μPD75316B Family (μPD75304B/306B/308B/312B/316B/P316B) 4-Bit, Single-Chip Microcontrollers Low-Voltage Operation With LCD Controller/Driver October 1994 # Description The μ PD75316B family of CMOS microcontrollers is optimized for low-voltage operation with a 2.0 to 6.0 volt operating range. The μ PD75316B family is functionally compatible to the earlier μ PD75316 family but operates at a lower voltage and is offered in more compact quad flat packages. The μ PD75316B family includes the following devices: μPD75304B μPD75312B μPD75306B μPD75316B μPD75308B μPD75P316B The 75316B family features an on-chip LCD controller and driver with up to 16K bytes of ROM and 1024 nibbles of RAM. The instruction set operates on 1-, 4-, and 8-bit data. Timing is generated by two oscillators. The main oscillator normally drives the CPU and most peripherals. The 32.768-kHz subsystem oscillator provides time keeping when the main oscillator is turned off. Since CMOS power dissipation is proportional to clock rate, the 75316B family provides a software selectable instruction cycle time from 0.95 μ sec to 122 μ sec. The STOP and HALT modes turn off parts of the microcontroller for additional power savings. #### **Features** - LCD controller/driver for up to 128 segments - 32 segment lines - -- Four common lines - Static, 1/2 or 1/3 bias - LCD resistor ladder available on ROM versions - Subsystem oscillator allows watch timer and LCD to operate in power-down modes - 8-bit synchronized serial interface - Full-duplex, three-wire mode - Half-duplex, two-wire mode - NEC serial bus interface (SBI) mode - Timers: three channels - 8-bit timer/event counter - 8-bit interval timer - Watch (clock) timer: 0.5-sec interrupt request - □ 32 I/O lines - Eight input-only lines - 16 bidirectional I/O lines - Eight 10-volt n-channel, open-drain I/O lines that can directly drive LEDs - 31 software selectable pullup resistors - Eight mask selectable resistors (ROM versions only) - Bit sequential buffer - 16-bit, bit addressable memory - Standard 75X instruction set - 4- and 8-bit transfer instructions - Minimum instruction execution times - 0.95, 1.91, and 15.3 μs using 4.19-MHz main system clock - --- 122 μ s selectable using 32.768-kHz subsystem clock - □ Eight 4-bit registers - Usable as four 8-bit registers - Memory-mapped on-chip peripherals - Vectored interrupt controller - 12 edge detect inputs - Five vectored interrupts - Power saving and battery back up - Variable CPU clock rate; 3 mA typical at 5 V 4.19 MHz - HALT mode, stops CPU; 1 mA typical current drain - STOP mode, stops main oscillator; 0.5 μ A typical power drain - □ CMOS operation: - --- ROM versions; VDD from 2.0 to 6.0 V - 75P316B (low voltage OTP/EPROM); V_{DD} from 2.0 to 6.0 V #### Internal High-Capacity ROM and RAM | | 75304B | 75306B | 75308B | 75312B | 75316B | 75P316B | |------|--------------|-------------|-------------|--------------|--------------|--------------| | ROM | 4096 bytes | 6016 bytes | 8064 bytes | 12,160 bytes | 16,256 bytes | | | PROM | _ | _ | _ | _ | | 16,256 bytes | | RAM | 512 nibbles | 512 nibbles | 512 nibbles | 1024 nibbles | 1024 nibbles | 1024 nibbles | 50665 **■** 6427525 0052744 211 **■** # μPD75316B Family | Ordering Information | | | | | | |----------------------|-------|--------------------------------|-----------------|--|--| | Part Number | ROM | Package Type | Package Drawing | | | | μPD75304BGC-xxx-3B9 | Mask | 80-pin plastic QFP | S80GC-65-3B9-3 | | | | μPD75306BGC-xxx-3B9 | • | | | | | | μPD75308BGC-xxx-3B9 | • | | | | | | μPD75312BGC-xxx-3B9 | • | | | | | | μPD75316BGC-xxx-3B9 | | | | | | | μPD75304BGF-xxx-3B9 | Mask | 80-pin plastic QFP | P80GF-80-3B9-2 | | | | μPD75306BGF-xxx-3B9 | | (Note 3) | | | | | μPD75308BGF-xxx-3B9 | | | | | | | μPD75304BGK-xxx-BE9 | Mask | 80-pin plastic TQFP | P80GK-50-BE9-3 | | | | μPD75306BGK-xxx-BE9 | | | | | | | μPD75308BGK-xxx-BE9 | - | | | | | | μPD75312BGK-xxx-BE9 | | | | | | | μPD75316BGK-xxx-BE9 | | | | | | | μPD75P316BGC-3B9 | ОТР | 80-pin plastic QFP | S80GC-65-3B9-3 | | | | μPD75P316BGK-BE9 | ОТР | 80-pin plastic TQFP | P80GK-50-BE9-3 | | | | μPD75P316BKK-T | EPROM | 80-pin ceramic LCC with window | X80KW-65A-1 | | | - (1) xxx indicates ROM code. - (2) All 75316B family devices are standard quality grade - (3) Engineering samples are provided in a ceramic QFP. ## Pin Configurations # 80-Pin Plastic QFP (GF) #### Pin Configurations (cont) # 80-Pin Plastic QFP (GC), TQFP (GK), or Ceramic LCC (KK) 4 ■ 6427525 0052747 T20 **■** # Pin Identification | Symbol | Function | |--|--| | BIAS | LCD power bias output | | BP ₀ /S 24
BP ₁ /S 25
BP ₂ /S 26
BP ₃ /S 27
BP ₄ /S 28
BP ₅ /S 29
BP ₆ /S 30
BP ₇ /S 31 | 1-bit output ports BP ₀ - BP ₇ ;
LCD segments S24-S31 | | сомо-сомз | LCD common output 0-3 | | NC/V _{PP} | No connection (programming pin for μ PD75P316B) | | P0 ₀ /INT4 | Port 0 input; interrupt 4 | | P0 ₁ /SCK | Port 0 input; serial clock | | P0 ₂ /SO/SB0 | Port 0 input; serial out; serial bus interface 0 | | P0 ₃ /SI/SB1 | Port 0 input; serial in; serial bus interface 1 | | P1 ₀ /INT0 | Port 1 input; interrupt 0 | | P1 ₁ /INT1 | Port 1 input; interrupt 1 | | P1 ₂ /INT2 | Port 1 input; interrupt 2 | | P1 ₃ /TI0 | Port 1 input; timer 0 input | | P2 ₀ /PTO ₀ | Port 2 I/O; timer/event counter output | | P2 ₁ | Port 2 I/O | | P2 ₂ /PCL | Port 2 I/O; programmable clock output | | P2 ₃ /BUZ | Port 2 I/O; buzzer output | | P3 ₀ /LCDCL/
MD0 | Port 3 I/O; LCD clock output; programming mode select 0 (µPD75P316B) | | P3 ₁ /SYNC/MD1 | Port 3 I/O; LCD SYNC output; programming mode select 1 (μ PD75P316B) | | P3 ₂ /MD2 | Port 3 I/O; programming mode select 2 (µPD75P316B) | | P3 ₃ /MD3 | Port 3 I/O; programming mode select 3 (µPD75P316B) | | Symbol | Function | |-----------------------------------|------------------------------| | P4 ₀ - P4 ₃ | Port 4 I/O | | P5 ₀ - P5 ₃ | Port 5 I/O | | P6 ₀ /KR0 | Port 6 I/O; key scan input 0 | | P6 ₁ /KR1 | Port 6 I/O; key scan input 1 | | P6 ₂ /KR2 | Port 6 I/O; key scan input 2 | | P6 ₃ /KR3 | Port 6 I/O; key scan input 3 | | P7 ₀ /KR4 | Port 7 I/O; key scan input 4 | | P7 ₁ /KR5 | Port 7 I/O; key scan input 5 | | P7 ₂ /KR6 | Port 7 I/O; key scan input 6 | | P7 ₃ /KR7 | Port 7 I/O; key scan input 7 | | RESET | Reset input | | S0 - S23 | LCD segment output | | V _{LC0} | LCD drive level 0 | | V _{LC1} | LCD drive level 1 | | V _{LC2} | LCD drive level 2 | | X1, X2 | Main clock inputs | | XT1, XT2 | Subsystem clock inputs | | V _{DD} | Positive power supply | | V _{SS} | Ground | #### **PIN FUNCTIONS** P0₀/INT4, P0₁/SCK, P0₂/SO/SB0, P0₃/SI/SB1. These pins can be used as 4-bit input port 0. P0₀ can also be used for vectored interrupt 4, which interrupts on either the leading edge or the trailing edge of the signal. P0₁ - P0₃ may also be used for the serial interface in the SBI or the 2- or 3-wire modes. SI is the serial input, SO is the serial output, and SCK is the serial clock. SB0 and SB1 are the NEC serial bus interface pins 0 and 1. Reset causes these pins to default to the port 0 input mode. P1₀/INT0, P1₁/INT1, P1₂/INT2, P1₃/TI0. These pins can be used as 4-bit input port 1. P1₀ and P1₁ can also be used for edge-triggered interrupts INT0 and INT1. P1₂ can be used for INT2, which is also an edge-triggered input, but one that generates an Interrupt request but does not cause a vectored interrupt. P1₃ can be used as an input clock to the timer/event counter to count external events. Reset causes all P1 pins to default to the port input mode. P2₀/PTO₀, P2₁, P2₂/PCL, P2₃/BUZ. These pins can be used as 4-bit I/O port 2. When used as an output, the data is latched. When used as an input port, the port outputs are three-state. P2₀ can also be used as PTO₀, the output of the timer/event counter flip-flop (TOUT); P2₂ can be used as the output (PCL) for the clock generator; and P2₃ can be used to output square waves for a buzzer. Reset causes these pins to default to the port 2 input mode. #### P3₀/LCDCL/MD0, P3₁/SYNC/MD1, P3₂/MD2, P3₃/MD3. These pins are used for I/O port 3. Each bit in this port can be independently programmed to be either an input or an output. This port has latched outputs, and can directly drive LEDs. P3₀ and P3₁ can also be used respectively as LCD clock and LCD sync outputs. $P3_0$ - $P3_3$ are used as the programming mode select pins for the μ PD75P316B during EPROM/OTP programming and verification. A reset signal causes this port to default to the input mode. P4₀ - P4₃, P5₀ - P5₃. Port 4 and Port 5 are identical 4-bit I/O ports, which can be combined to function as a single 8-bit port. Latched outputs will directly drive LEDs. Outputs are n-channel open drain, and can withstand up to 10 volts; pullup resistor mask options are available for these ports. A reset signal causes these ports to default to the input mode at a high impedance or to a high level if a pullup resistor is present. P6₀/KR0, P6₁/KR1, P6₂/KR2, P6₃/KR3 P7₀/KR4, P7₁/KR5, P7₂/KR6, P7₃/KR7. Ports 6 and 7 are 4-bit I/O ports, which can be combined to function as a single 8-bit port. Outputs are latched. Each pin of port 6 can be independently programmed to be either an input or an output; port 7 can be programmed to be either all inputs or all outputs. Alternately, these pins may be used to detect the falling edge of inputs KR0 - KR3 (port 6) and KR4 - KR7 (port 7). A reset signal causes these ports to default to the input mode. So - S23. These are the LCD segment drivers. **COM0 - COM3.** These are the LCD common input drivers. BP₀/S24 - BP₇/S31. These can be used either as eight 1-bit ports or as additional LCD segment drivers. When used as
