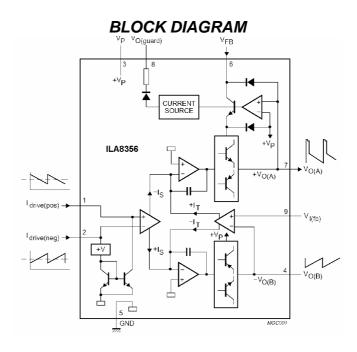


TECHNICAL DATA

DC-coupled vertical deflection circuit

The KKA8356 is a power circuit for use in 90° and 110° colour deflection systems for field frequencies of 50 to 120 Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

FEATURES


- Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- Vertical flyback switch
- Guard circuit
- Protection against:
- short-circuit of the output pins (7 and 4)
- short-circuit of the output pins to V_P
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs

A guard signal in zoom mode

-	
I drive(pos) 1	U
drive(neg) 2	
V _P 3	
V _{O(B)} 4	
GND 5	ILA8356
V _{FB} 6	
V _{O(A)} 7	
VO(guard) 8	
V _{I(fb)} 9	

PINNING

SYMBOL	PIN	DESCRIPTION
I _{drive(pos)}	1	input power-stage (positive); includes I _{l(sb)} signal bias
I _{drive(neg)}	2	input power-stage (negative);includes I _{l(sb)} signal bias
V _P	3	operating supply voltage
V _{O(B)}	4	output voltage B
GND	5	ground
V _{FB}	6	input flyback supply voltage
V _{O(A)}	7	output voltage A
V _{O(guard)}	8	guard output voltage
V _{I(fb)}	9	input feedback voltage

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
DC supply		•		•	
VP	supply voltage	9	4.5	25	V
l _q	quiescent supply current	~	30	~	mΑ
Vertical circu	lit				
^I O(p-p)	output current	~	~	2	А
	(peak-to-peak value)				
^l diff(p-p)	differential input current (peak-to-peak value)	~	600	~	μA
^v diff(p-p)	differential input voltage (peak-to-peak value)	~	1.5	1.8	Ň
Flyback swite	ch				
I _M	peak output current	~	~	<u>+</u> 1	А
V _{FB}	flyback supply voltage	~	~	50	V
Thermal data					
T _{stg}	storage temperature	~55	~	+150	°C
T _{amb}	operating ambient temperature	25	~	+75	°C
T _{vi}	virtual junction temperature	~	~	150	°C

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in phase opposition. An external resistor (R_M) connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. An external resistor (R_{CON}) connected between the differential input determines the output current through the deflection coil. The relationship between the differential input current and

the output current is defined by: $I_{diff} xR_{CON} = I_{coil} xR_{M}$ The output current is adjustable from 0.5 A (p-p) to 2 A (p-p) by varying R_{M} . The maximum input differential voltage is 1.8 V. In the application it is recommended that $V_{diff} = 1.5 V$ (typ). This is recommended because of the spread of input current and the spread in the value of R_{CON} . The flyback voltage is determined by an additional supply voltage V_{FB} . The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage V_{P} optimum for the scan voltage and the second supply voltage V_{FB} optimum for the flyback voltage. Using this method, very high efficiency is achieved.

The supply voltage V_{FB} is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). The output circuit is fully protected against the following:

- thermal protection
- short-circuit protection of the output pins (pins 4 and 7)
- short-circuit of the output pins to V_P.
- A guard circuit V_0 (guard) is provided. The guard circuit is activated at the following conditions:
- during flyback
- during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to V_{P} or ground
- _ during open loop
- . when the thermal protection is activated.

This signal can be used for blanking the picture tube screen.

LIMITING VALUES

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
DC supply					
V _P	supply voltage	non-operating	~	40	V
			~	25	V
V _{FB}	flyback supply voltage		~	50	V
Vertical circ	uit		<u>.</u>		
I _{O(p-p)}	output current (peak-to-peak value)	note 1	~	2	A
V _{O(A)}	output voltage (pin 7)		~	52	V
Flyback swi	tch		<u>.</u>		
M	peak output current		~	<u>+</u> 1.5	Α
Thermal dat	a				
T _{stq}	storage temperature		~55	+150	°C
T _{amb}	operating ambient temperature		~25	+75	°C
T _{vi}	virtual junction temperature			150	°C
R ^{th v̇j₋c}	resistance v _i -case			4	K/W
R _{th vi-a}	resistance v _i -ambient in free air			40	K/W
t _{sc}	short-circuiting time	note 2		1	hr

