 1		ADC_SR[2:0]			
Write	N/A	N/A			0]					
Default	0	0	0	0	0	0	0	0		
		-	N/A = Not Applicable (no function implemented)							
Fui	nction				Description					
ADC_	_SR[2:0]	ADC MCLK:L	RCLK Ratio							
		000 = Auto de	etect							
		001 = reserve	d							
		010 = reserve	d							
		011 = 256fs								
		100 = 384fs								
		101 = 512fs								
		110 = 768fs								
		111 = Reserve	ed							
ADC_BC	LKDIV[2:0]	ADC BCLK R	ate (when AD	C in Master Mo	ode)					
		000 = MCLK /	4							
		001 = MCLK /	8							
		010 = 32fs								
		011 = 64fs								
		100 = 128fs								
		All other value	es of ADC_BC	LKDIV[2:0] are	reserved					

Figure 36 R14 – ADC Control Register 2

Product Preview

R15 (0Fh)	- ADC Cont	rol Register 3 (ADC_CTRL3)									
Bit #	15	14	13	12	11	10	9	8				
Read	0	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Default	0	0	0	0	0	0	0	0				
		_										
Bit #	7	6	6 5 4 3 2 1 0									
Read	0	0	0 0 0 0 0 0									
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADC_MSTR				
Default	0	0	0	0	0	0	0	0				
					N/A	= Not Applicat	le (no function	implemented)				
Fu	nction		Description									
ADC	_MSTR	ADC Master	ADC Master Mode Select									
		0 = Slave mo	0 = Slave mode, ADCBCLK and ADCLRCLK are inputs to WM8594									
		1 = Master mode, ADCBCLK and ADCLRCLK are outputs from WM8594										

Figure 37 R15 – ADC Control Register 3

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	0	0				
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADCL_VU			
Default	0	0	0	0	0	0	0	0			
Bit #	7	6	5	4	3	2	1	0			
Read											
Write		ADCL_VOL[7:0]									
Default	1	1	0	0	0	0	1	1			
					N/A	A = Not Applica	ble (no functio	n implemented			
Fui	nction				Description						
ADCL_	_VOL[7:0]	Left ADC Dig	ital Volume								
		0000 0000 = Digital mute									
		0000 0001 = -97dB									
		0000 0010 = -96.5dB									
		0.5dB steps	6								
		1100 0011 =	0dB								
		0.5dB steps	3								
		1111 1110 =	+29.5dB								
		1111 1111 =	+30dB								
	CL_VU	Left DAC Dig	ital Volume U	pdate							
ADO		0 = Latch ADCL_VOL[7:0] into Register Map but do not update volume									
ADO		0 = Latch AD	CL_VOL[7:0] ir	nto Register Ma	p but do not up	date volume					

Figure 38 R10 – Left ADC Digital Volume Control Register

R17 (11h)	- Right ADC	C Digital Volum	e Control Regi	ster (ADCR_V	OL)					
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	ADCR VU		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ADCK_VU		
Default	0	0	0	0	0	0	0	0		
		-	•	•		-		-		
Bit #	7	6	5	4	3	2	1	0		
Read		ADCR VOL[7:0]								
Write				ABOR_	102[1:0]					
Default	1	1	0	0	0	0	1	1		
		-			N/A	A = Not Applical	ble (no functio	n implemented)		
Fur	nction				Description					
ADCR_	_VOL[7:0]	Right ADC D	igital Volume							
		0000 0000 =	Digital mute							
		0000 0001 = -97dB								
		0000 0010 =	-96.5dB							
		0.5dB step	S							
		1100 0011 =	0dB							
		0.5dB step	S							
		1111 1110 =	+29.5dB							
		1111 1111 =	+30dB							
ADC	R_VU	Right ADC D	igital Volume	Update						
		0 = Latch AD	CR_VOL[7:0] ir	nto Register Ma	ap but do not up	date volume				
		1 = Latch AD	CR_VOL[7:0] ir	nto Register Ma	ap and update le	eft and right cha	innels simulta	neously		