segment outputs they are selectable in 4-bit increments. $\rm V_{LC0}$ - $\rm V_{LC2}$. These pins are used to set the drive levels for the LCD. If the internal resistor ladder mask option is selected (on the $\mu PD7530xB/31xB$ only), these pins are outputs; if the internal resistor ladder is not selected, these pins are inputs to which an external resistor network must be connected. BIAS. This output is used in conjunction with the V_{LC0} - V_{LC2} pins to set the LCD contrast level. NC/V_{PP}. This pin may be left unconnected when using the μ PD7530xB/31xB. For the μ PD759316B, the pin is used as the programming voltage input during the EPROM write/verify cycles. When the devices are not being programmed, this pin should be connected to V_{DD}. It must be connected to V_{DD} if the same circuit board is to be used for both programmable and non-programmable devices. X1, X2. These pins are the main system clock inputs. The input can be from a ceramic resonator or a crystal; an external logic signal may also be used by applying it to X1 and its inverse to X2. XT1, XT2. These pins are the subsystem clock inputs. The input can be from a ceramic resonator or a crystal; an external logic signal may also be used by applying it to XT1 with XT2 left open. RESET. This is the reset input, and it is active low. V_{DD}. The system positive power supply pin. Vss. System ground. # Block Diagram; µPD75316B Family # µPD75316B Family **Product Comparison** | Item | 75304B | 75306B | 75308B | 75312B | 75316B | 75P316B | |--|--|--|--|--|--|---| | Program memory | Mask ROM
000H-FFFH
4096 x 8 bits | Mask ROM
0000H-177FH
6016 x 8 bits | Mask ROM
0000H-1F7FH
8064 x 8 bits | Mask ROM
0000H-2F7FH
12,160 x 8 bits | Mask ROM
0000H-3F7FH
16,256 x 8 bits | OTP; EPROM
0000H-3F7FH
16,256 x 8 bits | | Data memory | | 512 x 4 bits | | 1024 x 4 bits | | | | 3-byte branch instructions | No | Yes | Yes | Yes | Yes | Yes | | Other instruction set | Common to the products | | | | | | | Program counter | 12-bit | 13-bit | 13-bit | 14-bit | 14-bit | 14-bit | | Ports 4 and 5 pullup resistor | Mask option | No | | LCD resistor ladder | Mask option | No | | V _{PP} , PROM program-
ming pins | No | No | No | No | No | Yes | | Operating voltage range | 2.0 to 6.0 V | | | | / | | | Package | 80-pin plastic
80-pin plastic | : QFP (GC, GF)
: TQFP (GK) | ; | 80-pin plastic (
80-pin plastic | | 80-pin plastic QFP (GC);
80-pin plastic TQFP (GK);
80-pin ceramic LCC with window | # Differences Between $\mu PD75316$ and 75316B Families | | 75304/306/308/
312/316 | 75P308 | 75P316 | 75P316A | 75304B/306B/
308B | 75312B/316B | 75P316B | |-----------------------------|--|--------------|--------------|--------------|----------------------|--------------|--------------| | Data memory | 512 nibbles | 512 nibbles | 512 nibbles | 1024 nibbles | 512 nibbles | 1024 nibbles | 1024 nibbles | | Program
memory type | ROM | OTP, EPROM | ОТР | OTP,EPROM | ROM | ROM | OTP, EPROM | | Operating voltage range | 2.7 to 6.0 V | 5.0 V ±5% | 5.0 V ±5% | 2.7 to 6.0 V | 2.0 to 6.0 V | 2.0 to 6.0 V | 2.0 to 6.0 V | | Operating temperature range | -40 to +85°C | -10 to +70°C | -10 to +70°C | -40 to +85°C | -40 to +85°C | -40 to +85°C | -40 to +85°C | | Package availability | (Notes 1 through 5 | 5) | | | | | | | GC | | | | | × | x | X | | GF | х | Х | х | х | Х | | | | GK | | | | | х | х | x | | к | 1. | х | | x | | | | | KK | | | | | | | х | - (1) GC: 14 x 14 mm QFP with 0.65-mm pin pitch - (2) GF: 14 x 20 mm QFP with 0.8-mm pin pitch - (3) GK: 12 x 12 mm TQFP with 0.5-mm pin pitch - (4) K: 14 x 20 mm LCC with window and 0.8-mm contact pitch - (5) KK: 14 x 14 mm LCC with window and 0.65-mm contact pitch #### CPU AND MEMORY ARCHITECTURE The 75X architecture has two separate address spaces, one for program memory (ROM) and another for data memory (RAM). ## Program Memory (ROM) The ROM is addressed by the 12-, 13-, or 14-bit program counter. The size of the program counter and the amount of ROM present depend on which part is being used. The ROM contains program object code, interrupt vector table, a GETI instruction reference table, and table data. Table data can be obtained using table reference instruction MOVT. Figure 1 is the program memory map for the 75316B family. It also shows the addressing range that can be made using a branch instruction or subroutine call instruction. In addition, the BR PCDE and BR PCXA instructions can be used for a branch where only the low 8 bits of the PC are changed. All locations in ROM except 0000H and 0001H can be used as program memory. However, if interrupts or GETI instructions are used, the locations corresponding to those functions cannot be used. Addresses are normally reserved as follows: | 0000H | and | |-------|-----| | 0001H | | Vector address for RESET, and also contains the MBE bit. 0002H to 000BH Interrupt vector addresses. Each vector address contains an MBE bit value. The interrupt service routines can start from any location except where noted above. 0020H to 007FH Table area for GETI instructions. The GETI instruction is used to access one 2-byte/3-byte or two 1-byte instructions using one byte of program memory. This is useful in compacting code. Figure 1. Program Memory Map # Program Counter (PC) This is a 12/13/14-bit binary counter that contains the address of the current program memory location. The μ PD75304B contains a 12-bit PC; the 75306B/308B have a 13-bit PC; and the 75312B/316B/P316B have a 14-bit PC. When an instruction is executed, the PC is automatically incremented by the number of bytes of the current instruction. When a branch instruction (BR, BRCB) is executed, the contents of the immediate data or register pair indicating the new address are loaded into some or all bits of the PC. When a subroutine call instruction (CALL, CALLF) is executed or an interrupt is generated, the PC is incremented to point to the next instruction, and this information is saved on the stack. During an interrupt, the program status word (PSW) is also automatically saved on the stack. The address to be jumped to by the CALL or interrupt is then loaded into the PC. When a return instruction (RET or RETS) is executed, the contents of the stack are restored to the PC. When a return instruction from interrupt (RETI) is executed, the PC and the PSW are restored. # Data Memory (RAM) The data memory contains three memory banks (0, 1, and 15) in all devices except the μ PD75312B/316B/P316B, which contains five memory banks (0, 1, 2, 3, and 15). The RAM memory maps are shown in figures 2 and 3. The memory consists of general-purpose static RAM and peripheral control registers. The memory banks are accessed using MBE (memory bank enable) and by programming the BS (bank select register). If MBE = 0, the lower 128 nibbles of memory bank 0 and the upper 128 nibbles of memory bank 15 are accessed. If MBE = 1, the upper four bits in the BS register will specify the memory bank. The values are OH for memory bank 0, 1H for memory bank 1, 2H for memory bank 2, 3H for memory bank 3, and 0FH for memory bank 15. Memory banks 0, 1, 2, and 3 each contain 256 nibbles. Although the memory is organized in nibbles, the 75X architecture allows the data to be manipulated in bytes, nibbles, and individual bits. The data memory is used for storing processed data, general-purpose registers, and as a stack for subroutine or interrupt service. The last 32 nibbles of bank 1 are used to store the LCD display data. If this area is not completely used by the LCD, it may be used as general-purpose RAM. Because of its static nature, the RAM will retain its data when CPU operation is stopped and the chip is in the standby mode, provided $V_{\rm DD}$ is at least 2 volts. There are eight 4-bit, general-purpose registers in bank 0 starting at location 00H (see figure 4). These registers may also be used as four 8-bit registers. The on-chip peripheral control registers and ports reside in the upper 128 nibbles of bank 15. Bank 15 addresses not assigned to a register are not available as random memory except for the 16-bit sequential buffer. Also, the lower 128 nibbles of bank 15 do not contain RAM. Figure 2. Data Memory Map (μPD75304B/306B/ 308B) # Addressing Modes The µPD75316B family can address data memory and ports as individual bits, nibbles, or bytes. These addressing modes are as follows: - 1-bit direct data memory - 4-bit immediate - 4-bit direct data memory - 4-bit register indirect (@rpa) - 8-bit immediate - 8-bit direct data memory - 8-bit register indirect (@HL) - Bit manipulation - Stack addressing Table 1 shows the data memory addressing modes and table 2 shows the peripheral control register addressing. Figure 5 shows the data memory addressing modes for the μ PD75316B family. 10 **■** 6427525 0052753 224 **■** Figure 3. Data Memory Map (µPD75312B/316B/ P316B) Figure 4. General-Purpose Register Configurations # μPD75316B Family | Table 1. | Data | Memory | y Addressing | Modes | |----------|------|--------|--------------|-------| |----------|------|--------|--------------|-------| | Addressing Mode | Format | How The Address is Formed | | | |------------------------------------|-------------------------------|---|--|--| | 1-bit direct
