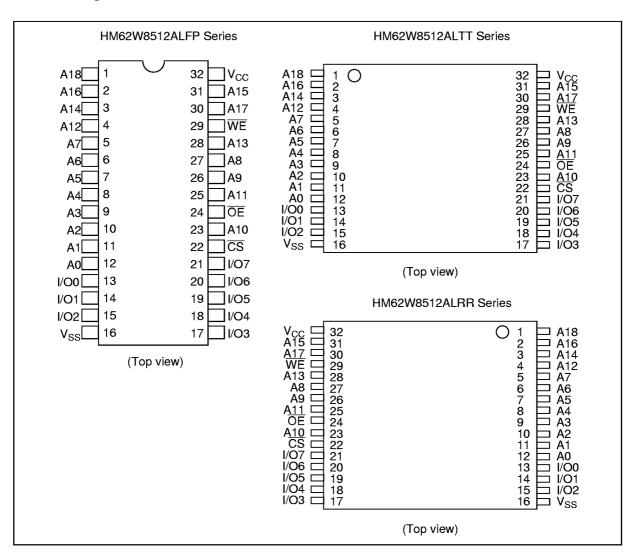
$4 \text{ M SRAM } (512\text{-kword} \times 8\text{-bit})$

HITACHI

ADE-203-641B (Z) Rev. 1.0 Mar. 16, 1998

Description

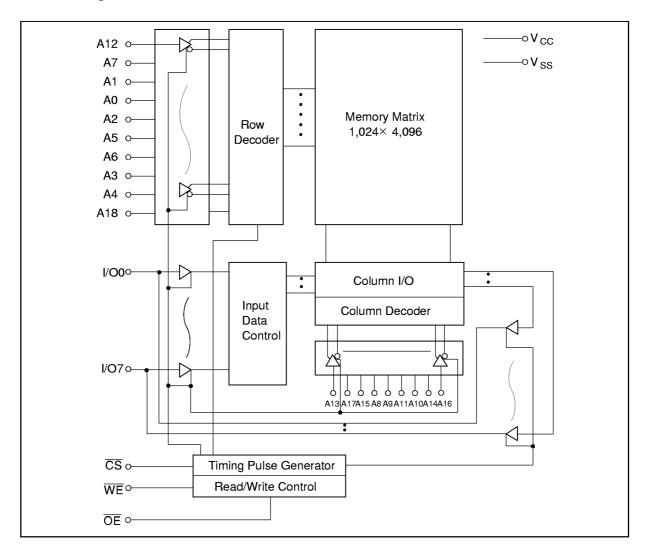
The Hitachi HM62W8512A is a 4-Mbit static RAM organized 512-kword \times 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.5 μ m Hi-CMOS process technology. The device, packaged in a 525-mil SOP (foot print pitch width) or 400-mil TSOP TYPE II is available for high density mounting. The HM62W8512A is suitable for battery backup system.


Features

- Single 3.3 V supply: 3.3 V ± 0.3 V
- Access time: 85 ns (max)
- Power dissipation
 - Active: 36 mW/MHz (max)
 - Standby: 4 µW (typ)
- Completely static memory. No clock or timing strobe required
- Equal access and cycle times
- Common data input and output: Three state output
- Directly LV-TTL compatible: All inputs and outputs
- Battery backup operation

Ordering Information

Type No.	Access time	Package
HM62W8512ALFP-8	85 ns	525-mil 32-pin plastic SOP (FP-32D)
HM62W8512ALFP-8SL	85 ns	
HM62W8512ALTT-8	85 ns	400-mil 32-pin plastic TSOP II (TTP-32D)
HM62W8512ALTT-8SL	85 ns	
HM62W8512ALRR-8	85 ns	400-mil 32-pin plastic TSOP II reverse (TTP-32DR)
HM62W8512ALRR-8SL	85 ns	


