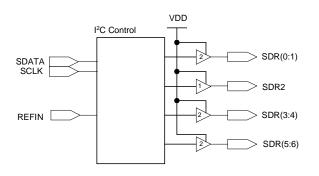


Approved Product


Product Features

- 7 output buffer for high clock fanout applications.
- Output may be individually disabled with I²C
- VDD = 3.3 volts
- Output frequency range 10 MHz to 100 MHz
- <250ps skew between output clocks.
- 16-pin SSOP and TSSOP package.

Product Description

The device is a high fanout system clock buffer. Its primary application is to distribute clocks needed to support a wide range of applications such as SDRAM clocks. This device provides low skew distribution clock heavily loaded. One important application of this component is where long traces are used to transport clocks from their generating devices to their loads. The creation of EMI and the degradation of waveform rise and fall times is greatly reduces by running a single reference clock trace to this device and then using it to these devices EMI is therefore minimized and board real estate is saved.

Block Diagram

Pin Configuration

VDD 🗆	10	16 SDR6
SDR0	2	
SDR1	3	14 🗆 vss
VSS 🗌	4	13 🗍 VDD
	5	12 SDR4
SDR2	6	
VDD 🗌	7	10∐ VSS
SDATA 🗌	8	9 🗆 SCLK

Approved Product

Pin No.	Pin Name	PWR	I/O	Туре	Description
5	CLKIN	VDD	Ι	PAD	This pin is connected to the input reference clock. This clock be in the range of 10.0 to 100.0 MHz
2,3,6,11,12,15,16	SDR(0:6)	VDD	0	BUF1	Low Skew output clock.
8	SDATA	-	I/O	PAD	Serial data of I ² C-wire control interface. Has internal pull-up resistor.
9	SCLK	-	Ι	PAD	Serial data of I ² C-wire control interface. Has internal pull-up resistor
4,10,14	VSS	-	-	-	COMMON Ground
1,7,13	VDD	-	-	-	Power for output clock buffers and core logic

Maximum Ratings

Maximum Input Voltage Relative to VS	SS: VSS – 0.3V
Maximum Input Voltage Relative to VD	D: VDD + 0.3V
Storage Temperature:	0° to +125°C
Operating Temperature:	0° to +70°C
Maximum Power Supply:	7V

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range:

VSS<(Vin or Vout)<VDD

Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

Approved Product

2-Wire I²C Control Interface

The 2-wire control interface implements a write only slave interface. The device control be read back. Subaddressing is not supported, thus, all preceding bytes must be sent in order to change one of the control bytes. The 2-wire control interface allows each clock output to be individually enabled or disabled.

During normal data transfer, the SDATA signal only changes when the SDCLK signal is low, and is stable when SDCLK is high. There are two exceptions to this. A high to low transition on SDATA while SDCLK is high is used to indicate the start of a data transfer cycle. A low to high transition on SDATA while SDCLK is high indicates the end of data transfer cycle. Data is always sent as complete 8-bit bytes, after which an acknowledge is generated. The first byte of a transfer cycle is a 7-bit address with a read /write bit as the LSB. Data is being transferred MSB first.

The device respond to writes to 10 bytes (max) of data to address **D2** by generating the acknowledge (low) signal on the SDATA wire following reception of each byte. The device will not respond to any other control interface conditions.

Control Signal Registers

Note: The pin# column lists the affected pin number where applicable. The @Pup column gives the state at true power up. Bytes are set to the values shown only on true power up, and not when the PWR DWN# pin is activated.

Following the acknowledge of the Address Byte (D2) two additional bytes must be sent:

- 1. "Command Code" byte and
- 2. "Byte Count" byte

Although the data (bits) in these two bytes are considered "don't care", they must be sent and will be acknowledge.

After the Command Code and the Count bytes have been acknowledge, the below described sequence (Byte0, Byte1, Byte2...) will be valid and acknowledged.