addressing | mem.bit | If MBE = 0, the memory bank is bank 0 for addresses 00H-7FH and bank 15 for addresses 80H-FFH. | | | | | | If MBE = 1, the memory bank is selected by the 4 bits of the MBS. | | | | | | The bit to be manipulated is specified in mem.bit | | | | 4-bit direct addressing | mem | If MBE = 0, the memory bank is bank 0 for addresses 00H-7FH, and bank 15 for addresses 80H-FFH. | | | | | | If MBE = 1, the memory bank is selected by the 4 bits of the MBS. | | | | | | The nibble to be manipulated is specified in mem. | | | | 8-bit direct addressing | mem (must be an even address) | If MBE = 0, the memory bank is bank 0 for addresses 00H-7FH and bank 15 for addresses 80H-FFH. | | | | | | If MBE = 1, the memory bank is selected by the 4 bits of the MBS. | | | | | | The byte to be manipulated is specified in mem. | | | | 4-bit register indirect addressing | @HL | The memory bank is selected by MBE and the 4 bits of the MBS. The location within the memory bank is contained in register HL. | | | | | @DE | The memory bank is always bank 0. The location within the memory bank is contained in register DE. | | | | | @DL | The memory bank is always bank 0. The location within the memory bank is contained in register DL. | | | | 8-bit register indirect addressing | @HL (must be an even address) | The memory bank is selected by MBE and the 4 bits of the MBS. The location within the memory bank is contained in register HL | | | | Bit manipulation addressing | fmem.bit | The memory bank is bank 15, and the location is fmem, where fmem = FB0H-FBFH for interrupts fmem = FF0H-FFFH I/O ports | | | | | | The actual bit is specified in fmem.bit | | | | | pmem.@L | The memory location is always FC0H to FFFH and is independent of MBE and MBS. The upper 10 address bits of the location are contained in the 10 high order bits of pmem and the 2 lower address bits are contained in the 2 upper bits of register L. | | | | | | The bit to be manipulated is specified by the 2 lower bits of register L. | | | | | @H + mem.bit | The memory bank is selected by MBE and the 4 bits of the MBS, and the location within the memory bank is determined by the following: The 4 upper bits are the contents of register H The 4 lower bits are mem. | | | | | | The actual bit is specified in mem.bit. | | | | Stack addressing | | The memory bank is always bank 0. The location is indicated by the stack pointer (SP) | | | MBE MBS mem Memory bank enable bit Memory bank select register Location within a memory bank Bit at a specified memory location mem.bit Bit at a specified memory fmem and pmem Specialized cases of mem Table 2. Addressing Modes During Peripheral Hardware Operation | Manipulation | Addressing Mode | Applicable Hardware | |--------------|---|---| | 1-bit | With MBE = 0 (or MBE = 1 and MBS = 15), direct addressing with peripheral address specified in mem.bit | All hardware where bit manipulation can be performed | | | Direct addressing regardless of the setting of MBE and MBS with
peripheral address specified in fmem.bit | ISTO, MBE
IExxx, IRQxxx, PORTn.x | | | Indirect addressing regardless of the setting of MBE and MBS with peripheral address specified in pmem. @L | BSBn.x
PORTn.x | | 4-bit | With MBE = 0 (or MBE = 1 and MBS = 15), direct addressing with peripheral address specified in mem.bit | All hardware where 4-bit manipulation can be
performed | | | With MBE = 1 and MBS = 15, register indirect addressing with peripheral address specified in HL | - | | 8-bit | With MBE = 0 (or MBE = 1 and MBS = 15), direct addressing with peripheral address specified in mem; mem must be an even address | All hardware where 8-bit manipulation can be
performed | | | With MBE = 1 and MBS = 15, register indirect addressing with peripheral address specified in HL; L register must contain an even number | - | Figure 5. Data Memory Organization and Addressing Modes 14 ■ 6427525 0052757 97T **■** #### **FUNCTIONAL DESCRIPTION** # Input/Output Ports The µPD75316B family has eight 4-bit ports; six are input/output, two are input only. They also have eight 1-bit output ports. Figure 6 shows the structure of the ports and table 3 lists the features. Figure 6 also shows the structure of inputs and outputs of the other pins. Software selectable internal pullup resistors are available on ports 0, 1, 2, 3, 6, and 7. They are selectable in 4-bit units. Port 0, bit 0 does not have a pullup resistor. Mask option, bit-selectable internal pullup resistors are available for ports 4 and 5 of all mask ROM devices. Table 3. Types and Features of Digital Ports | Port | Port Function Operation and Features | | Remarks | | |------------------------------------|--|--|---|--| | Port 0 | 4-bit input | Can always be read or tested regardless of the | Pins also used for INT4, SCK, SO/SB0, SI/SB1. | | | Port 1 | - | operation mode. | Pins also used for INT0, INT1, INT2, TI0. | | | Port 3 (Note 1) 4-bit input/output | | Can be placed in input or output mode in 1-bit units. | Pins also used for LCDCL, SYNC, and MD0-MD3 (Note 2) | | | Port 6 | - | | Pins also used for KR0 - KR3. | | | Port 2 | 4-bit input/output | Can be placed in input or output mode in 4-bit | Port 2 pins are also used for PTO ₀ , PCL, BUZ. | | | Port 7 | = | units. Ports 6 and 7 can be paired for data input/output in 8-bit units. | Pins also used for KR4 - KR7. | | | Ports 4, 5 (Note 1) | 4-bit input/output
(n-channel, open
drain, 10 volts) | Can be placed in input or output mode in 4-bit units. Ports 4 and 5 can be paired for data input/output in 8-bit units. | Internal pullup resistor can be specified in 1-bit
units by mask option. (µPD7530xB/31xB only) | | | Ports BP0-BP7 | 1-bit output | Data is output in 1-bit units. The BP0 - BP7 pins are also used as LCD segment pins S24 - S31. BP0 - BP7 and S24 - S31 can be changed by software. | The drive capacity is very small. Used for CMOS load drive. | | ⁽¹⁾ These ports directly drive LEDs. ⁽²⁾ Port 3 lines are also used for MD0 - MD3 in μ PD75316B. Figure 6. Input/Output Circuits (Sheet 1 of 2) 16 Figure 6. Input/Output Circuits (Sheet 2 of 2) #### **Clock Generator** The clock generator (figure 7) uses the crystal inputs X1 and X2 as a time base to provide clocks for the μ PD75316B family. The generator consists of an oscillator, frequency dividers, multiplexers, and three control registers (PCC, SCC, and CLOM). By programming PCC and CLOM, frequencies derived from the crystal are supplied to the CPU, interval timer, timer/event counter, watch timer, serial interface, and output pin PCL. The PCC and SCC registers control the HALT and STOP logic and can also be used to set the CPU to operate at one of four speeds. The CLOM register controls the PCL output clock. The clock generator also contains a subsystem clock consisting of an oscillator driven by an external crystal. It operates at 32-35 kHz and can be used as a clock source to the watch timer, LCD controller, and CPU. Figure 7. Clock Generator #### **Basic Interval Timer** The basic interval timer (figure 8) provides continuous real-time interrupts. It consists of a multiplexer, 8-bit free-running counter, and 4-bit BTM control register. Each time the counter reaches FFH it causes an interrupt, overflows to 00H, and continues to count. The BTM register selects one of four clock inputs to the counter, clears the counter, and clears its interrupt request. The counter can generate 250-ms interrupts with a 4.19-MHz crystal; it also provides oscillator stabilization time when the chip leaves the STOP mode. Figure 8. Basic Interval Timer #### Timer/Event Counter (TM0) The timer/event counter (figure 9) consists of an 8-bit modulo register, 8-bit comparator, 8-bit count register, clock multiplexer, mode control register TM0, and a TOUT flip-flop. Control logic allows the flip-flop signal PTO_0 to be output to port 2, bit 0. An 8-bit value is loaded into the modulo register and a count register clock is selected by the clock multiplexer via control register TM0. The count register is incremented each time it receives a counter pulse (CP). When the value in the count register is equal to the count in the modulo register, the comparator generates a signal. This signal toggles the TOUT flip-flop and resets the count register to 00H. The count register will continue to count up unless stopped. Each time the comparator has a match, TOUT changes state and interrupt IRQT0 is generated. This signal can also be used as a clock for the serial interface. Figure 9. Timer/Event Counter #### Watch Timer The watch timer (figure 10) is normally the time source for keeping track of time of day. With a 4.19-MHz crystal, it will generate interrupt requests (not vectored interrupts) at 0.5-second or 3.91-ms intervals. The watch timer consists of an input clock multiplexer, frequency divider, output multiplexer, control logic, and control register WM. When a subsystem clock is present, the timer can operate when the chip is in the STOP mode. It is also a clock source for the LCD controller and is capable of generating a 2-kHz buzzer output signal. Figure 10. Watch Timer #### Serial Interface The 8-bit serial interface (figure 11) allows the μ PD75316B family to communicate with other NEC or NEC-like serial interfaces. It consists of an 8-bit shift register (SIO), serial-out latch (SO), 8-bit address comparator, slave address register (SVA), control registers CSIM and SBIC, busy/acknowledge circuitry, bus release/detect