Pin Arrangement

Pin Description

Pin name	Function
A0 to A18	Address input
I/O0 to I/O7	Data input/output
<u>CS</u>	Chip select
ŌĒ	Output enable
WE	Write enable
V _{cc}	Power supply
V _{ss}	Ground

Block Diagram

Function Table

WE	<u>cs</u>	ŌĒ	Mode	$V_{\rm cc}$ current	Dout pin	Ref. cycle
×	Н	×	Not selected	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Output disable	I _{cc}	High-Z	_
Н	L	L	Read	I _{cc}	Dout	Read cycle
L	L	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: x: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage	V _{cc}	-0.5 to +4.6	V
Voltage on any pin relative to V _{ss}	V _T	-0.5^{*1} to $V_{cc} + 0.5^{*2}$	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	–10 to +85	°C

Notes: 1. –3.0 V for pulse half-width ≤ 30 ns

2. Maximum voltage is 4.6 V

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	3.0	3.3	3.6	V
	V_{ss}	0	0	0	V
Input high voltage	V _{IH}	2.0	_	V _{cc} + 0.3	V
Input low voltage	V _{IL}	-0.3* ¹	_	0.8	V

Note: 1. -3.0 V for pulse half-width ≤ 30 ns

HITACHI

5

DC Characteristics (Ta = 0 to +70°C,
$$V_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$$
, $V_{ss} = 0 \text{ V}$)

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage current	I _{LI}	_		1	μΑ	$Vin = V_{ss} to V_{cc}$
Output leakage current	I _{LO}	_	_	1	μΑ	$\overline{\text{CS}} = \text{V}_{\text{H}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{H}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}}, \text{V}_{\text{VO}} = \text{V}_{\text{SS}} \text{ to } \text{V}_{\text{CC}}$
Operating power supply current: DC	I _{cc}	_	_	10	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}},$ others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{I}_{\text{VO}} = \text{O}$ mA
Operating power supply current	I _{cc1}	_	_	30	mA	$\label{eq:min_condition} \begin{split} & \underset{\begin{subarray}{c} \text{Min cycle, duty} = 100\% \\ \hline & \hline{\begin{subarray}{c} \hline CS} = V_{\parallel}, \text{ others} = V_{\parallel}/V_{\parallel} \\ I_{\tiny \parallel O} = 0 \text{ mA} \end{split}$
Operating power supply current	I _{cc2}	_	_	10	mA	Cycle time = 1 μ s, duty = 100% $I_{\nu o}$ = 0 mA, \overline{CS} \leq 0.2 V $V_{\iota H}$ \geq V_{cc} - 0.2 V, $V_{\iota L}$ \leq 0.2 V
Standby power supply current: DC	l _{sb}	_	0.1	0.3	mA	CS = V _{IH}
Standby power supply current (1): DC	I _{SB1}	_	1.2*2	70* ²	μΑ	$\frac{\text{Vin} \ge 0 \text{ V},}{\text{CS} \ge \text{V}_{cc} - 0.2 \text{ V}}$
		_	1.2* ³	30* ³	μΑ	
Output low voltage	V_{oL}	_		0.4	V	I _{oL} = 2.0 mA
		_	_	0.2	V	I _{oL} = 100 μA
Output high voltage	V_{OH}	$V_{cc} - 0.2$! —	_	V	$I_{OH} = -100 \mu A$
		2.4		_	V	I _{OH} = -2.0 mA

Notes: 1. Typical values are at $V_{cc} = 3.3 \text{ V}$, $Ta = +25 ^{\circ}\text{C}$ and specified loading, and not guaranteed.

- 2. This characteristics is guaranteed only for L version.
- 3. This characteristics is guaranteed only for L-SL version.