Figure 39 R17 – Right ADC Digital Volume Control Register

Product Preview

WM8594

Bit #	- PGA1L Vo 15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA1L_VU		
Default	0	0	0	0	0	0	0	0		
Deruun	Ū	Ū	Ŭ	Ŭ	v	Ū	Ŭ	v		
Bit #	7	6	5	4	3	2	1	0		
Read		1		5014		1				
Write				PGA1L_	VOL[7:0]					
Default	0	0	0	0	1	1	0	0		
•	N/A = Not Applicable (no function impleme									
R20 (14h)	- PGA1R Vo	lume Control I	Register (PGA1	R_VOL)						
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA1R_V		
Default	0	0	0	0	0	0	0	0		
		1	1		1					
Bit #	7	6	5	4	3	2	1	0		
Read	PGA1R_VOL[7:0]									
Write										
Default	0	0	0	0	1	1	0	0		
					N/.	A = Not Applicat	ole (no functio	on implemented		
			Register (PGA2				-	-		
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA2L_VL		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	•				L v					
Write				PGA2L_	VOL[7:0]					
Default	0	0	0	0	1	1	0	0		
	-			-		A = Not Applicat	ole (no functio	n implemented		
R22 (16h)	- PGA2R Vo	lume Control I	Register (PGA2	R_VOL)			(
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA2R_V		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read				PGA2P	_VOL[7:0]					
Write				PGAZR_						
Default	0	0	0	0	1	1	0	0		

...Continued on next page

Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA3L_VU
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read								
Write				PGA3L_	VOL[7:0]			
Default	0	0	0	0	1	1	0	0
					N//	A = Not Applica	ble (no functio	on implemented
R24 (18h)	- PGA3R V	olume Control R	egister (PGA	BR_VOL)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PGA3R_VL
Default	0	0	0	0	0	0	0	0
				-				
Bit #	7	6	5	4	3	2	1	0
Read				PGA3R_	_VOL[7:0]			
Write Default	0	0	0	0	1	1	0	0
Delault	U	0	U	U			-	on implemented
PGA1	_VOL[7:0]	Input PGA Vo	Jumo		11/7	A – Not Applica		minplemented
	_VOL[7:0]	$0000\ 0000 = -$						
	_VOL[7:0]	$0000\ 0001 = -$						
	_VOL[7:0]	0.5dB steps						
	VOL[7:0]	00001100 = 0						
	VOL[7:0]							
	1 - 1	1001 1110 = -	73.5dB					
		1001 1111 = F	PGA Mute					
PGA	1L_VU	Input PGA Vo	olume Update					
	PGA1R_VU 0 = Latch corresponding volume setting into Register Map but do not update volume							
	2L_VU			0	to Register Map	•		nultaneously
	 2R_VU		. 5	5	. .	·		,
PGA3L_VU								
FGF	UC_VO							

Figure 40 R19-24 – PGA Volume Control Registers

R25 (19h)) – PGA Contr	ol Register 1 (l	PGA_CTRL1)						
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
		-							
Bit #	7	6	5	4	3	2	1	0	
Read	PGA3R_ZC	PGA3L_ZC	PGA2R_ZC	PGA2L_ZC	PGA1R ZC	PGA1L_ZC	ATTACK_	DECAY_	
Write							BYPASS	BYPASS	
Default	1	1	1	1	1	1	0	0	
					N/A	= Not Applicat	le (no function	implemented)	
Fu	nction				Description				
DECAY	_BYPASS	PGA Gain Decay Mode							
		0 = PGA gain will ramp down							
		1 = PGA gain will step down							
ATTAC	K_BYPASS	PGA Gain Attack Mode							
		0 = PGA gain will ramp up							
		1 = PGA gain	will step up						
PG/	A1L_ZC	PGA Gain Ze	ro Cross Enat	ble					
PGA	A1R_ZC	0 = PGA gain	updates occur	immediately					
PG/	A2L_ZC	1 = PGA gain	updates occur	on zero cross					
PGA	A2R_ZC	Zero cross must be disabled to use gain ramp							
PG/	A3L_ZC								
PGA3R_ZC									