Byte	Byte U: (1= Enable, 0= stopped)							
Bit	@Pup	Pin #	Description					
7	1	6	SDR2(Enable =1,stopped=0)					
6	1	-	Reserved					
5	1	-	Reserved					
4	1	-	Reserved					
3	1	3	SDR1(Enable =1,stopped=0)					
2	1	2	SDR0(Enable =1,stopped=0)					
1	1	-	Reserved					
0	1	-	Reserved					

Dute O. (1 Enchle O stanned)

See application note AN664-01 for further reducing power consumption with l^2C

Cypress Semiconductor Corporation 525 Los Coches St. Milpitas, CA 95035. Tel: 408-263-6300, Fax: 408-263-6571 http://www.cvpress.com

Byte 1: (1= Enable 0= stopped)

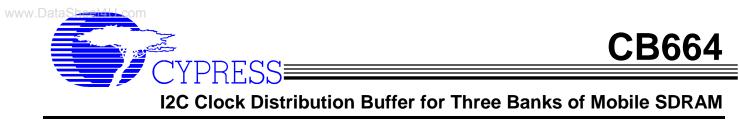
Byte I. (I= Ellable, 0= stopped)							
Bit	@Pup	Pin #	Description				
7	1	16	SDR6 (enable=1,s topped=0)				
6	1	15	SDR5 (enable=1, stopped=0)				
5	1	-	Reserved				
4	1	-	Reserved				
3	1	12	SDR4 (enable=1, stopped=0)				
2	1	11	SDR3 (enable=1, stopped=0)				
1	1	-	Reserved				
0	1	-	Reserved				

Approved Product

Electrical Characteristics

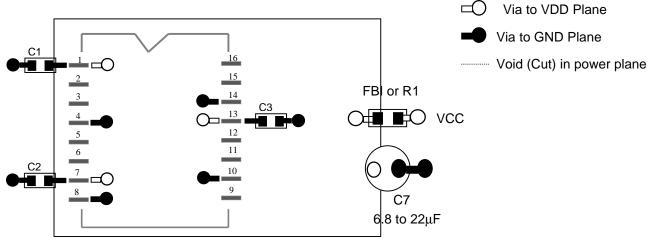
Characteristics	Symbol	Min	Тур	Max	Units	Conditions	
Input Low Voltage	VIL	-	-	0.8	Vdc	-	
Input High Voltage	VIH	2.0	-	-	Vdc	-	
Input Low Current	IIL	-66			μA		
Input High Current	IIH			66	μA		
Tri-State leakage current	loz	-	-	10	μA		
Dynamic Supply Current (all	Idd ₆₆	9		100	mA	Input Frequency = 66 Mhz	
outputs loaded with 30 pF)	Idd ₁₀₀	12	-	140	mA	Input Frequency =100 Mhz	
Static Supply Current	lsdd	-	-	1	mA	All outputs disabled no input clock	
Short Circuit Current	ISC	25	-	-	mA	1 input at a time – 30 seconds	
Input Rise Time	VIR	2.4	-	-	nS	0.8 to 2.4 Volts	
VDD =VDD1 thru VDD6 = 3.3V±5%, TA = 0°C to 70°C							

Switching Characteristics


Characteristics	Symbol	Min	Тур	Max	Units	Conditions
Output Duty Cycle	-	45	50	55	%	Measured at 1.5V (50/50 in)
Buffer Out/Out Skew all Buffer	TSKEW	-	-	250	pS	35 pF Load Measured at 1.5V
Outputs						
Buffer Input to Output Skew	TSKEW	2.0	0	5.0	nS	
Jitter Cycle to Cycle*	TJCC			50	pS	@35 pF loading
Jitter Absolute (Peak to Peak)*	TJabs			150	pS	@35 pF loading
VDD =VDD1 thru VDD6 = 3.3V±5%, TA = 0°C to 70°C						

*this jitter is additive to the input clock's jitter

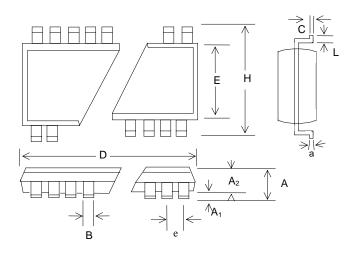
Buffer Characteristics (All Clock Outputs)