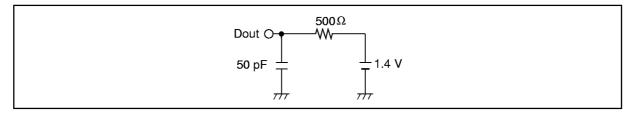
Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit	Test conditions
Input capacitance*1	Cin	_	8	pF	Vin = 0 V
Input/output capacitance*1	C _{I/O}	_	10	pF	V _{VO} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{cc} = 3.3 V ±0.3 V, unless otherwise noted.)

Test Conditions


• Input pulse levels: 0.4 V to 2.4 V

• Input rise and fall time: 5 ns

• Input timing reference levels: 1.4 V

• Output timing reference level: 0.8 V/2.0 V

• Output load (Including scope & jig)

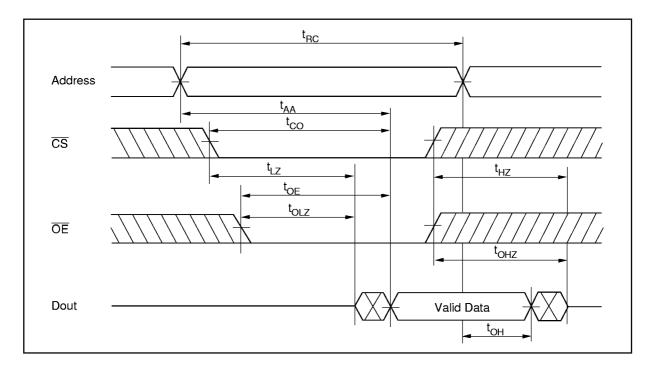
Read Cycle

HM62W8512A

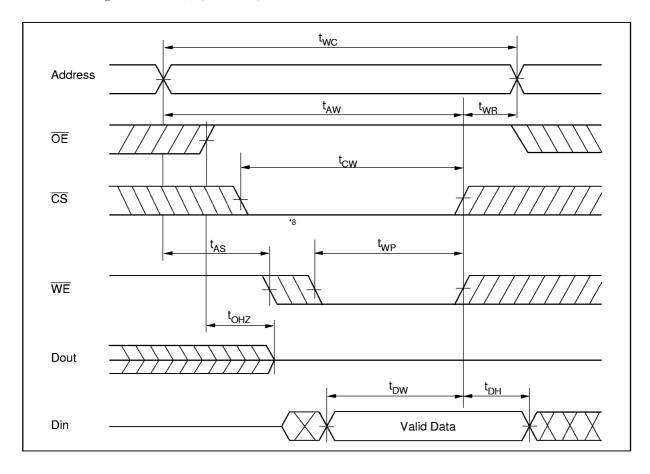
		-8			
Parameter	Symbol	Min	Max	Unit	Notes
Read cycle time	t _{RC}	85	_	ns	
Address access time	t _{AA}	_	85	ns	
Chip select access time	t _{co}	_	85	ns	
Output enable to output valid	t _{oe}	_	45	ns	
Chip selection to output in low-Z	t _{LZ}	10	_	ns	2
Output enable to output in low-Z	t _{oLZ}	5		ns	2
Chip deselection to output in high-Z	t _{HZ}	0	35	ns	1, 2
Output disable to output in high-Z	t _{oHZ}	0	35	ns	1, 2
Output hold from address change	t _{oн}	10	_	ns	

