
ADC0803, ADC0805 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

D2754, NOVEMBER 1983-REVISED SEPTEMBER 1986

description

Single 5-V Power Supply

ADC0803 and ADC0805

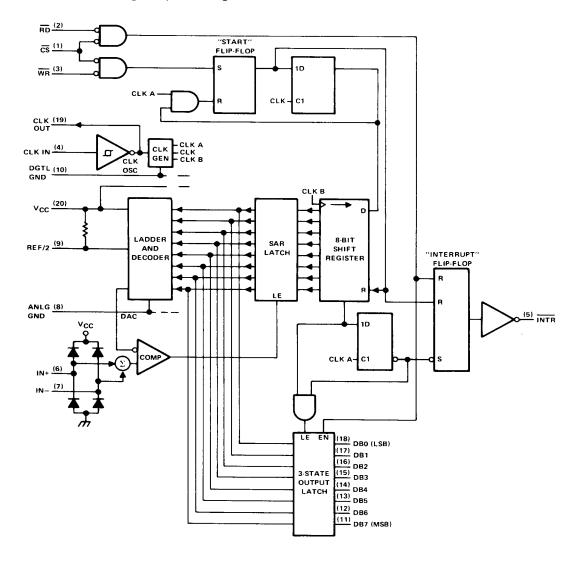
Stand-Alone

Operates with Microprocessor or as

Designed to be Interchangeable with National Semiconductor and Signetics

The ADC0803 and ADC0805 are CMOS 8-bit, successive-approximation, analog-to-digital converters that use a modified potentiometric (256R) ladder. These devices are designed to operate from common microprocessor control buses with the three-state output latches driving the data bus. The devices can be made to appear to the microprocessor as a memory location or an I/O port. Detailed information on interfacing to most popular microprocessors is readily available from the factory.

A differential analog voltage input allows increased common-mode rejection and offset of the zero-input analog voltage value. Although a reference input (REF/2) is available to allow 8-bit conversion over smaller analog voltage spans or to make use of an external reference, ratiometric conversion is possible with the REF/2 input open. Without an external reference, the conversion takes place over a span from VCC to analog ground (ANLG GND). The devices can operate with an external clock signal or, with an additional resistor and capacitor, using an on-chip clock generator.


The ADC0803I and ADC0805I are characterized for operation from $-40\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$. The ADC0803C and ADC0805C are characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Texas Instruments

Copyright © 1983, Texas Instruments Incorporated

functional block diagram (positive logic)

ADC0803, ADC0805 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC (see Note 1)				
Supply voltage, V _{CC} (see Note 1) Input voltage range: CS, RD, WR Other inputs -0.3	0.3 V to 18 V			
Output voltage range	3 V to V _{CC} +0.3 V $^{-40}$ °C to 85°C			
ADC080_C Storage temperature range	-65°C to 150°C			

NOTE 1: All voltage values are with respect to digital ground (DGTL GND) with DGTL GND and ANLG GND connected together unless otherwise noted.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	6.3	V
Analog input voltage (see Note 2)		- 0.05		V _{CC} + 0.05	>
Voltage at REF/2 (see Note 3), VREF/2		0.25	2.5		V
High-level input voltage at CS, RD, or WR, VIH	2		15	V	
Low-level input voltage at CS, RD, or WR, VIL			0.8	V	
Analog ground voltage (see Note 4)	- 0.05	0	1	V	
Clock input frequency (see Note 5), fclock		100	640	1460	kHz
Duty cycle for fclock above 640 kHz (see Note	5)	40%		60%	
Pulse duration, clock input (high or low) for fclo		275	781		ns
Pulse duration, WR input low, tw(WR)		100			ns
Talso daration, transparation, two	ADC080_I	-40		85	°C
Operating free-air temperature, TA	ADC080_C	0		70	