Figure 41 R25 – PGA Control Register 1

R26 (1Ah) – PGA Cont	rol Register 2 (PGA_CTRL2)					
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
Bit #	7	6	5	4	3	2	1	0
Read	0	VOUT3R_	VOUT3L_	VOUT2R_	VOUT2L_	VOUT1R_	VOUT1L_	MUTE_ALL
Write	N/A	MUTE	MUTE	MUTE	MUTE	MUTE	MUTE	MOTE_ALL
Default	0	1	1	1	1	1	1	0
					N/A	= Not Applicat	ole (no function	implemented)
Fu	nction				Description			
MUT	FE_ALL	Master PGA Mute Control						
		0 = Unmute a	ll PGAs					
		1 = Mute all P	GAs					
VOUT	1L_MUTE	Individual PC	GA Mute Contr	ol				
VOUT	1R_MUTE	0 = Unmute P	PGA					
VOUT	2L_MUTE	1 = Mute PGA	A					
VOUT	2R_MUTE							
VOUT	3L_MUTE							
VOUT	3R_MUTE							

Figure 42 R26 – PGA Control Register 2

R27 (1Bh)	- Additiona	al Control Regis	ter 1 (ADD_CT	RL1)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	0
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Default	0	0	0	0	0	0	0	0
			•				•	
Bit #	7	6	5	4	3	2	1	0
Read	0		PGA_SR[2:0]		AUTO INC	0	0	0
Write	N/A		1 GA_GR[2.0]		AUTO_INC	N/A	N/A	N/A
Default	0	1	0	0	1	0	0	0
					N/A	= Not Applicat	ole (no function	implemented)
Fur	nction				Description			
AUT	O_INC	2-wire Softw	are Mode Auto	Increment E	Enable			
		0 = Auto incre	ement disabled					
		1 = Auto incre	ement enabled					
PGA_	SR[2:0]	Sample Rate	ofor PGA					
		000 = 32kHz						
		001 = 44.1kH	z					
		010 = 48kHz						
		011 = 88.2kH	z					
		100 = 96kHz						
		101 = 176.4k	Hz					
		11X = 192kH	Z					
See Table 28 for further information on PGA sample rate versus volume ramp rate.								

Figure 43 R27 – Additional Control Register 1

Product Preview

R28 (1Ch)) – Input Cont	trol Register 1	(INPUT_CTRL	1)					
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0					
Write	N/A	N/A	N/A	N/A		PGA2L_I	N_SEL[3:0]		
Default	0	0	0	0	0	0	0	0	
			_		-				
Bit #	7	6	5	4	3	2	1	0	
Read		PGA1R_IN					N_SEL[3:0]		
Write		FGAIL	I_3EL[3.0]			FGATL_II	N_3EL[3.0]		
Default	0	0	0	0	0	0	0	0	
					N	/A = Not Applica	ble (no function	implemented)	
R29 (1Dh)) – Input Cont	trol Register 2	(INPUT_CTRL	2)				1	
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0		PGA3R II	N_SEL[3:0]		
Write	N/A	N/A	N/A	N/A			[0.0]		
Default	0	0	0	0	0	0	0	0	
	Γ	T	Γ	T			1		
Bit #	7	6	5	4	3	2	1	0	
Read		PGA3L_IN_SEL[3:0] PGA2R_IN_SEL[3:							
Write	•		•	•	•			•	
Default	0	0	0	0	0	0	0 hle (no function	0	
	nction	T			Description	/A = Not Applica		implemented)	
	IN_SEL[3:0]	L oft Input P(A Source Sel	ection	Description				
	IN_SEL[3:0]	0000 = No ing		ection					
	IN_SEL[3:0]	0000 = NO III							
	0[0.0]	0010 = VIN2L							
		0011 = VIN3L selected							
		0100 = VIN4L selected							
		0100 = VIN4L selected							
		0110 to 1000	= reserved						
		1001 = DAC1	L output select	ed					
		1010 = DAC1	R output selec	ted					
		1011 = DAC2	L output select	ed					
		1100 = DAC2	R output selec	ted					
		1101 to 1111							
PGA1R_	IN_SEL[3:0]	Right Input F	GA Source S	election					
PGA2R_	IN_SEL[3:0]	0000 = No inj	out selected						
PGA3R_	IN_SEL[3:0]	0001 = VIN1F							
		0010 = VIN2F							
		0011 = VIN3							
		0100 = VIN4F							
		0101 = VIN5							
		0110 to 1000 = reserved							
		1001 = DAC1L output selected							
		1010 = DAC1R output selected							
		1011 = DAC2L output selected 1100 = DAC2R output selected							
		1100 = DAC2		100					