Write Cycle

HM62W8512A

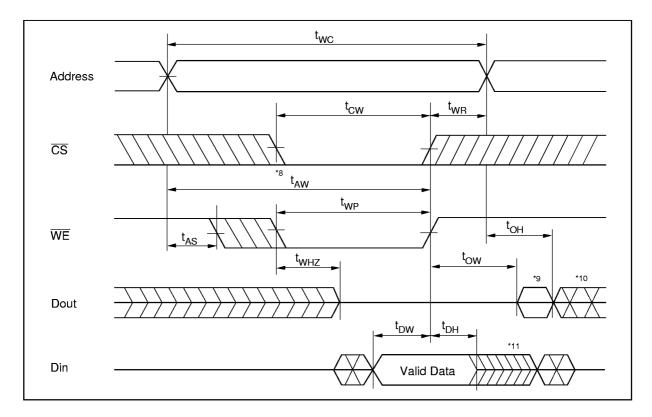

		-8			
Parameter	Symbol	Min	Max	Unit	Notes
Write cycle time	t _{wc}	85	_	ns	
Chip selection to end of write	t _{cw}	75	_	ns	4
Address setup time	t _{as}	0	_	ns	5
Address valid to end of write	t _{aw}	75	_	ns	
Write pulse width	t _{we}	55	_	ns	3, 12
Write recovery time	t _{wr}	0	_	ns	6
WE to output in high-Z	t _{wHZ}	0	35	ns	1, 2, 7
Data to write time overlap	t _{ow}	35	_	ns	
Data hold from write time	t _{DH}	0	_	ns	
Output active from output in high-Z	t _{ow}	5	_	ns	2
Output disable to output in high-Z	t _{oHZ}	0	35	ns	1, 2, 7

Notes: 1. t_{HZ} , t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.


- 2. This parameter is sampled and not 100% tested.
- 3. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low or \overline{WE} going low. A write ends at the earlier transition of \overline{CS} going high or \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.
- 4. t_{cw} is measured from \overline{CS} going low to the end of write.
- 5. t_{AS} is measured from the address valid to the beginning of write.
- 6. t_{wB} is measured from the earlier of \overline{WE} or \overline{CS} going high to the end of write cycle.
- 7. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 8. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the output remain in a high impedance state.
- 9. Dout is the same phase of the write data of this write cycle.
- 10. Dout is the read data of next address.
- 11. If CS is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.
- 12. In the write cycle with \overline{OE} low fixed, t_{wP} must satisfy the following equation to avoid a problem of data bus contention. t_{wP} 3 t_{DW} min + t_{WHZ} max

Timing Waveforms

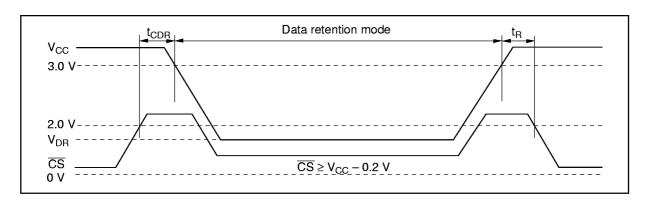
Read Timing Waveform ($\overline{WE} = V_{IH}$)



Write Timing Waveform (1) $(\overline{OE} \ Clock)$

10 HITACHI

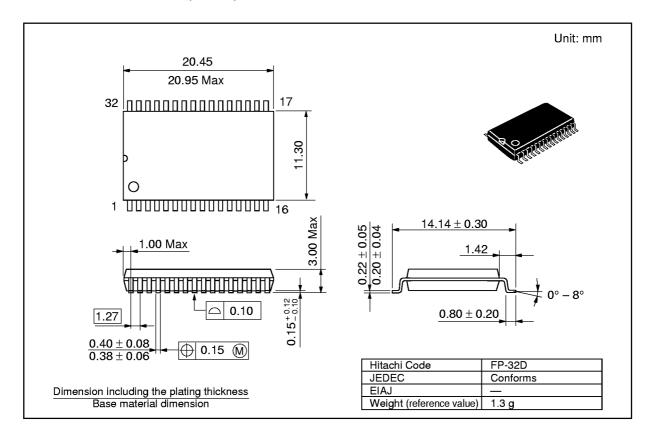
Write Timing Waveform (2) (OE Low Fixed)


Low V_{CC} **Data Retention Characteristics** (Ta = 0 to +70°C)