- NOTES: 2. When the differential input voltage $(V_{1+} V_{1-})$ is less than or equal to 0 V, the output code is 0000 0000.
 - 3. The internal reference voltage is equal to the voltage applied to REF/2 or approximately equal to one-half of the V_{CC} when REF/2 is left open. The voltage at REF/2 should be one-half the full-scale differential input voltage between the analog inputs. Thus, the differential input voltage range when REF/2 is open and V_{CC} = 5 V is 0 V to 5 V. V_{REF/2} for an input voltage range from 0.5 V to 3.5 V (full-scale differential voltage of 3 V) is 1.5 V.
 - 4. These values are with respect to DGTL GND.
 - 5. Total unadjusted error is specified only at an f_{clock} of 640 kHz with a duty cycle of 40% to 60% (pulse duration 625 ns to 937 ns). For frequencies above this limit or pulse duration below 625 ns, error may increase. The duty cycle limits should be observed for an f_{clock} greater than 640 kHz. Below 640 kHz, this duty cycle limit can be exceeded provided t_W(CLK) remains within limits.

ADCO803, ADCO805 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

electrical characteristics over recommended operating free-air temperature range, $V_{CC}=5$ V, $f_{clock}=640$ kHz, $V_{REF/2}=2.5$ V (unless otherwise noted)

	PARAMETE	R	TEST CO	NDITIONS	MIN	TYP [†]	MAX	UNIT
Vон	High-level	All outputs	$V_{CC} = 4.75 \text{ V},$	I _{OH} = -360 μA	2.4			V
	output voltage	DB and INTR	$V_{CC} = 4.75 \text{ V},$	I _{OH} = -10 μA	4.5			ľ
	Low-level	Data outputs	$V_{CC} = 4.75 \text{ V},$	I _{OL} = 1.6 mA			0.4	
VOL	output	INTR output	V _{CC} - 4.75 V,	IOL = 1 mA			0.4	1 v
	voltage	CLK OUT	$V_{CC} = 4.75 \text{ V},$	I _{OL} = 360 μA	1		0.4	1
V _{T+}	Clock positive-going threshold voltage	ng			2.7	3.1	3.5	V
v _T –	Clock negative-go threshold voltage	ing			1.5	1.8	2.1	V
VT + - V-	r _ Clock input hyster	esis			0.6	1.3	2	V
¹iH	High-level input current				1	0.005	1	μÂ
կլ	Low-level input current					0.005	- 1	μА
loz	Off-state output current		$V_0 = 0$ $V_0 = 5 V$				- 3 3	μА
lons	Short-current output current	Output high	V ₀ = 0,	T _A = 25°C	-4.5	- 6		mA
lors	Short-circuit output current	Output low	V _O = 5 V,	T _A = 25°C	9	16		mA
lcc	Supply current plus reference current		V _{REF/2} = open, CS = 5 V	$T_A = 25 ^{\circ}C$,		1.1	1.8	mA
R _{REF/2}	Input resistance to reference ladder		See Note 6		2.5	8		kΩ
C,	Input capacitance (control)				1	5	7.5	pF
Co	Output capacitanc	e (DB)				5	7.5	pF

NOTE 6: Resistance is calculated from the current drawn from a 5-V supply applied to pins 8 and 9.

operating characteristics over recommended operating free-air temperature, $V_{CC}=5$ V, $V_{REF/2}=2.5$ V, $f_{clock}=640$ kHz (unless otherwise noted)