circuitry, serial clock counter, clock multiplexer, and clock control circuitry. The three-wire interface consists of the serial data in (SI/SB1), serial data out (SO/SB0), and serial shift clock (\overline{SCK}). There are three modes of operation: 2-wire serial, 3-wire serial, and 2-wire SBI. The simplest modes are the 2/3-wire serial. In these modes, the 8-bit shift register is loaded with a byte of data and 8 clock pulses are generated. These pulses shift data out the SO line and data in from the SI line, thus, communicating in full duplex. Each time a byte of data is sent, a burst of eight clock pulses is generated and eight bits of data will be sent. Data may be sent either LSB or MSB first. The interface may also be set to receive data only; in this case SO is in the high-impedance state. One of four internal clocks or an external clock may be used to clock the data. Figure 11. Serial Interface Block Diagram The SBI mode uses a 2-wire interface (figure 12) with devices in a master/slave configuration. At any one time, there is a single master, with all other devices being slaves. The master can send addresses, commands, and data over the bus. The slaves are able to detect in hardware if their particular address has been sent, and can also detect whether a command or piece of data has been sent. There can be as many as 256 slave addresses, 256 commands, and 256 data types. All commands are user-defined, and it is possible to send commands that change slaves into masters; when this happens, the previous master becomes a slave. This type of work is done in firmware, and the bus can be as simple or complex as the user wishes. Figure 12. SBI Mode Master/Slave Configuration #### LCD Controller/Driver The LCD controller/driver (figure 13) can be programmed to operate in any of four modes. It can operate in the static mode (drive 32 segments), the duplex mode (drive 64 segments), the triplex mode (drive 96 segments), or quadruplex mode (drive 128 segments). The duplex mode uses 1/2 bias, the triplex mode can use either 1/2 or 1/3 bias, and the quadruplex mode uses 1/3 bias. The LCD controller automatically refreshes the LCD by taking data from the upper 32 nibbles of RAM in memory bank 1, and uses display data multiplexers, segment drivers S0 - S31, and common drivers COM0-COM3 to drive the LCD. It is controlled by registers LCDM, LCDC, and PGMA. The LCD main controller clock (fLCD) is provided by the watch timer. The LCD controller/driver can operate in the STOP mode as long as the watch timer is clocked by the subsystem clock. Drive levels can be set internally by ordering the resistor ladder mask option on the $\mu\text{PD7530xB/31xB}$ mask ROM devices. Otherwise, external resistors can be connected to pins V_{LC0} - V_{LC2} and the BIAS pin. The BIAS pin can be used to control the contrast of the LCD. # Bit Sequential Buffer The 16-bit sequential buffer is the only general-purpose RAM in the upper half of data memory bank 15. All other locations in this bank either contain the on-chip peripheral control registers or are unused addresses. The bit sequential buffer can be bit, nibble, or byte manipulated. Its bits are addressed by register L and they can be sequentially scanned by incrementing or decrementing L. A typical application for this buffer might be to store data for the next serial output or to store data from a serial input. It could also be used to store data that is to be sent from a port. Figure 13. LCD Controller Block Diagram #### Interrupts The uPD75316B family has a total of six interrupts (three external and three internal) that share five interrupt vectors. Refer to table 4 and figure 14. Interrupts INTBT and INT4 share one interrupt vector and the interrupt to be serviced is determined by software in the interrupt service routine. In addition, INT2 will sense the rising edge inputs and generate an interrupt request flag, which is testable. Inputs KR0-KR7 will detect falling edges and generate the same interrupt request flag as INT2. Neither INT2 nor KR0-KR7 will cause a vectored interrupt, but they can be used to release the standby mode. Interrupt INTW also does not generate a vectored interrupt but can be tested and used to release the standby mode. All interrupts and interrupt requests except INTO will release the standby mode. Figure 14. Interrupt Controller Block Diagram #### Standby Modes The three standby modes are described below and in table 5. **HALT Mode.** The HALT mode is entered by executing the HALT instruction. In this mode, the clock to the CPU is shut off (thus stopping the CPU), while all other functions with the exception of INTO, remain fully operational. **STOP Mode.** The STOP mode is entered by executing the STOP instruction. In this mode, the chip's main system oscillator is shut off, thereby stopping all functions except those which operate off the subsystem clock. If the subsystem clock is used, it always remains on. The HALT and STOP modes are released by a RESET or by any interrupt request except INTo. **Data Retention Mode.** This mode may be entered after entering the STOP mode. Here, supply voltage V_{DD} may be lowered to 2 volts to further reduce power consumption. The contents of the RAM and registers are retained. This mode is released by first raising V_{DD} to the proper operating range and then releasing the STOP mode. #### Caution Apart from their normal functions, the P0₀/INT4 and RESET pins are used to test the internal operation of the μ PD75304B/306B/308B devices; for μ PD75312B/316B devices, the IC pin is used; for the μ PD75P316B, the V_{PP} pin is used. The test mode is entered by applying a voltage greater than V_{DD} to either of these pins. For this reason, care must be taken to limit the voltage applied to these two pins. For example, it is conceivable that even during normal operation enough spurious noise may be present to set the chip into the test mode. If this happens, further normal operation is impossible. Consequently, it is important that interwiring noise be suppressed as much as possible. If this is inconvenient, anti-noise measures, like those shown in figure 15, should be implemented. # Reset Refer to table 6 for the state of the device after reset. Figure 15. Noise Reduction Techniques Table 4. Interrupt Sources | Interrupt Source | Operation | internal/
External | Interrupt Priority
(Note) | Vectored Interrupt Request Signal
(Vector Table Address) | |------------------|--|-----------------------|--|---| | INTBT | Reference time interval signal from basic interval timer | Internal | 1 | VRQ1
(0002H) | | INT4 | Both rising and falling edge detection | External | • | | | INTO | Selection of rising or falling edge detection | External | 2 | VRQ2
(0004H) | | INT1 | Selection of rising or falling edge detection | External | 3 | VRQ3
(0006H) | | INTCSI | Serial data transfer end signal | Internal | 4 | VRQ4
(0008H) | | INTTO | Coincidence signal between programmable
timer/event counter count register and modulo
register | Internal | 5 | VRQ5
(000AH) | | INT2 | Rising edge detection of input to INT2 pin, or falling edge detection of any input to KR0-KR7 | External | Testable input signa
(can test if IRQ2 or | | | INTW | Signal from watch timer | Internal | • | | Note: The interrupt priority determines the priority order when two or more interrupts are generated simultaneously. Table 5. Standby Mode Operation | Item | STOP Mode | HALT Mode | | | |--|--|--|--|--| | Method of setting standby mode | STOP instruction by main clock or SCC register by subsystem clock | HALT instruction by main or subsystem cloc | | | | Clock oscillator | Only the main system clock oscillator is stopped | Only CPU clock ϕ is stopped (oscillation of main and subsystem clock continues) | | | | Basic interval timer | Operation stopped | Operational | | | | Serial interface | Operates only when external SCK input is selected for serial clock | Operational | | | | Timer/event counter | Operates only when TIO pin input is selected for count clock | Operational | | | | Watch timer | Operates only when fXT is selected for count clock | Operational | | | | LCD controller | Operates only when f _{XT} is selected by the watch timer | Operational | | | | External interrupts | INT1, INT2, INT4 can operate; INT0 cannot | INT1, INT2, INT4 can operate; INT0 cannot | | | | CPU | Operation stops | Operation stops | | | | Release signal Enabled interrupt request signal (except INTO) or RESET | | Enabled interrupt request signal (except IN or RESET | | | Table 6. State of the Device After Reset | ŀ | łardware | RESET Input During
Standby Mode | RESET Input During Operation | | | | |---|--|--|---|--|--|--| | Program counter (PC) | μPD75304B | The low-order 4 bits of program memory address 0000H ar into PC11 - PC8. The contents of address 0001H are loaded PC7 - PC0. | | | | | | | μΡD75306B
μΡD75308B | The low-order 5 bits of program memory address 0000H are loa into PC12 - PC8. The contents of address 0001H are loaded into PC7 - PC0. | | | | | | | μΡD75312B
μΡD75316B
