RC7B00 ## **Low Skew Buffers** 100MHz SDRAM Clock Buffers #### **Features** - ¥ 18 Skew Controlled Output - ¥ Supports up to four SDRAM DIMMs - ¥ Skew between any two outputs is less than 250 pS - ¥ I2C Serial Interface for Programming options - ¥ Multiple Power and Ground Pins for Noise Reduction - ¥ Single 3.3V Power Supply - ¥ 48 Pin SSOP package ### **Applications** ¥ SDRAM Clock Buffers for Intel s 440BX chip set #### Description The RC7B00 is a low voltage eighteen output clock buffer which supports 4 DIMMs. The skew between any two outputs is less than 250 pS and the Buffers can be enabled or disabled by programming via the I²C serial interface. The SDATA and SCLK serial inputs both have internal pull-up resistors. An Output Enable (OE) pin is also provided so that all the outputs can be tri-stated when held low. This pin is normally high and has an internal pull-up resistor. | OE | SDRAM0:3 | SDRAM4:7 | SDRAM8:11 | SDRAM12:15 | SDRAM16:17 | |----|----------|----------|-----------|------------|------------| | 0 | Hi-Z | Hi-Z | Hi-Z | Hi-Z | Hi-Z | | 1 | BUF_IN | BUF_IN | BUF_IN | BUF_IN | BUF_IN | ### **Block Diagram** Rev. 0.5.0 **ADVANCED INFORMATION** describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact Fairchild Semiconductor for current information. # **Pin Assignments** | | | | | - | |--------|--------------------------------------|--------------|----------------------------------|----------| | ᆸ | 1 | \cup | 48 | Ь | | ᆸ | 2 | | 47 | Þ | | ᆸ | 3 | | 46 | Ь | | ᆸ | 4 | | 45 | Ь | | ᆸ | 5 | | 44 | Ь | | ᆸ | 6 | | 46
45
44
43
42
41 | \vdash | | ᆸ | 7 | | 42 | \vdash | | ᆸ | 8 | | 41 | \vdash | | ᆸ | 2
3
4
5
6
7
8
9 | | 40 | b | | ㅁ | 10 | | 39 | | | ㅁ | 11 | | 38 | Þ | | | 12
13 | | 37 | Þ | | ㅁ | 13 | | 36 | Þ | | ㅁ | 14 | | 35 | Þ | | ロ | 15 | | 34 | Þ | | ㅁ | 16 | | 33 | Þ | | ㅁ | 17 | | 32 | Þ | | ㅁ | 18 | | 31 | | | 口 | 19 | | 30 | Þ | | 口 | 20 | | 29 | Þ | | 口 | 21 | | 28 | 口 | | \Box | 22 | | 27 | 口 | | \Box | 22
23 | | 27
26
25 | \vdash | | 딕 | 24 | | 25 | P | | · | | 45.51. 55.55 | | 1 | | Pin# | Pin Name | |------|----------|------|----------|------|----------|------|----------| | 1 | NC | 13 | SDRAM4 | 25 | SCLOCK | 37 | VDD | | 2 | NC | 14 | SDRAM5 | 26 | VSS | 38 | OE | | 3 | VDD | 15 | vss | 27 | VSS | 39 | VSS | | 4 | SDRAM0 | 16 | VDD | 28 | SDRAM17 | 40 | SDRAM12 | | 5 | SDRAM1 | 17 | SDRAM6 | 29 | VDD | 41 | SDRAM13 | | 6 | VSS | 18 | SDRAM7 | 30 | VSS | 42 | VDD | | 7 | VDD | 19 | vss | 31 | SDRAM8 | 43 | VSS | | 8 | SDRAM2 | 20 | VDD | 32 | SDRAM9 | 44 | SDRAM14 | | 9 | SDRAM3 | 21 | SDRAM16 | 33 | VDD | 45 | SDRAM15 | | 10 | VSS | 22 | vss | 34 | VSS | 46 | VDD | | 11 | BUF_IN | 23 | VDD | 35 | SDRAM10 | 47 | NC | | 12 | VDD | 24 | SDATA | 36 | SDRAM11 | 48 | NC | 48 Pin SSOP # **Pin Descriptions** | Pin Name | Pin Number | Туре | Pin Function Description | |------------|--|-------|--| | BUF_IN | 11 | IN | Input for clock buffers | | SDRAM0:3 | 4, 5, 8, 9 | OUT | SDRAM Byte 0 clock outputs | | SDRAM4:7 | 13, 14, 17, 18 | OUT | SDRAM Byte 1 clock outputs | | SDRAM8:11 | 31, 32, 35, 36 | OUT | SDRAM Byte 2 clock outputs | | SDRAM12:15 | 40, 41, 44, 45 | OUT | SDRAM Byte 3 clock outputs | | SDRAM16:17 | 21, 28 | OUT | SDRAM clock outputs | | OE | 38 | IN | Output enable which will tri-state all the outputs when held low | | SDATA | 24 | I/O | Serial Data input | | SCLOCK | 25 | IN | Serial Clock input | | VDD | 3, 7, 12, 16, 20,
