

Crystal Clock Oscillator—HCMOS TRI-STATE

by SaRonix

7-50-23

Technical Data

Ref. N	o. Series M
Date	September 1990
Page	1 of 2
* "6"	

Description

A crystal controlled, low current hybrid oscillator providing precise rise and fall times to drive High Speed CMOS and NMOS microprocessors, like the Motorola 68000 family and INTEL 80386, 486 microprocessors. The third state in tristate logic is an open circuit. The internal circuitry is disconnected from the output allowing it to assume any logic level. Can drive both High Speed CMOS and TTL. Device is packaged in a 14-pin DIP compatible, resistance welded, all metal case. Pin 7 is grounded to reduce RFI.

Output Waveform

Package

Pin Connections:
Pin 1: Tri-State Control Pin 7: GND
Pin 8: Output Pin 14: +5 VDC

Standard Marking Format

Scale: None (Dimensions in mm inches)

Frequency Range: 500 kHz to 120 MHz

Frequency Stability: ±0.0025% to ±0.05% over all conditions: calibration tolerance, operating temperature, input voltage

change, load change, aging, shock and vibration.

Temperature Range:

Operating: 0°C to +70°C Storage: -55°C to +125°C

Input Voltage:

Recommended Operating: +5 VDC ± 10% Absolute Maximum: +7 VDC

Input Current:

500 kHz to 24 MHz: 15 mA max @ 25°C, 10 mA typical

20 mA max over operating temperature range

24+ MHz to 60 MHz: 30 mA max @ 25°C, 20 mA typical

35 mA max over operating temperature range

60+ MHz to 80 MHz: 35 mA max @ 25°C, 30 mA typical

40 mA max over operating temperature range 80 MHz: 55 mA max @ 25°C, 45 mA typical

Above 80 MHz: 55 mA max @ 25°C, 45 mA typical 65 mA max over temperature range

Output Drive:

CMOS

Symmetry: $50\% \pm 5\%$ @ .5 V_{DD}

Rise & Fall Times: 20% to 80% V_{DD} : $T_r = 4$ ns max, $T_f = 4$ ns max

Logic 0: 10% V_{DD} max Logic 1: 90% V_{DD} min

Output Load: 150 pF max

TTL

Symmetry: $50\% \pm 5\%$ @ 1.5V level

Rise & Fall Times: 0.5 to 2.5V: $T_r = 6$ ns max, $T_t = 4$ ns max

Logic 0: 0.5V max
Logic 1: 2.5V min
Output Load: 150 pF max

Mechanical:

Shock: MIL-STD-883C, Method 2002, Condition B Solderability: MIL-STD-883C, Method 2003

Terminal Strength: MIL-STD-202F, Method 211, Conditions A and C Vibration: MIL-STD-883C, Method 2007, Condition A

Solvent Resistance: MIL-STD-202F, Method 215

Resistance to Soldering Heat: MIL-STD-202F, Method 210, Condition B

Environmental:

Gross Leak Test: MIL-Fine Leak Test: MIL-

MIL-STD-883C, Method 1014, Condition C MIL-STD-883C, Method 1014, Condition A2,

 $<5 \times 10^{-8}$ ATM cc/sec

Thermal Shock: MIL-STD-883C, Method 1011, Condition A
Moisture Resistance: MIL-STD-883C. Method 1004

9000-1164

Crystal Clock Oscillator—нсмоя ткі-ятате

by SaRonix

Technical Data

Series M Ref. No. September 1990 Date 2 of 2

Current vs. Frequency

 $R_L = 450\,\Omega$ $C_L = 30 pF$

Part Numbering Guide

Example PN: NTH080C - 32.0000 MHz

Test Circuits

FIGURE 1 TTL TEST CIRCUIT

NOTE: A. C_L includes probe and jig capacitance.

NOTE: A. C₁ includes probe and jig capacitance.

Tri-State Control:

Pin #1 = Control pin (Active high) with

internal pull-up, $80 \, \text{K}\Omega$ typical

Logic "1" or N.C. = Oscillator Signal Out

Logic "0" or GND = High Impedence on Pin #8

(typical output capacitance = 3 pF)

Required Input Levels on Pin 1:

Logic "1" = 3.0V min

Logic "0" = 0.5V max