μΡD75P316B | | am memory address 0000H are loaded
ts of address 0001H are loaded into | | | | | PSW | Carry flag (CY) | Held |
Undefined | | | | | | Skip flags (SK0 - SK2) | 0 | 0 | | | | | | Interrupt status flag (IST0) | 0 | 0 | | | | | | Memory bank enable flag
(MBE) | Bit 7 of program memory address 0000H is loaded into MB | | | | | | Stack pointer (SP) | | Undefined | Undefined | | | | | Data memory (RAM) | | Held (Note 1) | Undefined | | | | | General-purpose registers
(X, A, H, L, D, E, B, C) | | Held | Undefined | | | | | Memory bank selection register (MBS) | | 0 | 0 | | | | | Basic interval timer | Counter (BT) | Undefined | Undefined | | | | | | Mode register (BTM) | 0 | 0 | | | | | Timer/event counter | Counter (T0) | 0 | 0 | | | | | | Modulo register (TMOD0) | FFH | FFH | | | | | | Mode register (TM0) | 0 | 0 | | | | | | TOE0, TOUT F/F | 0, 0 | 0, 0 | | | | | Watch timer | Mode register (WM) | 0 | 0 | | | | | Serial interface | Shift register (SIO) | Held | Undefined | | | | | | Operation mode register (CSIM) | 0 | 0 | | | | | | SBI control register (SBIC) | 0 | 0 | | | | | | Slave address register (SVA) | Held | Undefined | | | | | Clock generator and clock output circuit | Processor clock control register (PCC) | 0 | 0 | | | | | | System clock control register (SCC) | 0 | 0 | | | | | | Clock output mode register (CLOM) | 0 | 0 | | | | | LCD controller | Display mode register (LCDM) | 0 | 0 | | | | | | Display control register (LCDC) | 0 | 0 | | | | # μPD75316B Family Table 6. State of the Device After Reset (cont) | | Hardware | RESET Input During
Standby Mode | RESET Input During Operation | | | |-----------------------|---|--|---|--|--| | Interrupt function | Interrupt request flags (IRQxxx) | Reset to 0 | Reset to 0 | | | | | Interrupt enable flags (IExxx) | 0 | 0 | | | | | Interrupt master enable flag
(IME) | 0 | 0 | | | | | INT0, INT1, and INT2 and mode registers (IM0, IM1, and IM2) | 0, 0, 0 | 0, 0, 0 | | | | Digital ports | Output buffers | Off | Off | | | | | Output latches | Cleared to 0 | Cleared to 0 | | | | | Input/output mode registers (PMGA, B) | 0 | 0 | | | | | Pullup resistor specification register (POGA) | 0 | 0 | | | | Bit sequential buffer | | Held | Undefined | | | | Pin conditions | P0 ₀ -P0 ₃ , P1 ₀ -P1 ₃ ,
P2 ₀ -P2 ₃ , P3 ₀ -P3 ₃ ,
P6 ₀ -P6 ₃ , P7 ₀ -P7 ₃ | Input | Input | | | | | P4 ₀ –P4 ₃ , P5 ₀ –P5 ₃ , | With incorporated pullup res
impedance | sistor, high level; with open drain, high | | | | | S0-S31
COM0-COM3 | Note 2 | Note 2 | | | | | BIAS | With incorporated resistor ladder, low level; with no incorporated resistor ladder, high impedance | | | | ⁽¹⁾ The data of data memory address 0F8H-0FDH is undefined by RESET. ⁽²⁾ S0 to S31 use V_{LC1}, COM0 to COM2 use V_{LC2}, and COM3 uses V_{LC0} as an input source. However, each display output level is based on each display output and V_{LCx}'s external circuit. # **ELECTRICAL SPECIFICATIONS** # **Absolute Maximum Ratings** | $I_A = 25^{\circ}C$ | | |--|---------------------------------| | Supply voltage, V _{DD} | -0.3 to +7.0 V | | Supply voltage, V _{PP} (75P316B) | -0.3 to +13.5 V | | Input voltage, V _{I1} (other than ports 4, 5) | -0.3 to V _{DD} + 0.3 V | | Input voltage, V ₁₂ (ports 4, 5;
internal pullup resistor; 7530xB/
31xB only) | -0.3 to V _{DD} + 0.3 V | | Input voltage, V _{I3} (ports 4, 5; open drain) | -0.3 to +11 V | | Output voltage, V _O | -0.3 to V _{DD} + 0.3 V | | High-level output current, I _{OH} (Single pin) | –15 mA peak | | High-level output current, I _{OH} (Total of all pins) | –30 mA peak | | Low-level output current, IOL | 30 mA peak | | (Single pin) | 15 mA rms † | | Low-level output current, IOL | 100 mA peak | | (Total of ports 0, 2, 3, 5) | 60 mA rms † | | Low-level output current, IOL | 100 mA peak | | (Total of ports 4, 6, 7) | 60 mA rms † | | Storage temperature, t _{STG} | -65 to + 150°C | | Operating temperature, t _{OPT} | -40 to +85°C | | | | [†] Rms value = peak value x (duty cycle) 1/2. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics. # Capacitance (All devices) $V_{DD} = 0 \text{ V}; T_A = 25^{\circ}\text{C}$ | Parameter | Symbol | Max | Unit | Conditions | |--------------------|-----------------|-----|------|---------------------------------| | Input capacitance | CiN | 15 | pF | f = 1 MHz; | | Output capacitance | Соит | 15 | pF | all unmeasured
pins returned | | I/O capacitance | C _{IO} | 15 | pF | to ground | # Main System Clock Oscillator Refer to figures 16 and 18. $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | Oscillator | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |-----------------------------------|---|----------|-----|------|--------------|------|--| | Ceramic resonator
(Figure 16A) | Oscillation frequency (Note 1) | fx | 1.0 | | 5.0 | MHz | | | | Oscillation stabilization time (Note 2) | | | | 4 | ms | After V _{DD} reaches oscillator operating voltage | | Crystal resonator | Oscillation frequency (Note 1) | fx | 1.0 | 4.19 | 5.0 (Note 3) | MHz | | | (Figure 16A) | Oscillation stabilization time (Note 2) | | | | 10 | ms | $V_{DD} = 4.5 \text{ to } 6.0$ | | | | | | | 30 | ms | | | External clock
(Figure 16B) | X1 input frequency (Note 1) | fx | 1.0 | | 5.0 (Note 3) | MHz | | | | X1 input low- and high-level width | txH, txL | 100 | | 500 | ns | | - The oscillation frequency and X1 input frequency are shown only to present the characteristics of the oscillators. Refer to the AC Characteristics table for actual instruction execution times. - (2) The oscillation stabilization time is the time required for the oscillator to stabilize after voltage is applied or the STOP mode is released. - (3) When the oscillator frequency is 4.19 MHz < f_x ≤ 5.0 MHz, do not select PPC = 0011 as instruction execution time. If PCC = 0011 is selected, 1 machine cycle becomes less than 0.95 µs, with the result that specified MIN. value 0.95 µs can not be observed. Figure 16. Main System Clock Configurations Figure 17. Subsystem Clock Configurations Figure 18. Clock AC Timing Points X1 and XT1 # Subsystem Clock Oscillator Refer to figures 17 and 18. $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | Oscillator | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |---|---------------------------|-----------------|-----|--------|-----|------|------------------------------| | Crystal resonator (figure 17A) Oscillation frequency Oscillation stabilization time (See note) | Oscillation frequency | ^f XT | 32 | 32.768 | 35 | kHz | | | | Oscillation stabilization | | | 1.0 | 2 | s | V _{DD} = 4.5 to 6.0 | | | time (See note) | | | | 10 | \$ | - | | External clock (figure 17B) XT1 input frequency XT1 input low- and high-level width | XT1 input frequency | f _{XT} | 32 | | 100 | kHz | | | | | txth, txtl | 5 | | 15 | μs | | Note: Time required for oscillation to become stabilized after V_{DD} is applied. # **DC Characteristics** $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |---------------------------|------------------|-----------------------|-----|---------------------|------|---| | High-level input voltage | V _{IH1} | 0.7 V _{DD} | | V _{DD} | ٧ | Ports 2, 3; V _{DD} = 2.7 to 6.0 V | | | | 0.8 V _{DD} | | V _{DD} | ٧ | Ports 2, 3; V _{DD} = 2.0 to 6.0 V | | | V _{iH2} | 0.8 V _{DD} | | V _{DD} | V | Ports 0, 1, 6, 7; and RESET | | | V _{IH3} | 0.7 V _{DD} | | v _{DD} | ٧ | Ports 4 and 5; internal pullup resistor, 7530xB, 31xB; V _{DD} = 2.7 to 6.0 V | | | _ | 0.8 V _{DD} | | V _{DD} | ٧ | Ports 4 and 5; internal pullup resistor, 7530xB, 31xB; V _{DD} = 2.0 to 6.0 V | | | _ | 0.7 V _{DD} | | 10 | ٧ | Ports 4 and 5; open drain; V _{DD} = 2.7 to 6.0 V | | | | 0.8 V _{DD} | | 10 | V | Ports 4 and 5; open drain; $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | | | V _{IH4} | V _{DD} - 0.5 | | V _{DD} | ٧ | X1, X2, XT1; V _{DD} = 2.7 to 6.0 V | | | | V _{DD} – 0.3 | | v_{DD} | ٧ | X1, X2, XT1; V _{DD} = 2.0 to 6.0 V | | Low-level input voltage | V _{IL1} | 0 | | 0.3 V _{DD} | ٧ | Ports 2, 3, 4, 5; V _{DD} = 2.7 to 6.0 V | | | | 0 | | 0.2 V _{DD} | ٧ | Ports 2, 3, 4, 5; V _{DD} = 2.0 to 6.0 V | | | V _{IL2} | 0 | | 0.2 V _{DD} | ٧ | Ports 0, 1, 6, 7; RESET | | | V _{IL3} | 0 | | 0.4 | ٧ | X1, X2, XT1; V _{DD} = 2.7 to 6.0 V | | | | 0 | | 0.25 | ٧ | X1, X2, XT1; V _{DD} = 2.0 to 6.0 V | | High-level output voltage | V _{OH1} | V _{DD} – 1.0 | | | ٧ | Ports 0, 2, 3, 6, 7, BIAS; $V_{DD} = 4.5$ to 6.0 V; $I_{OH} = -1$ mA | | | | V _{DD} - 0.5 | | | ٧ | Ports 0, 2, 3, 6, 7, BIAS; $V_{DD} = 2.0$ to 6.0 V; $I_{OH} = -100 \mu\text{A}$ | | | V _{OH2} | V _{DD} – 2.0 | | | ٧ | BP_{0-7} (with two I_{OH} outputs)
$V_{DD} = 4.5$ to 6.0 V
$I_{OH} = -100 \mu A$ | | | | V _{DD} 1.0 | | | ٧ | BP_{0-7} (with two I_{OH} outputs)
$V_{DD} = 2.7$ to 6.0 V
$I_{OH} = -30 \mu\text{A}$ | | | | V _{DD} – 0.4 | | | ٧ | BP ₀₋₇ (with two l _{OH} outputs)
$V_{DD} = 2.0$ to 6.0 V
$I_{OH} = -10 \mu A$ | # μPD75316B Family | DC | Characteristics (| (cont) | |--------------|-------------------|--------
 | \mathbf{D} | Cilalacteristics | COLLE | | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |---|------------------------------|-----|-----|---------------------|------|---| | Low-level output voltage | V _{OL1} | | 0.5 | 2.0 | ٧ | Ports 3, 4, 5; $V_{DD} = 4.5$ to 6.0 V; $I_{OL} = 15$ mA; μ PD75P30xB/31xB | | | | | 0.7 | 2.0 | ٧ | Ports 3, 4, 5; $V_{DD} = 4.5$ to 6.0 V; $I_{OL} = 15$ mA; μ PD75P316B | | | | | | 0.4 | ٧ | Ports 0, 2-7; $V_{DD} = 4.5$ to 6.0 V; $I_{OL} = 1.6$ mA | | | | | | 0.5 | ٧ | Ports 0, 2-7; $V_{DD} = 2.0$ to 6.0 V; $I_{OL} = 400 \mu A$ | | | | | | 0.2 V _{DD} | ٧ | SB0, 1; $V_{DD} = 2.0$ to 6.0 V; open drain pullup resistance $\geq 1k\Omega$ | | | V _{OL2} | | | 1.0 | ٧ | BP_{0-7} (with two I_{OL} outputs)