Characteristics	Symbol	Min	Тур	Max	Units	Conditions
Pull-Up Current Min	IOH _{min}	-	-	-54	mA	Vout = 1.0 V
ull-Up Current Max	IOH _{max}	-	-	30	mA	Vout = 2.6 V
Pull-Down Current Min	IOL _{min}	-	-	54	mA	Vout = 1.2 V
Pull-Down Current Max	IOL _{max}	-	-	23	mA	Vout = 0.4 V
Rise/Fall Time Min Between 0.4V and 2.4V	TRF_{min}	-	-	1.33	nS	30 pF Load
Rise/Fall Time Max between 0.4V and 2.4V	TRF _{max}	-	-	1.33	nS	30 pF Load
VDD = VDDI thru VDD6 = 3.3V±5%, TA = 0°c TO +70°C						

Cypress Semiconductor Corporation 525 Los Coches St. Milpitas, CA 95035. Tel: 408-263-6300, Fax: 408-263-6571 http://www.cypress.com

Approved Product

PCB Layout Suggestion



This is only a layout recommendation for best performance and lower EMI. The designer may choose a different approach but C1, C2, C3 (all are $o.1\mu$ F) should always be used and placed <u>as close to their VDD pins as is physically possible.</u> FB1 or R1 is a ferrite Bead or resistor as needed to reduce conducted EMI from the device into the systems power circuitry.

Approved Product

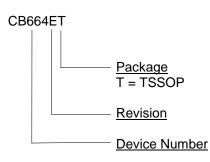
Package Drawing and Dimensions

16 Pin TSSOP Outline Dimensions

	INCHES			MILLIMETERS		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	-	-	0.047	-	-	1.20
A ₁	0.002	-	0.006	0.05	-	0.15
A2	0.031	0.039	0.041	0.80	1.00	1.05
В	0.007	-	0.012	0.19	-	0.30
С	0.004	-	0.008	0.09	-	0.20
D	0.193	0.197	0.201	4.90	5.00	5.10
E	0.169	0.173	0.177	4.30	4.40	4.50
е		0.026 BS0		0.65 BSC		
Н	0.244	0.252	0.260	6.20	6.40	6.60
L	0.018	0.024	0.030	0.45	0.60	0.75
а	0°	-	8°	0°	-	8°

16 Pin SSOP Outline Dimensions

		INCHES		MILLIMETERS		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	0.068	0.073	0.078	1.73	1.86	1.99
A ₁	0.002	0.005	0.008	0.05	0.13	0.21
A2	0.066	0.068	0.070	1.68	1.73	1.78
В	0.010	0.012	0.015	0.25	0.30	0.38
С	0.005	0.006	0.009	0.13	0.15	0.22
D	0.239	0.244	0.249	6.07	6.20	6.33
E	0.205	0.209	0.212	5.20	5.30	5.38
е	().0256BS	C		0.65 BSC	;
Н	0.301	0.307	0.311	7.65	7.80	7.90
L	0.022	0.030	0.037	0.55	0.75	0.95
а	0°	4°	8°	0°	4°	8°


Approved Product

Ordering Information

Part Number	Package Type	Production Flow
CB664ET	16 Pin TSSOP	Commercial, 0°C to +70°C
CB664EY	16 Pin SSOP	Commercial, 0°C to +70°C

<u>Note</u>: The ordering part number is formed by a combination of device number, device revision, package style, and screening as shown below.

Marking: Example: IMI, YYWWW CB664ET Lot #

DISCLAIMER

Cypress Semiconductor Corporation reserves the right to change or modify the information contained in this datasheet and the products described therein, without prior notice. Cypress Semiconductor Corporation does not convey any license under its patent rights nor the rights of others. Charts, drawings and schedules contained in this datasheet are provided for illustration purposes only and they vary depending upon specific applications.

Cypress Semiconductor Corporation makes no warranty or guarantee regarding suitability of these products for any particular purpose, nor does Cypress Semiconductor Corporation assume any liability arising out of the application or use of any product or circuit described herein. Cypress Semiconductor Corporation does not authorize use of its products as critical components in any application in which the failure of the Cypress Semiconductor Corporation product may be expected to result in significant injury or death, including life support systems and critical medical instruments.

Cypress Semiconductor Corporation 525 Los Coches St. Milpitas, CA 95035. Tel: 408-263-6300, Fax: 408-263-6571 http://www.cypress.com

Approved Product

Document Title: CB664 I2C Clock Distribution Buffer for Three Banks of Mobile SDRAM							
Document Number: 38-07024							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	109163	08/29/01	NDP	Convert from IMI to Cypress			