

HA-2530/2535

High Slew Rate, Wideband Inverting Amplifier

<i>FEATURES</i>	DESCRIPTION
HIGH SLEW RATE FAST SETTLING TIME HIGH GAIN BANDWIDTH LOW OFFSET VOLTAGE LOW POWER SUPPLY CURRENT PULSE AMPLIFIC SIGNAL CONDITION SIGNAL GENERATORS OR HAPPLICATORS LOW POWER SUPPLY CURRENT Product SUGGESTED SUG	HA-2530 and HA-2535 are monolithic high speed inverting amplifiers which deliver super two rate, bandwidth, and accuracy specifications that class. Designs that the feed
PINOUT	SCHEMATIC
TOP VIEW Spr R2 OUT 3 4 SECURION 11 for Packaging TOP VIEW NOTE: Case tied to V-	2005 R2 2585 R3 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V-Terminals

Internal Power Dissipation (Note 1)

Operating Temperature Range

550mW $\begin{array}{l} -55^{\circ}\text{C} \leq & \text{T}_{\text{A}} \leq +125^{\circ}\text{C} \\ 0^{\circ}\text{C} \leq & \text{T}_{\text{A}} \leq +75^{\circ}\text{C} \\ -65^{\circ}\text{C} \leq & \text{T}_{\text{A}} \leq +150^{\circ}\text{C} \end{array}$

(HA-2530) (HA-2535)

Peak Output Current

±100mA

40V

Storage Temperature Range

ELECTRICAL CHARACTERISTICS

Test Conditions: V_{Supply} = ±15.0V Unless Otherwise Specified.

		HA-2530 -55°C to +125°C LIMITS			HA-2535 0°C to +75°C LIMITS			
PARAMETER	TEMP.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
INPUT CHARACTERISTICS								
Offset Voltage	+25 ⁰ C Full		0.8	3		0.8	5	mV mV
Average Offset Voltage Drift	Full		5			5		μ V /ºC
Bias Current	+25°C Full		15	100		15	200	nA nA
Offset Current	+25°C Full		5	20		5	20	nA nA
Input Resistance	+25°C		2			2		MΩ
Input Capacitance	+25°C		10			10		pF
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 2,5)	+25°C Full	105	2X10 ⁶		10 ⁵	2X 10 ⁶		V/V V/V
Common-Mode Rejection Ratio (Note 3)	Full	86	100		80	100		dB
Gain Bandwidth Product (Note 4)	+25 ⁰ C		70			70		MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 2)	Full	±10	±12		±10	±12		ν
Output Current (Note 5)	+25°C	±25	±50		±25	±50		mA
Full Power Bandwidth (Note 5)	+25°C	4	5		4	5		MHz
TRANSIENT RESPONSE (NOTES 6&7)								
Rise Time	+25°C		20	40		20	40	ns
Overshoot	+25°C		30	45		30	50	%
Slew Rate	+25°€	±280	±320		±250	±320		V/µs
Settling Time	+25°C		500			500		ns
POWER SUPPLY CHARACTERISTICS								
Supply Current	+25°C		3.5	8		3.5	8	mA
Power Supply Rejection Ratio (Note 8)	Full	86	100		80	100		dB

NOTES: 1. Derate at 5.5mW/OC for Operation at Ambient Temperature Above 75°C.

2. R_L = 2K 3. V_{CM} = ±5.0V 4. A_V >10

5. V_O = ±10V 6. C_L = 50pF 7. See Transient Response Test Circuit and Wave Forms

8. $\Delta V = \pm 5.0 V$

V+ = 15VDC, V- = 15VDC, TA = 25°C UNLESS OTHERWISE STATED INPUT BIAS AND OFFSET CURRENT vs. TEMPERATURE **EQUIVALENT INPUT NOISE** vs. BANDWIDTH Input Equivalent Input Noise μV BIAS CURRENT Current - nA OFFSET CURRENT Upper 3dB Frequency Temperature ^OC Lower 3dB Frequency - 10Hz NORMALIZED AC PARAMETERS **OPEN-LOOP FREQUENCY AND PHASE RESPONSE** vs. TEMPERATURE Normalized Parameters Referred to Values at $+25^{\circ}\text{C}$ Open Loop Voltage Gain dB Phase Angle PHASE -55°C |-50°C Temperature OC Frequency Hz POWER SUPPLY CURRENT NORMALIZED AC PARAMETERS vs. TEMPERATURE vs. SUPPLY VOLTAGE AT +25°C Normalized Parameters Referred SLEW to Values at ±15V Current - mA SLEW RATE Temperature OC Supply Voltage **OUTPUT VOLTAGE SWING** vs. FREQUENCY AT +25°C Voltage Swing Peak-to-Peak

Frequency Hz

SETTLING TIME MEASUREMENT *1

 $\begin{array}{ll} VERTICAL &= 5mV/DIV. \\ HORIZONTAL &= 100ns/DIV. \\ T_A &= +25^{\circ}C, \, V_S &= \pm 15V \end{array}$

UNITY GAIN PULSE RESPONSE

UPPER TRACE: INPUT VERTICAL = 5V/DIV. LOWER TRACE: OUTPUT HORIZONTAL = 50 ns/DIV. $T_A = +25^{\circ}\text{C}$, $V_S = \pm 15 \text{V}$

SLEW RATE/SETTLING TIME/TRANSIENT RESPONSE TEST CIRCUIT

- *1 Settling time (T_S) is measured using a high speed high recovery oscilloscope to display the error voltage V_E. When V_E is within ±5mV of final value the output V_O will be within ±10mV (0.1%).
- *2 S₁ closed for settling time.

* MEASURED ON BOTH POSITIVE AND NEGATIVE EXCURSIONS.

SETTLING TIME

+5V

-5V

OUTPUT

-5V

FINAL VALUE

5MHz VIDEO AMPLIFIER (A $_{
m V}$ = 10)