$V_{DD} = 4.5$ to 6.0 V;
$I_{OL} = 100 \ \mu A$ | | | _ | | | 1.0 | ٧ | BP_{0-7} (with two l_{OL} outputs)
$V_{DD} = 2.7$ to 6.0 V;
$l_{OL} = 50 \mu A$ | | | _ | | | 0.4 | ٧ | BP_{0-7} (with two I_{OL} outputs)
$V_{DD} = 2.0$ to 6.0 V;
$I_{OL} = 10 \mu A$ | | High-level input leakage
current | l _{LIH1} | | | 3 | μΑ | All except X1, X2, XT1 and ports 4, 5 (open drain); $V_{\text{IN}} = V_{\text{DD}}$ | | | I _{LIH2} | | | 20 | μΑ | X1, X2, and XT1; V _{IN} = V _{DD} | | | I _{L1H3} | | | 20 | μΑ | Ports 4 and 5 (with open drain); $V_{IN} = 10 \text{ V}$ | | Low-level input leakage | I _{LIL1} | | | -3 | μΑ | All except X1, X2, and XT1; $V_{IN} = 0 V$ | | current | lLIL2 | | | -20 | μА | X1, X2, and XT1; V _{IN} = 0 V | | High-level output
leakage current | I _{LOH1} | | | 3 | μА | Other than ports 4 and 5 (open drain); $V_{OUT} = V_{DD}$ | | | I _{LOH2} | | | 20 | μΑ | Ports 4 and 5 (open drain); V _{OUT} = 10 V | | Low-level output leakage current | ¹ LOL | | | -3 | μΑ | V _{OUT} = 0 V | | Internal pullup resistor | R _{L1} | 15 | 40 | 80 | kΩ | Ports 0-3, 6, 7 (except $P0_0$); $V_{IN} = 0 \text{ V}$; $V_{DD} = 5.0 \text{ V} \pm 10\%$ | | | _ | 30 | | 200 | kΩ | Ports 0-3, 6, 7 (except P0 ₀); $V_{IN} = 0 \text{ V}$; $V_{DD} = 3.0 \text{ V} \pm 10\%$; $7530 \times B/31 \times B$ | | | | 50 | | 600 | kΩ | Ports 0-3, 6, 7 (except PO_0); $V_{IN} = 0 V$; $V_{DD} = 2.0$ to 6.0 V | | | R _{L2} | 15 | 40 | 70 | kΩ | Ports 4, 5; $V_{OUT} = V_{DD} - 2 V$; $V_{DD} = 5.0 V \pm 10\%$; 7530xB/31xB | | | | 15 | 40 | 70 | kΩ | Ports 4, 5; $V_{OUT} = V_{DD} - 1 \text{ V}$; $V_{DD} = 2.5 \text{ V} \pm 10\%$; 7530xB/31xB | | | | 15 | 40 | 70 | kΩ | Ports 4, 5; $V_{OUT} = V_{DD} - 2 V$; $V_{DD} = 3.0 V \pm 10\%$; $7530xB/31xB$ | | LCD drive voltage | V _{LCD} | 2.0 | | V_{DD} | ٧ | | | LCD split resistor | R _{LCD}
(Note 1) | 60 | 100 | 150 | kΩ | 7530xB/31xB | | LCD output voltage
deviation; common
(Note 2) | Vodc | 0 | | ±0.2 | ٧ | $I_O = \pm 5 \mu\text{A};$
$V_{LCD} = V_{LCD0} = 2.0 \text{V to } V_{DD};$
$V_{LCD1} = 2/3 V_{LCD}$
$V_{LCD2} = 1/3 V_{LCD}$ | # DC Characteristics (cont) | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |--|------------------------------|--------|------------|------------|----------|--| | LCD output voltage
deviation; segment
(Note 2) | V _{ODS} | 0 | | ±0.2 | ٧ | $I_{O} = \pm 1 \mu A;$
$V_{LCD} = V_{LCD0} = 2.0 V \text{ to } V_{DD};$
$V_{LCD1} = 2/3 V_{LCD}$
$V_{LCD2} = 1/3 V_{LCD}$ | | Supply current
(Note 3) | I _{DD1}
(Note 4) | †
‡ | 0.3
0.4 | 0.9
1.2 | mA
mA | V _{DD} = 2.5 V ±10% (Note 5) | | | | † ‡ | 0.4
0.5 | 1.2
1.5 | mA
mA | V _{DD} = 3 V ±10% (Note 5) | | | | †
‡ | 3.0
4.0 | 9.0
12 | mA
mA | V _{DD} = 5 V ±10% (Note 6) | | | I _{DD2} | | 200 | 600 | μΑ | HALT mode; V _{DD} = 2.5 V ±10% | | | (Note 4) | | 300 | 900 | μΑ | HALT mode; V _{DD} = 3 V ±10% | | | _ | | 1 | 3 | mA | HALT mode; V _{DD} = 5 V ±10% | | | I _{DD3}
(Note 7) | †
‡ | 20
30 | 60
90 | μΑ
μΑ | V _{DD} = 3 V ±10% (Note 8) | | | | †
‡ | 15
25 | 45
75 | μA
μA | V _{DD} = 2.5 V ±10% (Note 8) | | | I _{DD4} | | 4 | 12 | μА | HALT mode; V _{DD} = 2.5 V ±10% (Note 8) | | | (Note 7) | | 7 | 21 | μА | HALT mode; V _{DD} = 3 V ±10% (Note 8) | | | I _{DD5} | | 0.4 | 5 | μΑ | STOP mode; XT1 = 0 V; V_{DD} = 2.5 V ±10%; T_A = 25°C | | | | | 0.4 | 15 | μΑ | STOP mode; XT1 = 0 V; V _{DD} = 2.5 V ±10% | | | - | | 0.5 | 5 | μΑ | STOP mode; XT1 = 0 V; V_{DD} = 3 V \pm 10%; T_A = 25°C | | | | | 0.5 | 15 | μΑ | STOP mode; XT1 = 0 V; V _{DD} = 3 V ±10% | | | | | 1 | 25 | μΑ | STOP mode; XT1 = 0 V; V _{DD} = 5 V ±10% | - LCD split resistor is a mask option. See LCD Drive Power Supply section in the User's manual. R = R_{LCD}. - (2) Voltage deviation is the difference between the ideal value of segment or common output (V_{LCDn}; n = 0, 1, 2) and the output voltage. - (3) Does not include internal pullup resistor current and current through LCD resistor ladder. - (4) 4.19-MHz crystal oscillator; (C1 = C2 = 22 pF); subsystem clock running. - (5) When operated in the low-speed mode with the PCC set to 0000. - (6) When operated in the high-speed mode with the processor clock control register (PCC) set to 0011. - (7) 32-kHz crystal oscillator - (8) Main system clock stopped and subsystem clock running (SCC = 1001). # μ PD75316B Family #### **AC Characteristics** $T_A = -40 \text{ to } +85^{\circ}\text{C}$; $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$; refer to figures 19 through 24 | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |------------------------------------|--|----------|-----|-----|------|---| | Cycle time | tcy | 5.0 | | 64 | μs | Main system clock; V _{DD} = 2.0 to 6.0 V | | (Note 1) | (figure 20) | 3.8 | | 64 | μs | Main system clock; V _{DD} = 2.7 to 6.0 V | | | | 3.4 | | 64 | με | Main system clock; V_{DD} = 2.2 to 6.0 V T_A = -40 to +60°C | | | | 0.95 | | 64 | μs | Main system clock; V _{DD} = 4.5 to 6.0 V | | | | 114 | 122 | 125 | μs | Subsystem clock | | TIO input frequency | ^f TI
(figure 21) | 0 | | 1 | MHz | V _{DD} = 4.5 to 6.0 V | | | | 0 | | 275 | kHz | V _{DD} = 2.0 to 6.0 V | | TIO input high-and low-level width | t _{TIH} , t _{TIL}
(figure 21) | 0.48 | | | μs | V _{DD} = 4.5 to 6.0 V | | , - | | 1.8 | | | μs | V _{DD} = 2.0 to 6.0 V | | Interrupt inputs | tinth, tintl | (Note 2) | | | μs | INTO | | high- and low-level width | (figure 22) | 10 | | | μs | INT1, 2, 4 | | | | 10 | - | | μs | KR0-KR7 | | RESET low-level width | t _{RSL}
(figure 23) | 10 | | | μs | After V _{DD} ≥ 2.0 V | - (1) Cycle time (minimum instruction execution time) is determined by the frequency of the oscillator connected to the microcontroller, system clock control register (SCC), and the processor clock control (PCC). See figures 20 and 22. - (2) $2t_{CY}$ or $128/f_X$, depending on the setting of the interrupt mode register (IMO). Figure 19. AC Timing Measurement Points (except X1 and XT1) Figure 20. Main System Clock Operation, t_{CY} vs. V_{DD} ($V_{DD} = 2.7$ to 6.0 V) Figure 21. Interrupt Input Timing Figure 22. Main System Clock Operation, t_{CY} vs. V_{DD} ($V_{DD} = 2.0$ to 6.0 V) Figure 23. TIO Timing Figure 24. RESET Input Timing # Serial Interface, 2/3-Line Serial I/O Mode; Internal SCK Output $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} = 2.0 \text{ to } 6.0 \text{ V}; \text{ refer to figure } 25$ | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |-------------------------------|-------------------|-----------------------------|-----|------|------|---| | SCK cycle time | t _{KCY1} | 1600 | | | ns | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$ | | | | 3800 | | | ns | $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | | SCK high- and low-level width | tKH1, tKL1 | 0.5 t _{KCY1} - 50 | | | ns | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$ | | | | 0.5 t _{KCY1} - 150 | | | ns | $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | | SI setup time to SCK † | tsik1 | 150 | | | пѕ | $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ | | | | 250 | | | пэ | V _{DD} = 2.0 to 6.0 V | | SI hold time from SCK † | t _{KSI1} | 400 | | | ns | | | SCK i to SO output delay time | t _{KSO1} | | | 250 | ns | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V (Note)}$ | | | | | | 1000 | ns | V _{DD} = 2.0 to 6.0 V (Note) | Note: $R_L=1~k\Omega$ and $C_L=100~pf$ are load resistance and load capacitance for the SO line. # Serial Interface, 2/3-Line Serial I/O Mode; External SCK Input $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} = 2.0 \text{ to } 6.0 \text{ V}; \text{ refer to figure } 25$ | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |-------------------------------|-------------------------------------|------|-----|------|------|---| | SCK cycle time | tKCY2 | 800 | | | ns | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$ | | | | 3200 | | | ns | $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | | SCK high- and low-level width | t _{KH2} , t _{KL2} | 400 | | | ns | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$ | | | | 1600 | | | ns | $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ | | SI setup time to SCK † | t _{SIK2} | 100 | | | ns | | | SI hold time from SCK † | t _{KS12} | 400 | | | ns | | | SCK ↓ to SO output delay time | t _{KSO2} | | | 300 | ns | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V (Note)}$ | | | | | | 1000 | ns | V _{DD} = 2.0 to 6.0 V (Note) | Note: $R_L=1~k\Omega$ and $C_L=100~pf$ are load resistance and load capacitance for the SO line. ## Serial Interface, SBI Mode; Internal SCK Output (Master) $T_A = -40 \text{ to } +85^{\circ}\text{C}$;