29, 33, 37, 42, 46 | Power | Power supply at 3.3V for SDRAM buffers | | VDD | 23 | Power | Power supply at 3.3V for I ² C circuit | | VSS | 6, 10, 15, 19, 22,
27, 30, 34, 39, 43 | Power | Ground for SDRAM buffers | | VSS | 26 | Power | Ground for I ² C circuit | | NC | 1, 2, 47, 48 | NC | No Connections. | PRODUCT SPECIFICATION RC7B00 ## **Absolute Maximum Ratings** | Parameter | Min. | Тур. | Max. | Units | |---------------------------------|------|------|----------------------|-------| | Supply Voltage, V _{DD} | -0.5 | | 7 | ٧ | | Input Voltage | -0.5 | | V _{DD} +0.5 | V | | Output Applied Voltage | -0.5 | | V _{DD} +0.5 | V | | Junction Temperature | | | 140 | °C | | Storage Temperature | -65 | | 150 | °C | | Lead Soldering (10 seconds) | | | 300 | °C | #### Notes: - 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied. - 2. Applied voltage must be current limited to specified range, and measured with respect to GND. - 3. Forcing voltage must be limited to specified range. - 4. Current is specified as conventional current, flowing into the device. ### **Operating Conditions** | Parameter | Min. | Тур. | Max. | Units | |---------------------|-------|------|-------|-------| | V_{DD} | 3.135 | 3.3 | 3.465 | ٧ | | Ambient Temperature | 0 | | 70 | °C | # **Electrical Characteristics** $T_A = 0$ °C to 70°C, $V_{DD} = 3.3V + 5\%$ | Parameter | Min. | Тур. | Max. | Units | |---|----------------------|------|----------------------|-------| | V _{IL} , Input low voltage | V _{SS} -0.3 | | 0.8 | ٧ | | V _{IH} , Input high voltage | 2.0 | | V _{DD} +0.5 | ٧ | | I _{IL} , Input low current (BUF_IN) | -5 | | | μΑ | | I _{IH} , Input high current (BUF_IN) | | | 5 | μΑ | | I _{IL} , Input low current (OE, SDATA, SCLOCK) | -50 | | | μΑ | | I _{IH} , Input high current (OE, SDATA, SCLOCK) | | | 5 | μΑ | | V _{OL} , Output low voltage @ I _{OL} = 23mA | | | 0.4 | ٧ | | V _{OH} , Output high voltage @ I _{OH} = -30mA | 2.6 | | | ٧ | | I _{OL} , Output low current @ V _{OL} = 0.8V | 40 | | | mA | | I _{OH} , Output high current @ V _{OH} = 2.0V | | | -54 | mA | | I _{DD} , Supply current @ f = 100MHz | | | | mA | | I _{DD} , Supply current @ f = 66MHz | | | | mA | | I _{DD} , Supply current @ OE = 0 | | | | mA | | C _{IN} , Input capacitance | | | 5 | pF | | F _{IN} , Input frequency | | | 150 | MHz | ### **Switching Characteristics** | Parameter | Conditions | Min. | Тур. | Max. | Units | |--|-----------------------|------|------|------|-------| | T _{PD} , Propagation delay | V _T = 1.5V | 1 | | 5 | ns | | T _R , Rise time | 