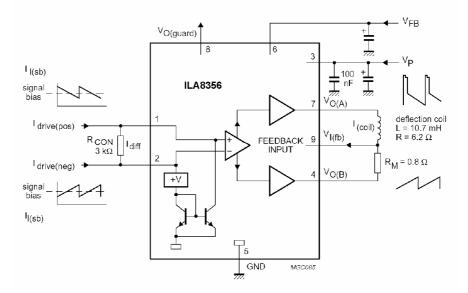
Notes

1. I_{O} maximum determined by current protection.

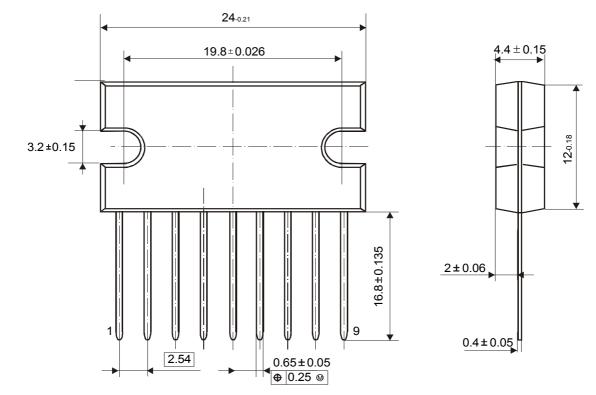
2. Up to $V_P = 18 V$.

CHARACTERISTICS

 V_P = 14.5 V; T_{amb} = 25 C; V_{FB} = 45 V; fi = 50 Hz; $I_{I(sb)}$ = 400 A; unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
OC supply	·				•	
VP	operating supply voltage		9.0	4.5	25	V
V _{FB}	flyback supply voltage		VP	~	50	V
I _P	supply current	no signal; no load	~	30	55	mA
ertical circ	uit					
Vo	output voltage swing (scan)	$I_{diff} = 0.6 \text{ mA (p-p);}$ $V_{diff} = 1.8 \text{ V (p-p);}$ $I_{O} = 2 \text{ A (p-p)}$	13.2		~	V
LE	linearity error	$I_0 = 2 A (p-p);$	~	1	4	%
		$I_0 = 50 \text{ mA (p-p)};$	~	1	4	%
Vo	output voltage swing (flyback) ^V O(A) ^{- V} O(B)	$I_{diff} = 0.3 \text{ mA};$ $I_{O} = 1 \text{ A (M)}$	~	40	~	V
V_{DF}	forward voltage of the internal efficiency diode (V _{O(A)} - V _{FB})	$I_{O} = 1 A (M);$ $I_{diff} = 0.3 mA$	~	~	1.5	V
I _{os}	output offset current	I _{diff} = 0; I _{I(sb)} = 50 to 500 μA	~	~	40	mA
$\left V_{os}\right $	offset voltage at the input of the feedback amplifier $(V_{I(fb)} - V_{O(B)})$	I _{diff} = 0; I _{I(sb)} = 50 to 500 μA	~	~	24	mV
$\Delta V_{os} T$	output offset voltage as a function of temperature			~	72	μV/K
V _{O(A)}	DC output voltage	$I_{diff} = 0;$	~	6.5	~	V
G _{vo}	open-loop voltage gain (V ₇₋₄ /V ₁₋₂)		~	80	~	dB

KKA8356


	open loop voltage gain		~	80	~	dB
	$(V_{7-4}/V_{9-4}; V_{1-2} = 0)$					-
V _R	voltage ratio V ₁₋₂ /V ₉₋₄		~	0	~	dB
f _{res}	frequency response (3 dB)	open loop;	~	40	~	Hz
Gı	current gain (I _O /I _{diff})		~	5000	~	
$\Delta G_{c}T$	current gain drift as a function of temperature				10 ⁻⁴	К
I _{I(sb)}	signal bias current		50	400	500	μA
I _{FB}	flyback supply current	during scan	~	~	100	μA
PSRR	power supply ripple rejection		~	80	~	dB
V _{I(DC)}	DC input voltage		~	2.7	~	V
V _{I(CM)}	common mode input voltage	$I_{I(sb)} = 0$	0	~	1.6	V
bias	input bias current	$I_{l(sb)} = 0$	~	0.1	0.5	μA
I _{O(CM)}	common mode output current	ΔI _{I(sb)} = 300 μA (p-p);	~	0.2	~	mA
		f _i = 50 Hz; I _{diff} = 0				
Guard circu	it					
Ιo	output current	not active;	~	~	50	μA
		$V_{O(guard)} = 0 V$				
		active; V _{O(guard)} = 4.5 V	1	~	2.5	mA
$V_{O(guard)}$	output voltage on pin 8	I _O = 100 μA	~	~	5.5	V
	allowable voltage on pin 8	maximum leakage	~	~	40	V
		current = 10 μA;				

 V_P = 13.5 V; $I_{O(p-p)}$ = 1.87 A; $I_{I(sb)}$ = 400 μ A; $I_{diff(p-p)}$ = 500 μ A; V_{FB} = 42 V; t_{FB} = 0.6 ms.

APPLICATION DIAGRAM.

• 9-Pin Plastic Power Single-in-Line (SIL-9MPF, SOT 131-2)