$V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$; refer to figure 25 | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |-------------------------------------|-------------------|-----------------------------|-----|------|------|--| | SCK cycle time | t _{KCY3} | 1600 | | | ns | $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$ | | | | 3800 | | | ns | V _{DD} = 2.0 to 6.0 V | | SCK high- and low-level width | tKH3, tKL3 | 0.5 t _{KCY3} - 50 | | | ns | V _{DD} = 4.5 to 6.0 V | | | | 0.5 t _{KCY3} - 150 | | | ns | V _{DD} = 2.0 to 6.0 V | | SB0, SB1 setup time to SCK † | tsik3 | 150 | | | ns | V _{DD} = 2.7 to 6.0 V | | | | 250 | • | | ns | V _{DD} = 2.0 to 6.0 V | | SB0, SB1 hold time from SCK † | t _{KS13} | 0.5 t _{KCY3} | | | ns | | | SCK ↓ to SB0, SB1 output delay time | t _{KSO3} | 0 | | 250 | ns | V _{DD} = 4.5 to 6.0 V (Note) | | | | 0 | | 1000 | ns | V _{DD} = 2.0 to 6.0 V (Note) | | SCK † to SB0, SB1 ↓ | †K\$B | t _{KCY3} | | | ns | | | SB0, SB1 ↓ to SCK ↓ | t _{SBK} | [†] KCY3 | | | ns | | | SB0, SB1 low-level width | t _{SBL} | t _{KCY3} | | | ns | | | SB0. SB1 high-level width | t _{SBH} | tксүз | | | ns | | Note: $R_L \,=\, 1\,\,k\Omega$ and $C_L \,=\, 100$ pf are load resistance and load capacitance for the SB0, SB1 output lines. # Serial Interface, SBI Mode; External \overline{SCK} Input (Slave) $T_A = -40$ to $+85^{\circ}C$; $V_{DD} = 2.0$ to 6.0 V; refer to figure 25 | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |-------------------------------------|-------------------|-----------------------|-----|------|------|---------------------------------------| | SCK cycle time | t _{KCY4} | 800 | | | ns | V _{DD} = 4.5 to 6.0 V | | | | 3200 | | | กร | V _{DD} = 2.0 to 6.0 V | | SCK high- and low-level width | tKH4, tKL4 | 400 | | | ns | V _{DD} = 4.5 to 6.0 V | | | | 1600 | | | ns | V _{DD} = 2.0 to 6.0 V | | SB0, SB1 setup time to SCK 1 | ts1K4 | 100 | | | ns | | | SB0, SB1 hold time from SCK t | t _{KS14} | 0.5 t _{KCY4} | | | ns | 11 1111 | | SCK ↓ to SB0, SB1 output delay time | t _{KSO4} | 0 | | 300 | ns | V _{DD} = 4.5 to 6.0 V (Note) | | | | 0 | | 1000 | ns | V _{DD} = 2.0 to 6.0 V (Note) | | SCK † to SB0, SB1 ↓ | t _{KSB} | tKCY4 | | | ns | | | SB0, SB1 ↓ to SCK ↓ | t _{SBK} | t _{KCY4} | | | ns | | | SB0, SB1 low-level width | t _{SBL} | [‡] KCY4 | | | ns | | | SB0, SB1 high-level width | t _{SBH} | tKCY4 | | | ns | | Note: $R_L=1~k\Omega$ and $C_L=100~pf$ are load resistance and load capacitance for the SB0, SB1 output lines. 38 ■ 6427525 0052781 199 **■** ## Data Memory STOP Mode; Low-Voltage Data Retention Characteristics $T_A = -40 \text{ to } +85^{\circ}\text{C}$; refer to figure 26 | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |---|-------------------|-----|--------------|-----|------|------------------------------------| | Data retention voltage | V _{DDDR} | 2.0 | | 6.0 | ٧ | 100 | | Data retention current (Note 1) | IDDDR | | 0.3 | 15 | μΑ | V _{DDDR} = 2.0 V; XT1 = 0 | | Release signal set time | tSREL | 0 | | | με | | | Oscillation stabilization time (Note 2) | twarr | | (Notes 3, 4) | | ms | Release by RESET input | | | | | (Note 3) | | ms | Release by interrupt request | #### Notes: - Excludes current in the internal pullup resistors and LCD resistor ladder. - (2) Oscillation stabilization WAIT time is the time during which the CPU is stopped and the crystal is stabilizing. This time is required to prevent unstable operation while the oscillation is started. The interval timer can be used to delay the CPU from executing instructions using the basic interval timer mode register (BTM) according to the following table: | втмз | ВТМ2 | BTM1 | втмо | WAIT Time
(f _x = 4.19 MHz) | |------|------|------|------|--| | _ | 0 | 0 | 0 | 2 ²⁰ /f _x (250 ms approx) | | _ | 0 | 1 | 1 | 2 ¹⁷ /f _x (31.3 ms approx) | | | 1 | 0 | 1 | 2 ¹⁵ /f _x (7.82 ms approx) | | - | 1 | 1 | 1 | 2 ¹³ /f _x (1.95 ms approx) | - (3) Consult the manufacturer's resonator or crystal specification sheet for this value. - (4) The interval timer will cause a delay of 217/fx after a reset. Figure 26. Low-Voltage Data Retention Timing ### **PROM PROGRAMMING** The PROM in the μ PD75316B family is one-time programmable (OTP) or ultraviolet erasable (UVE). In the μ PD part numbers below, GC, GK, and KK denote QFP, TQFP and LCC packages, respectively. | μPD | PROM | Bytes | Package | |-----------|-------|--------|--------------| | 75P316BGC | OTP | 16,256 | QFP | | 75P316BGK | OTP | 16,256 | TQFP | | 75P316BKK | EPROM | 16,256 | LCC w/window | The PROM is programmed using the pins listed in table 7. Note that it is not necessary to enter an address since the address is updated by pulsing the clock pins. During programming, addresses are incremented by applying clock pulses to the X1 and X2 input pins. When \pm 6 V is applied to V_{DD} and \pm 12.5 V to V_{PP} , the PROM is placed in the write/verify mode. Pins MD0 - MD3 select the applicable operation as shown in table 8. Table 7. PROM Write and Verify Pin Functions | Pin | Function | | | | | |---|---|--|--|--|--| | X1, X2 | Pulsed to increment address during PROM write/verify operation. The inverse of X1 is applied to X2. Note that these pins are also pulsed during a read. | | | | | | MD0 - MD3 | Operation mode selection pins. | | | | | | P4 ₀ - P4 ₃
(four low-order bits)
P5 ₀ - P5 ₃
(four high-order bits) | 8-bit data input/output pins for write/verify | | | | | | V _{DD} | Supply voltage. Normally 5 volts; 6 volts is applied during write/verify | | | | | | V _{PP} | Normally 5 volts; 12.5 volts is applied during write/verify | | | | | Note: To prevent erasure, the window on the ceramic LCC package of the 75F316BKK should be covered with an opaque film. Since the µPD75P316BGC/P316BGK do not have windows, the contents of their EPROM cannot be erased. Table 8. Mode Selection $V_{PP} = +12.5 \text{ V}; V_{DD} = +6.0 \text{ V}$ | MD0 | MD1 | MD2 | MD3 | Operation Mode | |-----|-----|-----|-----|------------------------------| | 1 | 0 | 1 | 0 | Program memory address clear | | 0 | 1 | 1 | 1 | Write mode | | 0 | 0 | 1 | 1 | Verify mode | | 1 | × | 1 | 1 | Program inhibit | x = Don't care. ## PROM Write/Verify Procedure PROMs can be written at high speed using the following procedure. Figure 27 is the timing diagram. - Connect unused pins to V_{SS} through resistors. Set the X1 pin low. - (2) Supply +5 volts to VDD and VPP pins. - (3) Wait 10 μs. - (4) Select program memory address clear mode. - (5) Supply +6 volts to V_{DD} pin and + 12.5 volts to V_{PP} pin. - (6) Select program inhibit mode. - (7) Write data in the 1-ms write mode. - (8) Select program inhibit mode. - (9) Select verify mode. If data is correct, proceed to step 10. If not, repeat steps 7, 8, and 9 up to a maximum of 20 times. If data is still incorrect, terminate programming and declare the device defective. - (10) Perform one additional write with an MD0 pulse width (in ms) equal to the number of writes performed in step 7. For example, MD0 = 10 ms if the location was written to 10 times in step 7. - (11) Select program inhibit mode. - (12) Apply four pulses to the X1 pin to increment the program memory address by one. - (13) Repeat steps 7-12 until the end address is reached. - (14) Select program memory address clear mode. - (15) Return V_{DD} and V_{PP} pins to +5 volts. - (16) Turn off power. #### **PROM Read Procedure** The PROM contents can be read by using the following procedure. Figure 28 is the timing diagram for steps 2-9. - Connect unused pins to V_{SS} through resistors. Set the X1 pin low. - (2) Supply +5 volts to VDD and VPP pins. - (3) Wait 10 μs. - (4) Select program memory address clear mode. - (5) Supply +6 volts to V_{DD} pin and + 12.5 volts to V_{PP} pin. - (6) Select program inhibit mode. - (7) Select verify mode. Apply four pulses to the X1 pin. The data in address 0 will be output. Every additional four clock pulses will output the data stored in the next address. - (8) Select program inhibit mode. - (9) Select program memory address clear mode. - (10) Return VDD and VPP pins to +5 volts. - (11) Turn off power. ## Figure 28. PROM Read Cycle Timing ## Program Erasure (µPD75P316BKK) The UVE PROM (EPROM) can be erased by light rays whose wavelength is shorter than about 250 nm. The programmed data contents may also be erased if the uncovered window is exposed to direct sunlight or a fluorescent light for several hours. Thus, to protect the data contents, cover the window with an opaque film. NEC attaches quality-tested shading film to the UVE PROM products for shipping. For normal EPROM erasure, place the device under an ultraviolet light source (254 nm). The minimum radiation exposure required to erase the written data completely is 15 Ws/cm² (ultraviolet ray strength times erase time). This corresponds to about 15 to 20 minutes with a UV lamp of 12,000 μ W/cm². However, the time may be prolonged if the UV lamp is old or if the device window is dirty. The distance between the light source and the window should be 2.5 cm or less. ## DC Programming Characteristics (µPD75P316B) | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |--------------------------------|------------------|-----------------------|-----|---------------------|------|--------------------------------------| | High-level input voltage | V _{IH1} | 0.7 V _{DD} | | V _{DD} | ٧ | All except X1, X2 | | | V _{IH2} | V _{DD} – 0.5 | | V _{DD} | ٧ | X1, X2 | | Low-level input voltage | V _{IL1} | 0 | , | 0.3 V _{DD} | ٧ | All except X1, X2 | | | V _{IL2} | 0 | | 0.4 | ٧