0.4 to 2.4V | 0.5 | | 1.5 | ns | | T _F , Fall time | 2.4 to 0.4V | 0.5 | | 1.5 | ns | | T _D , Duty cycle | V _T = 1.5V | 45 | | 55 | % | | T _{EN} , Output enable time | V _T = 1.5V | 1 | | 8 | ns | | T _{DIS} , Output disable time | V _T = 1.5V | 1 | | 8 | ns | | T _{SK} , Skew | V _T = 1.5V | | | 250 | ps | | Z _O , Output impedance | | | 15 | | Ω | #### **Serial Data Interface** ### Signaling Requirements for the I²C Serial Port To initiate communications with the serial port, a start bit is invoked. The start bit is defined as the SDATA line is brought low while the SCLOCK is held high. Once the start bit is initiated, valid data can then be sent. Data is considered to be valid when the clock goes to and remains in the high state. The data can change when the clock goes low. To terminate the transmission, a stop bit is invoked. The stop bit occurs when the SDATA line goes from a low to a high state while the SCLOCK is held high. See Figure below. The data transfer rate is 100kbits/s in the standard mode and 400kbits/s in the fast mode. The serial protocol uses block writes only. Bytes are written with the lowest first and the highest last with the ability to stop after any complete byte has been transferred. The clock driver is a slave/receiver only and is only capable of receiving data with the exception of sending acknowledgements. It is not capable of sending data. PRODUCT SPECIFICATION RC7B00 #### Byte writing sequence The buffer is accessed when the slave address byte is received. Each byte of data is followed by an acknowledge bit. The address bit sequence is $1\ 1\ 0\ 1\ 0\ 0\ 1$ followed by the R/W# bit (0). Bits are written with the Most Significant Bit (MSB) first. The MSB Bit is bit 7 and the LSB is bit 0. The Byte writing sequence is as shown in the table below. | Byte | Bit sequence | | | | | | | | | |----------|---------------|-----------------|-----------|-------|---|---|---|---|---| | Sequence | Byte name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 1 | Slave address | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | | 2 | Command Code | Х | Х | Х | Х | Х | Х | Х | Х | | 3 | Byte Count | Х | Х | Х | Х | Х | Х | Х | Х | | 4 | Data Byte 0 | see table below | | | | | | | | | 5 | Data Byte 1 | | see table | below | | | | | | | 6 | Data Byte 2 | | see table | below | | | | | | | 7 | Data Byte 3 | Х | Х | Х | Х | Х | Х | Х | Х | | 8 | Data Byte 4 | Х | Х | Х | Х | Х | Х | Х | Х | | 9 | Data Byte 5 | Х | Х | Х | Х | Х | Х | Х | Х | | 10 | Data Byte 6 | Х | Х | Х | Х | Х | Х | Х | Χ | #### Data Bytes 0 to 2 Map | Bit | Pin | Name | Description | |-------------|-------------------|--------------------------|--------------------| | Data Byte0: | SDRAM Active/In | active Register (1 = en | able, 0 = disable) | | 7 | 18 | SDRAM7 | (ACTIVE/INACTIVE) | | 6 | 17 | SDRAM6 | (ACTIVE/INACTIVE) | | 5 | 14 | SDRAM5 | (ACTIVE/INACTIVE) | | 4 | 13 | SDRAM4 | (ACTIVE/INACTIVE) | | 3 | 9 | SDRAM3 | (ACTIVE/INACTIVE) | | 2 | 8 | SDRAM2 | (ACTIVE/INACTIVE) | | 1 | 5 | SDRAM1 | (ACTIVE/INACTIVE) | | 0 | 4 | SDRAM0 | (ACTIVE/INACTIVE) | | Data Byte1: | SDRAM Active/In | active Register (1 = en | able, 0 = disable) | | 7 | 45 | SDRAM15 | (ACTIVE/INACTIVE) | | 6 | 44 | SDRAM14 | (ACTIVE/INACTIVE) | | 5 | 41 | SDRAM13 | (ACTIVE/INACTIVE) | | 4 | 40 | SDRAM12 | (ACTIVE/INACTIVE) | | 3 | 36 | SDRAM11 | (ACTIVE/INACTIVE) | | 2 | 35 | SDRAM10 | (ACTIVE/INACTIVE) | | 1 | 32 | SDRAM9 | (ACTIVE/INACTIVE) | | 0 | 31 | SDRAM8 | (ACTIVE/INACTIVE) | | Data Byte 2 | : SDRAM Active/Ir | nactive Register (1 = er | nable, 0=disable) | | 7 | 28 | SDRAM17 | (ACTIVE/INACTIVE) | | 6 | 21 | SDRAM16 | (ACTIVE/INACTIVE) | | 5 | | reserved | reserved | | 4 | | reserved | reserved | | 3 | | reserved | reserved | | 2 | | reserved | reserved | | 1 | | reserved | reserved | | 0 | | reserved | reserved | Notes: #### **Mechanical Dimensions** #### 48 pin SSOP | Symbol | Incl | hes | Millin | Millimeters | | | | |----------|------|-------|--------|-------------|-------|--|--| | Syllibol | Min. | Max. | Min. | Max. | Notes | | | | Α | .095 | .110 | 2.41 | 2.79 | | | | | A1 | .008 | .016 | 0.20 | 0.41 | | | | | b | .008 | .0135 | 0.20 | 0.34 | 5 | | | | С | .005 | .010 | 0.13 | 0.25 | 5 | | | | D | .620 | .630 | 15.75 | 16.00 | 2, 4 | | | | E | .395 | .420 | 10.03 | 10.67 | | | | | E1 | .291 | .299 | 7.39 | 7.59 | 2 | | | | е | .025 | BSC | 0.64 | 0.64 BSC | | | | | L | .020 | .040 | 0.51 | 1.02 | 3 | | | | N | 48 | | 48 | | 6 | | | | а | 0° | 8° | 0° | 8° | | | | | ccc | | .004 | | 0.13 | | | | #### Notes: - 1. Dimensioning and tolerancing per ANSI Y14.5M 1982. - "D" and "E1" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25mm). - 3. "L" is the length of terminal for soldering to a substrate. - 4. Terminal numbers are shown for reference only. - 5. "b" & "c" dimensions include solder finish thickness. - 6. Symbol "N" is the maximum number of terminals. RC7B00 PRODUCT SPECIFICATION #### **Ordering Information** | Product Number Temperature | | Screening | Package | Package Marking | | |----------------------------|-------------|-----------|---------|-----------------|--| | RC7B00 | 0°C to 70°C | | 48 SSOP | RC7B00 | | #### **LIFE SUPPORT POLICY** FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonable expected to result in a significant injury of the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Fairchild Semiconductor Corporation Americas Customer Response Center Fairchild Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 | Email: | europe.support@nsc.com | Deutsch | Tel: | +49 (0) 8 141-35-0 | English | Tel: | +44 (0) 1 793-85-68-56 | Italy | Tel: | +39 (0) 2 57 5631 Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Center, 5 Canto Rd. Tsimshatsui, Kowloon Hong Kong Tel:+852 2737-7200 Fax:+852 2314-0061 National Semiconductor Japan Ltd. Tel:81-3-5620-6175 Fax:81-3-5620-6179 www.fairchildsemi.com Tel:1-888-522-5372 1/98 0.0m Stock#DS50007B00 © 1998 Fairchild Semiconductor Corporation