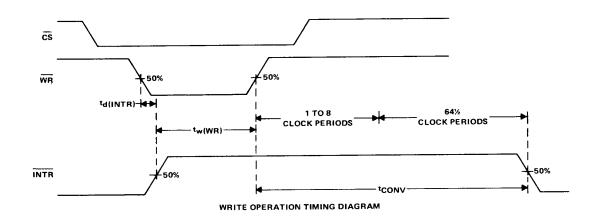
	PARAMETER Supply-voltage-variation error		TEST CONDITIONS		MIN TYPT	MAX	UNIT
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	See Note 7	± 1/16	± 1/8	LSB
	Total adjusted error	ADC0803	With full-scale adjust,	See Notes 7 and 8		± 1/4	LSB
			Trick tan scale dajast,	See Notes 7 and 6		± 1/2	LSB
	Total unadjusted error	ADC0805	$V_{REF/2} = 2.5 V_{r}$	See Notes 7 and 8		± 1 2	1.60
		7.50000	VREF/2 open,	See Notes 7 and 8		± 1	LSB
	DC common-mode error		See Notes 7 and 8		± 1/16	± 1/8	LSB
t _{en}	Output enable time		T _A - 25°C,	C _L = 100 pF	135	200	ns
^t dis	Output disable time		T _A - 25°C, C _L - 10 pF,	$R_L = 10 \text{ k}\Omega$	125	200	ns
td(INTR)	Delay time to reset INTR		T _A = 25°C		300	450	ns
t _{conv}	Conversion cycle time		f _{clock} = 100 kHz to 1.46 MHz,		66	73	clock
			T _A = 25°C,	See Note 9	00	/3	cycles
CR	Free-running conversion rate		INTR connected to WR,	CS at 0 V		8770	conv/s

[†]All typical values are at T_A = 25 °C.

NOTES: 7. These parameters are specified over the recommended analog input voltage range.

- 8. All errors are measured with reference to an ideal straight line through the end-points of the analog-to-digital transfer characteristic.
- Although internal conversion is completed in 64 clock periods, a CS or WR low-to-high transition is followed by 1 to 8 clock periods before conversion starts. After conversion is complete, part of another clock period is required before a high-to-low transition of INTR completes the cycle.

HIGH-IMPEDANCE STATE



READ OPERATION TIMING DIAGRAM

90%

10%

DATA OUTPUTS

PRINCIPLES OF OPERATION

The ADC0803 and ADC0805 each contain a circuit equivalent to a 256-resistor network. Analog switches are sequenced by successive-approximation logic to match an analog differential input voltage ($V_{in+}-V_{in-}$) to a corresponding tap on the 256R network. The most significant bit (MSB) is tested first. After eight comparisons (64 clock periods), an eight-bit binary code (1111 1111 = full scale) is transferred to an output latch and the interrupt (\overline{INTR}) output goes low. The device can be operated in a free-running mode by connecting the \overline{INTR} output to the write (\overline{WR}) input and holding the conversion start (\overline{CS}) input at a low level. To ensure start-up under all conditions, a low-level \overline{WR} input is required during the power-up cycle. Taking \overline{CS} low any time after that will interrupt a conversion in process.

When the \overline{WR} input goes low, the internal successive approximation register (SAR) and 8-bit shift register are reset. As long as both \overline{CS} and \overline{WR} remain low, the analog-to-digital converter remains in a reset state. One to eight clock periods after \overline{CS} or \overline{WR} makes a low-to-high transition, conversion starts.

When the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ inputs are low, the start flip-flop is set and the interrupt flip-flop and 8-bit register are reset. The next clock pulse transfers a logic high to the output of the start flip-flop. The logic high is ANDed with the next clock pulse, placing a logic high on the reset input of the start flip-flop. If either $\overline{\text{CS}}$ or $\overline{\text{WR}}$ have gone high, the set signal to the start flip-flop is removed, causing it to be reset. A logic high is placed on the D input of the eight-bit shift register and the conversion process is started. If the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ inputs are still low, the start flip-flop, the 8-bit shift register, and the SAR remain reset. This action allows for wide $\overline{\text{CS}}$ and $\overline{\text{WR}}$ inputs, with conversion starting from one to eight clock periods after one of the inputs goes high.

When the logic high input has been clocked through the 8-bit shift register, which completes the SAR search, it is applied to an AND gate controlling the output latches and to the D input of a flip-flop. On the next clock pulse, the digital word is transferred to the 3-state output latches and the interrupt flip-flop is set. The output of the interrupt flip-flop is inverted to provide an INTR output that is high during conversion and low when the conversion is complete.

When a low is at both the \overline{CS} and \overline{RD} inputs, an output is applied to the DB0 through DB7 outputs and the interrupt flip-flop is reset. When either the \overline{CS} or \overline{RD} inputs return to a high state, the DB0 through DB7 outputs are disabled (returned to the high-impedance state). The interrupt flip-flop remains reset.