 X1, X2 | | Input leakage current | lu | | | 10 | μΑ | $V_{IN} = V_{IL} \text{ or } V_{IH}$ | | High-level output voltage | V _{он} | V _{DD} – 1.0 | | | ٧ | I _{OH} = -1 mA | | Low-level output voltage | VoL | | | 0.4 | ٧ | I _{OL} = 1.6 mA | | V _{DD} supply current | l _{DD} | | | 30 | mA | | | V _{pp} supply current | lpp . | | | 30 | mA | $MD0 = V_{IL}; MD1 = V_{IH}$ | #### Notes - (1) Vpp must not exceed +13.5 V, including overshoot. - (2) V_{DD} must be applied before V_{PP}. V_{DD} should be removed after V_{PP} is removed. AC Programming Characteristics (µPD75P316B) $T_A = 25 \pm 5$ °C; $V_{DD} = 6.0 \pm 0.25$ V; $V_{PP} = 12.5 \pm 0.3$ V; $V_{SS} = 0$ V; refer to figures 29 and 30 | Parameter | Symbol | (Note 1) | Min | Тур | Max | Unit | Conditions | |--|-------------------|------------------|-------|-----|------|------|---| | Address setup time to MD0 ¼ (Note 2) | t _{AS} | t _{AS} | 2 | | | μs | | | MD1 setup to MD0 ↓ | t _{M1S} | toes | 2 | | | μs | | | Data setup to MD0 ↓ | t _{DS} | tos | 2 | | | μs | | | Address hold from MD0 † (Note 2) | t _{AH} | t _{AH} | 2 | | | μs | _ | | Data hold from MD0 f | t _{DH} | t _{DH} | 2 | | | με | | | Data output float delay from MD0 ↑ | t _{DF} | t _{DF} | 0 | | 130 | ns | | | V _{PP} setup to MD3 † | typs | t _{VPS} | 2 | | | με | | | V _{DD} setup to MD3 † | tvos | tvcs | 2 | | | μs | | | Initialized program pulse width | tpW | t _{PW} | 0.95 | 1.0 | 1.05 | ms | | | Additional program pulse width | topw | topw | 0.95 | | 21 | ms | | | MD0 setup to MD1 † | tmos | tces | 2 | | | μs | | | Data output delay from MD0 ↓ | t _{DV} | t _{DV} | | | 1 | μs | $MD0 = MD1 = V_{IL}$ | | MD1 hold from MD0 f | t _{M1H} | ^t oeh | 2 | | | μs | t _{M1H} + t _{M1R} ≥ 50 μs | | MD1 recovery from MD0 ↓ | t _{M1R} | ton | 2 | | | με | t _{M1H} + t _{M1R} ≥ 50 μs | | Program counter reset | tPCR | _ | 10 | | | μs | | | X1 input high and low-level width | tXH, tXL | - | 0.125 | | | μs | | | X1 input frequency | f _X | _ | | | 4.19 | MHz | | | Initial mode set | tį | _ | 2 | | | μs | | | MD3 setup to MD1 f | t _{M3S} | _ | 2 | | | μs | | | MD3 hold from MD1 ↓ | t _{M3H} | _ | 2 | | | μs | | | MD3 setup to MD0 ↓ | ^t M3SR | _ | 2 | | | μs | During Program Read cycle | | Address to data output delay time (Note 2) | tDAD | tacc | | | 2 | με | _ | | Address to data output hold time (Note 2) | tHAD | tон | 0 | | 130 | ns | _ | | MD3 output hold from MD0 † | t _{M3HR} | _ | 2 | | | με | _ | | Data output float delay from MD3 ↓ | tDFR | | | | 2 | μs | | ## Notes: ⁽¹⁾ These symbols correspond to those on the μ PD27C256/C256A EPROM. ⁽²⁾ The internal address signal is incremented by one at the rising edge of the fourth X1 pulse; it is not connected to an external pin. 1 46 ■ 6427525 0052789 48T ■ #### SOLDERING Packaging and Soldering Information | Part Number | Package | Package Drawing | Recommended Soldering Code | | |---|-----------------------------|-----------------|---------------------------------|--| | μΡD75304BGC
μΡD75306BGC-xxx-3B9
μΡD75308BGC-xxx-3B9
μΡD75312BGC-xxx-3B9
μΡD75316BGC-xxx-3B9 | 80-pin plastic QFP | \$80GC-65-3B9-3 | IR35-00-2, VP15-00-2, WS60-00-1 | | | μPD75304BGF-xxx-3B9
μPD75306BGF-xxx-3B9
μPD75308BGF-xxx-3B9 | 80-pin plastic QFP | P80GF-80-3B9-2 | IR30-00-1, VP15-00-1, WS60-00-1 | | | μPD75304BGK-xxx-BE9 80-pin plastic TQFP μPD75306BGK-xxx-BE9 μPD75308BGK-xxx-BE9 | | P80GK-50-BE9-3 | IR30-161-1, VP15-161-1 | | | μPD75312BGK-xxx-BE9
μPD75316BGK-xxx-BE9 | 80-pin plastic TQFP | P80GK-50-BE9-3 | IR35-107-2, VP15-107-2 | | | μPD75P316BGC-3B9 | 80-pin plastic QFP | S80GC-65-3B9-3 | IR35-00-2, VP15-00-2, WS60-00-1 | | | μPD75P316BGK-xxx-BE9 | 80-pin plastic TQFP | P80GK-50-BE9-3 | IR35-107-2, VP15-107-2 | | | μPD75P316BKK-T | 80-pin ceramic LCC w/window | X80KW-65A-1 | Soldering not recommended | | **Soldering Conditions** | Method (Note 1) | Code (Note 2) | Soldering Conditions | Exposure Limit (Note 3) | |---------------------|------------------------|---|---| | Infrared reflow | IR30 -00 -1 | Package peak temp: 230°C | No limit | | | IR30-161-1 | Time: 30 sec max (210°C min) | Max no. of days: 1 (thereafter, 16 hours baking at 125°C is required) | | | 1 do do 2 | No limit | | | | IR35-107-2 | Time: 30 sec max (210°C min) | Max no. of days: 7 (thereafter, 10 hours baking at 125°C is required) | | Vapor phase | VP15-00-1
VP15-00-2 | Package peak temp: 215°C
Time: 40 sec max (200°C min) | No limit | | | VP15-107-2 | - | Max no. of days: 7 (thereafter, 10 hours baking at 125°C is required) | | | VP15-161-1 | - | Max no. of days: 1 (thereafter, 16 hours baking at 125°C is required) | | Wave soldering | WS60-00-1 | Solder bath temp: 260°C max
Time: 10 sec max
Preheating temp: 120°C max
(package surface temp) | No limit | | Pin partial heating | | Temperature: 300°C max
Time: 3 sec max (per device side) | No limit | #### Notes: - (1) Do not use different soldering methods together. However, on all devices the pin partial heating soldering method can be used alone or in combination with other soldering methods. - (2) The maximum number of soldering operations is one or two as indicated by the last digit of the soldering code: -1 or -2. - (3) Maximum no. of days refers to the number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max. 48 **■ 6427525 0052791 038 ■** ## **PACKAGE DRAWINGS** ## 80-Pin Plastic QFP, 14 x 14 mm (Dwg S80GC-65-3B9-3) | Item | Millimeters | Inches | A | | |-------|----------------------------------|--------------------|--|--| | Α | 17.2 ± 0.4 | .677 ± .016 | B → | | | В | 14.0 ± 0.2 | .551 + .009
008 | | | | С | 14.0 ± 0.2 | .551 + .009
008 | | | | D | 17.2 ± 0.4 | .677 ± .016 | | | | F | 0.8 | .031 | | | | G | 0.8 | .031 | | | | н | 0.30 ± 0.10 | .012 + .004
005 | 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 1 | 0.13 | .005 | | | | J | 0.65 (TP) | .026 (TP) | | | | к | 1.6 ± 0.2 | .063 ± .008 | | | | L | 0.8 ± 0.2 | .031 + .009 | | | | М | 0.15 ^{+ 0.10}
- 0.05 | .006 + .004 | F | | | N | 0.10 | 0.004 | G H → H | | | Р | 2.7 | .106 | ⊕ <u> </u> ₩ | | | Q | 0.1 ± 0.1 | .004 ± .004 | | | | S | 3.0 max | .119 max | К | Enlarged detail of lead end | | | | | M L M | \$ P \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | 389-3 | | | | 49NR- | ## PACKAGE DRAWINGS (cont) ## 80-Pin Plastic QFP, 14 x 20 mm (Dwg P80GF-80-3B9-2) | Item | Millimeters | Inches | A ► | |----------|---------------------|-------------------|------------| | Α | 23.6 ±0.4 | .929 ±.016 | B 5.1 | | В | 20.0 ±0.2 | .787 +.009
008 | | | С | 14.0 ±0.2 | .561 +.009
008 | | | D | 17.6 ±0.4 | .693 ±.016 | 64 41 | | F | 1.0 | .039 | | | G | 0.8 | .031 | | | н | 0.35 ±0.10 | .014 +.004
005 | | | 1 | 0.15 | .008 | | | J | 0.8 (TP) | .031 (TP) | | | ĸ | 1.8 ±0.2 | .071 +.009
008 | | | L | 0.8 ±0.2 | .031 +.009
008 | | | М | 0.15 +0.10
-0.05 | .008 +.004
002 | | | N | 0.15 | .006 | | | P | 2.7 | .106 | | | Q | 0.1 ±0.1 | .004 ±.004 | | | S | 3.0 max | .118 mex | G H ALL | | , , | Pin Detail | 5'±5' | | | -80-389- | | | 83IH-6543 | ## PACKAGE DRAWINGS (cont) ## 80-Pin Ceramic LCC With Window (Dwg X80KW-65A-1) | A 14.0 ± 0.2 .551 ± .008 B 13.6 .535 C 13.6 .535 D 14.0 ± 0.2 .551 ± .008 F 1.84 .072 G 3.6 max .142 max H 0.45 ± 0.10 .018 + 0.004 - 0.005 I 0.06 .003 J 0.85 (TP) .024 (TP) K 1.0 ± 0.15 .039 + 0.007 - 0.006 N 0.1 .004 Q 0.3 cor .012 cor R .825 .032 S .825 .032 T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 W 0.75 ± 0.15 .030 + 0.006 W 0.75 ± 0.15 .030 + 0.006 | | |--|--| | C 13.6 .535 D 14.0 ± 0.2 .551 ± .008 F 1.84 .072 G 3.6 max .142 max H 0.45 ± 0.10 .018 + 0.004 - 0.005 I 0.06 .003 J 0.65 (TP) .024 (TP) K 1.0 ± 0.15 .039 + 0.007 - 0.006 N 0.1 .004 Q 0.3 cor .012 cor R .825 .032 S .825 .032 T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | c | | D 14.0 ± 0.2 .551 ± .008 F 1.84 .072 G 3.6 max .142 max H 0.45 ± 0.10 .018 + 0.004 - 0.005 I 0.06 .003 J 0.85 (TP) .024 (TP) K 1.0 ± 0.15 .039 + 0.007 - 0.006 N 0.1 .004 Q 0.3 cor .012 cor R .825 .032 S .825 .032 T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | | | F 1.84 .072 G 3.6 max .142 max H 0.45 ± 0.10 .018 + 0.004 1 0.06 .003 J 0.85 (TP) .024 (TP) K 1.0 ± 0.15 .039 + 0.007 - 0.006 N 0.1 .004 Q 0.3 cor .012 cor R .825 .032 S .825 .032 T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | c | | G 3.6 max .142 max H 0.45 ± 0.10 .018 + 0.004 - 0.005 I 0.06 .003 J 0.65 (TP) .024 (TP) K 1.0 ± 0.15 .039 + 0.007 - 0.006 N 0.1 .004 Q 0.3 cor .012 cor R .825 .032 S .825 .032 T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | c | | H 0.45 ± 0.10 .018 + 0.004 1 0.06 .003 J 0.65 (TP) .024 (TP) K 1.0 ± 0.15 .039 + 0.007 N 0.1 .004 Q 0.3 cor .012 cor R .825 .032 S .825 .032 T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | c | | 1 0.08 .003 J 0.65 (TP) .024 (TP) K 1.0 ± 0.15 .039 + 0.007 | c | | J 0.85 (TP) .024 (TP) K 1.0 ± 0.15 .099 + 0.007 | | | K 1.0 ± 0.15 .039 + 0.007
N 0.1 .004
Q 0.3 cor .012 cor
R .825 .032
S .825 .032
T 2.0 rad .079 rad
U 9.0 .354
V 2.1 .083 | | | N 0.1 .004 Q 0.3 cor .012 cor R .825 .032 S .825 .032 T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | | | Q 0.3 cor .012 cor
R .825 .032
S .825 .032
T 2.0 rad .079
rad
U 9.0 .354
V 2.1 .083 | | | R .825 .032
S .825 .032
T 2.0 rad .079 rad
U 9.0 .354
V 2.1 .083 | <u> </u> | | T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | | | T 2.0 rad .079 rad U 9.0 .354 V 2.1 .083 | | | V 2.1 .083 | | | W 0.75 + 0.15 000 + 0.006 | | | W 0.75 ± 0.15 .030 + 0.006
- 0.007 | | | | <u> </u> | | | ↓ F C | | s + 80 0 0 | w | ## PACKAGE DRAWINGS (cont) ## 80-Pin Plastic TQFP(12 x 12 mm) (Dwg P80GK-50-BE9-3)