Figure 44 R28-29 – Input Control Registers 1-2

Bit #	15	14	13	12	11	10	9	8			
Read	0	0	0	0	0	ADC_					
Write	N/A	N/A	N/A	N/A	N/A	SWITCH_EN	ADC_AIM	P_VOL[1:0]			
Default	0	0	0	0	0	0	1	0			
	1	1	1	1	1			1			
Bit #	7	6	5	4	3	2	1	0			
Read		ADCR	SEL[3:0]			ADCL_S	EL[3:0]				
Write											
Default	1	0	0	0	0	0	0	0			
						I/A = Not Applicab	le (no functio	n implemente			
	nction				Description	n					
	_SEL[3:0]	ADC Input S									
ADCR	_SEL[3:0]		0000 = VIN1L								
		0001 = VIN2									
		0010 = VIN3									
		0011 = VIN4									
		0100 = VIN5L									
		0101 to 1000									
		1000 = VIN1									
		1001 = VIN2									
		1010 = VIN3									
		1011 = VIN4									
		1100 = VIN5									
		1101 to 1111									
ADC_AM	1P_VOL[1:0]		er Gain Contro	bl							
		00 = 0dB									
		01 = +3dB									
		10 = +6dB									
		11 = +12dB									
ADC_S\	WITCH_EN	•	witch Control								
		0 = ADC inpu	ut switches oper	า							
		1 = ADC inpu	ut switches close	ed							

Figure 45 R30 – Input Control Register 3

R31 (1Fh) – Input Cont	rol Register 4 (INPUT_CTRL4	4)					
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
Bit #	7	6	5	4	3	2	1	0	
Read	ADCR_AMP_	ADCL_AMP_	PGA3R_EN	PGA3L EN	PGA2R EN	PGA2L EN	PGA1R_EN	PGA1L_EN	
Write	EN	EN	FGASK_EN	FGASL_EN	FGAZK_EN	FGA2L_EN	FGAIR_EN	FGAIL_EN	
Default	0	0	0	0	0	0	0	0	
					N/A	= Not Applicat	ole (no function	implemented)	
Fu	nction				Description				
PG/	A1L_EN	Input PGA Enable Controls							
PGA	1R_EN	0 = PGA disa	bled						
PG/	A2L_EN	1 = PGA enab	bled						
PGA	2R_EN								
PGA	A3L_EN								
PGA	3R_EN								
ADCL	_AMP_EN	ADC Input Ar	nplifier Enable	e Controls					
ADCR	_AMP_EN	0 = Amplifier of	disabled						
		1 = Amplifier	enabled						

Figure 46 R31 – Input Control Register 4

Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	VOUT2L_
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SEL[2]
Default	0	0	0	0	0	0	0	0
	•							•
Bit #	7	6	5	4	3	2	1	0
Read		SEL[1:0]	V	OUT1R_SEL[2	-01	V	OUT1L_SEL[2·∩1
Write	V0012L	_324[1.0]	V		.0]	v		2.0]
Default	1	0	0	0	1	0	0	0
					N/A	A = Not Applical	ole (no functio	n implemented)
R33 (21h)) – Output Co	ontrol Register 2	(OUTPUT_CT	ſRL2)				
Bit #	15	14	13	12	11	10	9	8
Read	0	0	0	0	0	0	0	VOUT3R_
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SEL[2]
Default	0	0	0	0	0	0	0	1
Bit #	7	6	5	4	3	2	1	0
Read		_SEL [1:0]	1/(OUT3L_SEL [2	01	V	OUT2R_SEL[2.01
Write	00100		V		0]	v		2.0]
Default	0	1	1	0	0	0	1	1
					N/A	A = Not Applical	ole (no functio	n implemented)
Fu	nction				Description			
VOUT1	L_SEL[3:0]	Output Mux S	Selection					
VOUT1	R_SEL [3:0]	000 = PGA1L						
VOUT2L_SEL [3:0] 001 = PGA1R		001 = PGA1R						
VUU12	VOUT2R_SEL [3:0] 010 = PGA2L							
	R_SEL [3:0]	010 = FGAZL						
VOUT2	R_SEL [3:0] L_SEL [3:0]	010 = PGA2L 011 = PGA2R						
VOUT2I VOUT3I								
VOUT2I VOUT3I	 L_SEL [3:0]	011 = PGA2R						