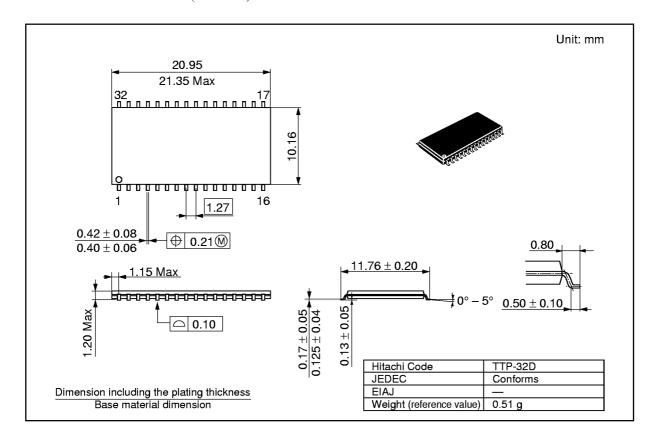
Parameter	Symbol	Min	Тур	Max	Unit	Test conditions ^{⋆³}
V _{cc} for data retention	$V_{_{\mathrm{DR}}}$	2	_	_	V	$\overline{\text{CS}} \ge \text{V}_{\text{cc}} - 0.2 \text{ V}, \text{ Vin } \ge 0 \text{ V}$
Data retention current	CCDR	_	1*4	50* ¹	μΑ	$\frac{V_{cc}}{CS} = 3.0 \text{ V}, \text{ Vin } \ge 0 \text{ V}$ $\frac{V_{cc}}{CS} \ge V_{cc} - 0.2 \text{ V}$
		_	1*4	15* ²	μΑ	
Chip deselect to data retention time	t _{cdr}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	5	_	_	ms	

Notes: 1. For L-version and 20 μ A (max.) at Ta = 0 to 40°C.

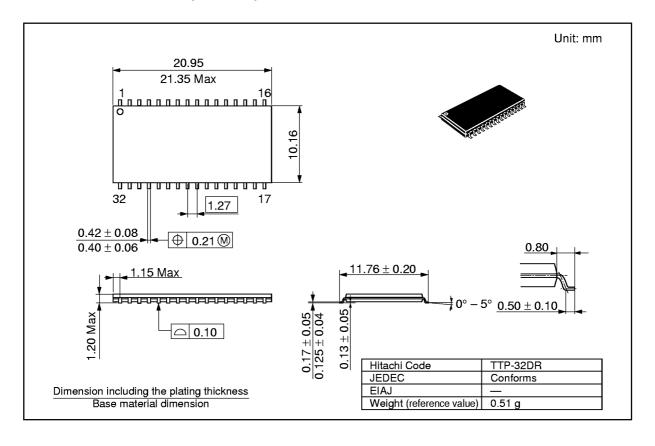
- 2. For SL-version and 3 μ A (max.) at Ta = 0 to 40 °C.
- 3. $\overline{\text{CS}}$ controls address buffer, $\overline{\text{WE}}$ buffer, $\overline{\text{OE}}$ buffer, and Din buffer. In data retention mode, Vin levels (address, $\overline{\text{WE}}$, $\overline{\text{OE}}$, I/O) can be in the high impedance state.
- 4. Typical values are at $V_{\rm cc}$ = 3.0 V, Ta = 25 $^{\circ}$ C and specified loading, and not guaranteed.


Low V_{cc} Data Retention Timing Waveform (\overline{CS} Controlled)

12 HITACHI


Package Dimensions

HM62W8512ALFP Series (FP-32D)


Package Dimensions (cont.)

HM62W8512ALTT Series (TTP-32D)

Package Dimensions (cont.)

HM62W8512ALRR Series (TTP-32DR)

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0.0	Oct. 3, 1996	Initial issue	K. Imato	K. Imato
0.1	Oct. 21, 1997	Deletion of HM62W8512-7 Series	M. Higuchi	K. Imato
0.2	Nov. 1997	Change of Subtitle	M. Higuchi	K. Imato
1.0	Mar. 16, 1998	DC Characteristics I _{cc1} (max): 27mA to 30 mA		