Figure 47 R32-33 – Output Control Registers 1-2

R34 (22h)	R34 (22h) – Output Control Register 3 (OUTPUT_CTRL3)									
Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	VOUT3R EN		VOUT2R_EN	VOUT2L EN			
Write	N/A	N/A	N/A	VOUTSK_EN	VOUTSL_EN	VOUT2R_EN	VOUT2L_EN	VOUTIK_EN		
Default	0	0	0	0	0	0	0	0		
					-			-		
Bit #	7	6	5	4	3	2	1	0		
Read Write	VOUT1L_EN	APE_B	VOUT3R_TRI	VOUT3L_TRI	VOUT2R_TRI	VOUT2L_TRI	VOUT1R_TRI	VOUT1L_TRI		
Default	0	1	0	0	0	0	0	0		
N/A = Not Applicable (no function implement							implemented)			
Function Description										
VOU	T1L_TRI	Output Ampl	ifier Tristate C	ontrol						
VOU	T1R_TRI	0 = Normal o	peration							
VOU	T2L_TRI	1 = Output amplifier tristate enable (Hi-Z)								
	T2R_TRI									
	T3L_TRI									
VOU	T3R_TRI									
A	PE_B		uts to Ground							
		0 = clamp act								
		1 = clamp not								
	T1L_EN	• •	ifier Enables							
	T1R_EN		nplifier disabled							
VOUT2L_EN 1 = Output amplifier enabled										
	VOUT2R_EN									
	T3L_EN									
VOU	T3R_EN									

Figure 48 R34 – Output Control Register 3

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0	0	0		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
		4				I				
Bit #	7	6	5	4	3	2	1	0		
Read		SEL[1:0]	BIAS_EN	SOFT_ST	BUFIO_EN	FAST_EN	VMIDTOG	POBCTRL		
Write	VIVIID_	022[1:0]	BIAO_EN	0011_01	BOI IO_EIN	TAOT_EN	VIVILETOO	TODOTILE		
Default	0	0	0	1	0	0	0	0		
					N/A	= Not Applicat	ole (no function	implemented)		
Fui	nction				Description					
POE	BCTRL		for Output Am							
		0 = Output amplifiers use master bias								
		1 = Output amplifiers use fast bias								
VM	DTOG	VMID Power Down Characteristic								
		0 = Slow ramp								
		1 = Fast ram								
FAS	ST_EN	Fast Bias Enable								
		0 = Fast bias disabled								
		1 = Fast bias								
BUF	IO_EN	VMID Buffer Enable								
		0 = VMID Buffer disabled								
		1 = VMID Buffer enabled								
SO	FT_ST	VMID Soft Ramp Enable								
		0 = Soft ramp disabled 1 = Soft ramp enabled								
DIA										
BIA	S_EN	Master Bias Enable								
		0 = Master bias disabled								
		1 = Master bias enabled Also powers down ADCVMID								
VMID	_SEL[1:0]	· · ·								
viviiD_			VMID Resistor String Value Selection (DACVMID only) 00 = off (no VMID)							
		00 = 000 (no) $01 = 100 \text{k}\Omega$								
		$10 = 500 k\Omega$								
		$11 = 10k\Omega$								
		The selection is the total resistance of the string from DACREFP to DACREFN. The ADCVMID								
		resistance is fixed at 200k Ω .								

Figure 49 R35 – Bias Control Register

Bit #	15	14	13	12	11	10	9	8		
Read	0	0	0	0	0	0		0		
Write	N/A	N/A	N/A	N/A	N/A	PGA_UPD	N/A	N/A		
Default	0	0	0	0	0 0 0 0			0		
Bit #	7	6	5	4	3	2	1	0		
Read	0	0	0	0			•	PGA		
Write	N/A	N/A	N/A	N/A	-	PGA_SEL[2:0]		SAFE_SW		
Default	0	0	0	0	0	0	0	0		
	-	-	-		N	/A = Not Applicabl	e (no function	implemented		
Fun	ction				Description		,			
PGA_S	AFE_SW	PGA Ramp C	ontrol Clock	Source Mux Fo	orce Update					
		0 = Wait until clocks are safe before switching PGA clock source								
		1 = Force PGA clock source to change immediately								
		See page 37	for details of us	se.						
PGA_	SEL[2:0]	PGA Ramp C	ontrol Clock	Source						
		000 = ADCLRCLK								
		001 = DACLRCLK1								
		010 = DACLRCLK2								
		011 = reserved								
		100 = reserved								
		101 = DACLRCLK1 (when DAC1 is being used in master mode)								
110 = DACLRCLK2 (when DAC2 is being used in master mode)										
		111 = ADCLR	CLK (when AD	OC is being use	d in master m	ode)				
PGA	_UPD	PGA Ramp C	ontrol Clock	Source Mux Up	odate					
		0 = Do not up	0 = Do not update PGA clock source							
1 = Update clock source										

Figure 50 R36 – PGA Control Register 3

R37 (25h) – ADC Input Clock Control Register (ADC_CLK)									
Bit #	15	14	<u>14 13 12 11 10 9 8</u>						
Read	0	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
Bit #	7	6	5	4	3	2	1	0	
Read	0	0	0	0	0	0	0	ADC_	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SAFE_SW	
Default	0	0	0	0	0	0	0	0	
					N/A	a = Not Applicat	le (no function	n implemented)	
Fui	nction				Description				
ADC_S	ADC_SAFE_SW ADC Clock Input Safe Switching								
		0 = Ignore ADC Clock Inputs							
		1 = Use ADC Clock Inputs							
	See page 33 for details of use								

Figure 51 R37 – ADC Input Clock Control Register

R38 (26h)	R38 (26h) – DAC1 Input Clock Control Register (DAC1_CLK)								
Bit #	15	14	13	12	11	10	9	8	
Read	0	0	0	0	0	0	0	0	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Default	0	0	0	0	0	0	0	0	
		_							
Bit #	7	6	5	4	3	2	1	0	
Read	0	0	0	0	0	0	0	DAC1_	
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SAFE_SW	
Default	0	0	0	0	0	0	0	0	
					N/A	= Not Applicat	ole (no function	implemented)	
Fu	nction				Description				
DAC1_	DAC1_SAFE_SW DAC1 Clock Input Safe Switching								
	0 = Ignore DAC1 Clock Inputs								
	1 = Use DAC1 Clock Inputs								
	See page 31 for details of use.								

Figure 52 R38 – DAC1 Input Clock Control Register

R39 (27h) – DAC2 Input Clock Control Register (DAC2_CLK)										
Bit #	15	14	14 13 12 11 10 9 8							
Read	0	0	0 0 0 0 0 0							
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Default	0	0	0	0	0	0	0	0		
Bit #	7	6	5	4	3	2	1	0		
Read	0	0	0	0	0	0	0	DAC2_		
Write	N/A	N/A	N/A	N/A	N/A	N/A	N/A	SAFE_SW		
Default	0	0	0	0	0	0	0	0		
					N/A	= Not Applicat	le (no function	implemented)		
Fui	nction				Description					
DAC2_	SAFE_SW	DAC2 Clock Input Safe Switching								
		0 = Ignore DAC2 Clock Inputs								
		1 = Use DAC	2 Clock Inputs							
	See page 31 for details of use.									

Figure 53 R39 – DAC2 Input Clock Control Register

DIGITAL FILTER CHARACTERISTICS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Filter					
Passband	± 0.05dB			0.454fs	
Passband Ripple				0.05	dB
Stopband		0.546fs			
Stopband Attenuation		-60			dB
Group Delay			16		fs
DAC Filter – 32kHz to 9	96kHz				
Passband	± 0.1dB			0.454fs	
Passband Ripple				0.1	dB
Stopband		0.546fs			
Stopband attenuation	f > 0.546fs	-50			dB
Group Delay			10		Fs
DAC Filter – 176.4kHz	to 192kHz				
Passband	± 0.1dB			0.247fs	
Passband Ripple				0.1	dB
Stopband		0.753fs			
Stopband attenuation	f > 0.546fs	-50			dB
Group Delay			10		Fs

DAC FILTER RESPONSES

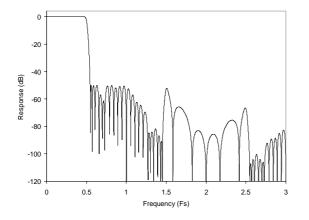


Figure 54 DAC Digital Filter Frequency Response - 32kHz to 96kHz

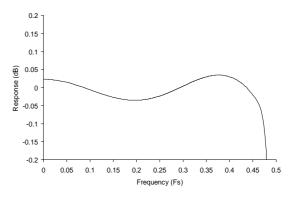
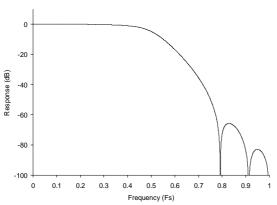



Figure 55 DAC Digital Filter Ripple –32kHz to 96kHz

0.45 0.5

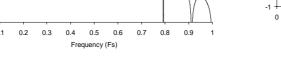


Figure 56 DAC Digital Filter Frequency Response - 176.4kHz to 192kHz

Figure 57 DAC Digital Filter Ripple – 176.4kHz to 192kHz

0.2

0.25

Frequency (Fs)

0.3

0.35

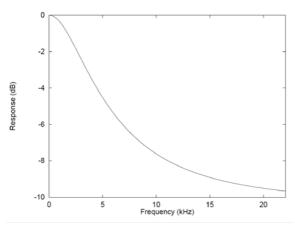
0.4

0.15

0.1

0.2

0


-0.2

-0.4 -0.6

-0.8

0.05

Response (dB)

DIGITAL DE-EMPHASIS CHARACTERISTICS

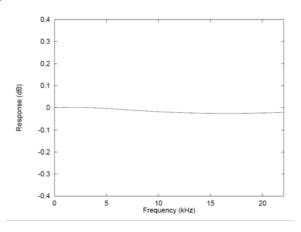
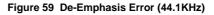
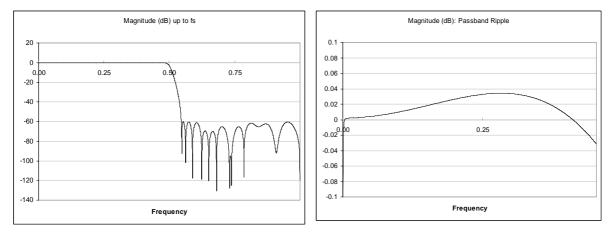




Figure 58 De-Emphasis Frequency Response (44.1KHz)

ADC FILTER RESPONSES

ADC HIGH PASS FILTER

The WM8594 has a selectable digital high pass filter to remove DC offsets. The filter response is characterised by the following polynomial.

$$H(z) = \frac{1 - z^{-1}}{1 - 0.9995 z^{-1}}$$

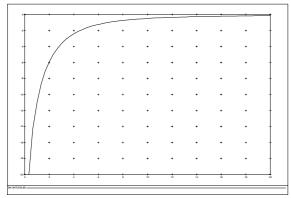
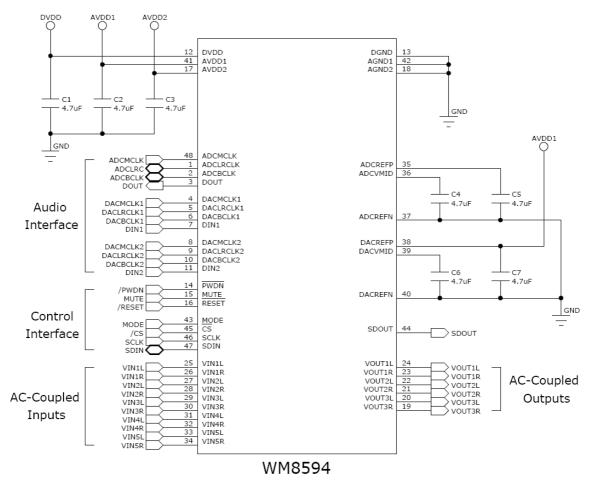
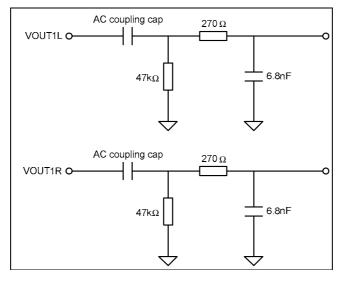



Figure 62 ADC Highpass Filter Response

APPLICATIONS INFORMATION

RECOMMENDED EXTERNAL COMPONENTS



Notes:

- 1. AGND and DGND should ideally share a continuous ground plane. Where this is not possible, it is recommended that AGND and DGND are connected as close to the WM8594 as possible.
- Decoupling capacitors shown are very low-ESR, multilayer ceramic capacitors and should be placed as near to the WM8594 as possible. Equally good results may be obtained using 0.1µF ceramic capacitors near to the WM8594, with a 10µF electrolytic capacitor nearby.

RECOMMENDED ANALOGUE LOW PASS FILTER

Figure 63 Recommended Analogue Low Pass Filter (shown for VOUT1L/R)

Note: See WAN0176 for AC coupling capacitor selection information.

An external single pole RC filter is recommended (see Figure 63) if the device is driving a wideband amplifier. Other filter architectures may provide equally good results.

EXTENDED INPUT IMPEDANCE CONFIGURATION

Figure 64 Extended Input Impedance Configuration

Note: See WAN0176 for AC coupling capacitor selection information.

The input impedance to the WM8594 is specified in the Electrical Characteristics section beginning on p7, and is fixed across gain setting and signal routing options. If this input impedance is not enough for the intended application, an alternative input configuration (Figure 64) is possible.

This configuration increases the input impedance to the WM8594 by $10k\Omega$, but reduces the overall gain in the ADC and Bypass paths by -6dB. In order to compensate for this reduction in gain, +6dB of gain should be set in the ADC Input PGA (by using ADC_AMP_VOL[1:0]) and in the bypass PGA (by using PGAxx_VOL[7:0]).

Examples:

- If a 2V_{RMS} signal is applied to VIN1L and VIN1R and routed to VOUT1L and VOUT1R using PGA1L and PGA1R, then setting PGA1L_VOL[7:0] and PGA1R_VOL[7:0] =0x00 is necessary to see 2V_{RMS} at VOUT1L and VOUT1R.
- If a 2V_{RMS} signal is applied to VIN1L and VIN1R and routed to ADCL and ADCR, then setting ADC_AMP_VOL[1:0]=10 is necessary to see 0dBFS at the ADC outputs.

RELEVANT APPLICATION NOTES

The following application notes, available from <u>www.wolfsonmicro.com</u>, may provide additional guidance for the use of the WM8594.

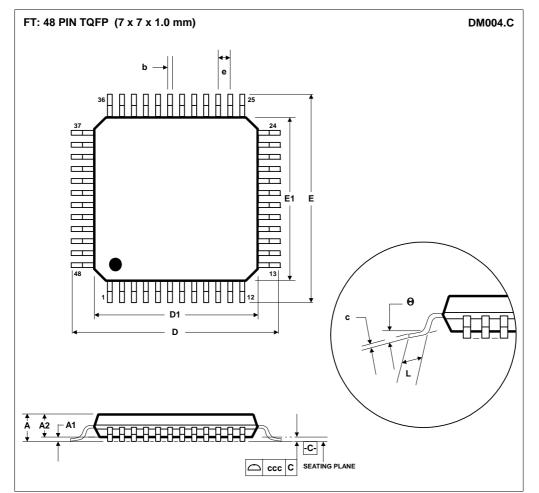
DEVICE PERFORMANCE:

WAN0129 - Decoupling and Layout Methodology for Wolfson DACs, ADCs and CODECs

WAN0144 - Using Wolfson Audio DACs and CODECs with Noisy Supplies

WAN0176 - AC Coupling Capacitor Selection

GENERAL:


WAN0108 - Moisture Sensitivity Classification and Plastic IC Packaging

WAN0109 - ESD Damage in Integrated Circuits: Causes and Prevention

WAN0158 - Lead-Free Solder Profiles for Lead-Free Components

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)						
	MIN	NOM	MAX				
Α		1.20					
A 1	0.05		0.15				
A ₂	0.95	1.00	1.05				
b	0.17	0.22	0.27				
С	0.09		0.20				
D	9.00 BSC						
D ₁	7.00 BSC						
E	9.00 BSC						
E ₁		7.00 BSC					
е		0.50 BSC					
L	0.45	0.60	0.75				
Θ	0° 3.5° 7°						
	Tolerances of Form and Position						
CCC		0.08					
REF:	JE	DEC.95, MS-0	026				

NOTES: A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS. B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM. D. MEETS JEDEC.95 MS-026, VARIATION = ABC. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc Westfield House 26 Westfield Road Edinburgh EH11 2QB

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001 Email :: <u>sales@wolfsonmicro.com</u>

