大容量積層セラミックコンデンサ HIGH VALUE MULTILAYER CERAMIC CAPACITORS

特長 FEATURES

- ・電極にNi金属を使用し、端子電極部にメッキをしてあることにより、はんだ付け性および耐熱性にすぐれ、マイグレーションもほとんど発生せず、高い信頼性を示します
- ・等価直列抵抗(ESR)が小さく、ノイズ吸収性にすぐれています。特にタンタルおよびアルミ電解コンデンサに比較した場合
- ・高い許容リップル電流値
- ・高い定格電圧でありながら小型形状
- ・絶縁抵抗、破壊電圧が高く信頼性にすぐれる 等の特徴があります

- The use of Nickel(Ni) as material for both the internal and external electrodes improves the solderability and heat resistance characteristics. This almost completely eliminates migration and raises the level of reliability significantly.
- Low equivalent series resistance(ESR) provides excellent noise absorption characteristics.
- Compared to tantalum or aluminum electrolytic capacitors these ceramic capacitors offer a number of excellent features, including:

Higher permissible ripple current values

Smaller case sizes relative to rated voltage

Improved reliability due to higher insulation resistance and break-down voltage.

用途 APPLICATIONS

- ・デジタル回路全般
- ・電源バイパスコンデンサ 液晶モジュール用 液晶駆動電圧ライン用 電源電圧の高いLSI、IC、OPアンプ用
- ・平滑コンデンサ DC-DCコンバータ(入力、出力側用) スイッチング電源(2次側用)

- · General digital circuit
- Power supply bypass capacitors
 Liquid crystal modules
 Liquid crystal drive voltage lines
 LS I, I C, converters(both for input and output)
- Smoothing capacitors
 DC-DC converters (both for input and output)

DataSheet4 Switching power supplies (secondary side)

形名表記法 ORDERING CODE

Œ (VDC)
4
6.3
10
16
25
35
50

2		
シリー	·ズ名	
М	積層コンデンサ	Π

3			
端子電	極		
K		メッキ品	

形状寸法 (E	IA)L×W(mm)
107(0603)	1.6×0.8
212(0805)	2.0×1.25
316(1206)	3.2×1.6
325(1210)	3.2×2.5
432(1812)	4.5×3.2
550(2220)	5.7×5.0

9		
温度特	性(%)	
△F	± 30 ± 80	
BJ	±10	
	∧= スペー	ー ス

公称前	電容量 (pF)
例	
473	47,000
105	1,000,000

7		
容量許	容差	
K	±10	%
M	±20	%
Z	± 80	%

8	
製品厚	[み (mm)
Α	0.8
D	0.85
F	1.15
G	1.25
Н	1.5
L	1.6
N	1.9
M	2.5

個別仕	:様
	標準
10	
包装	
В	単品(袋づめ)
Т	リールテーピング
1	
当社管	理記号
Δ	標準品
	△= スペース

9

DataShe

voltage(VDC)
4
6.3
10
16
25
35
50

	2	
aSheet	Series	name
		Multilayer cerami
	М	capacitors

3	
End te	rmination
K	Plated

Dimensions(case size)(mm)							
107(0603) 1.6×0.8							
212(0805)	2.0×1.25						
316(1206)	3.2×1.6						
325(1210)	3.2×2.5						
432(1812)	4.5×3.2						
550(2220)	5.7×5.0						
	•						

Temperature characteristics code									
△F Y5V -30~+85°C +22/-82%									
ВЈ	X7R	-55~+125℃ ±15%							
ВЈ	X5R	-55~+85℃ ±15%							
		△=Blank space							

6	⊠-blank space
Nomin	al capacitance(pF)
example	
473	47,000
105	1,000,000
105	1,000,000

Capaci	Capacitance tolerances(%)								
K	K ±10								
M	±20								
Z	± 80								
8									
Thickness(mm)									
A	A 0.8								

7

_							
Thickn	Thickness(mm)						
Α	0.8						
D	0.85						
F	1.15						
G	1.25						
Н	1.5						
L	1.6						
N	1.9						
M	2.5						

9	
Special code	
 Standard pr 	oducts
10	

10	
Packa	ging
В	Bulk
T	Tape & reel
1	
Intorno	l codo

Internal code

△ Standard process Sheet 4U.com

△=Blank space

外形寸法 EXTERNAL DIMENSIONS

Type(EIA)	L	W	Т		е	
□MK107	1.6±0.10	0.8±0.10	0.8±0.10	Α	0.35±0.25	
(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031±0.004)	_ ^	(0.014±0.010)	
			0.85±0.10	D		
☐MK212	2.0±0.10	1.25±0.10	(0.033±0.004)	-	0.5±0.25 (0.020±0.010)	
(0805) *1	(0.079 ± 0.004)	(0.049 ± 0.04)	1.25±0.10	G		
*2			(0.049±0.004)			
			0.85±0.10	D		
			(0.033±0.004)		±0.35	
			1.15±0.10	F		
☐MK316	3.2±0.15	1.6±0.15	(0.045±0.004)		0.5 +0.35	
(1206)	(0.126±0.006)	(0.063±0.006)	1.25±0.10	G	$(0.020^{+0.014}_{-0.010})$	
			(0.049±0.004)			
			1.6±0.20	L		
			(0.063±0.008)	_	ļ	
	3.2±0.30 (0.126±0.012)	2.5±0.20 (0.098±0.008)	0.85±0.10	D	0.6±0.3 (0.024±0.012)	
			(0.033±0.004)	_		
			1.15±0.10	F		
			(0.045±0.004)	·		
□MK325			1.5±0.10	н І		
(1210)			(0.059±0.004)			
			1.9±0.20	l N		
			(0.075±0.008)			
			2.5±0.20	м	1	
			(0.098±0.008)			
□MK432	4.5±0.40	3.2±0.30	2.5±0.20	М	0.9±0.6	
(1812)	(0.177±0.016)	(0.126±0.012)	(0.098±0.008)		(0.035±0.024)	
□MK550	5.7±0.40	5.0±0.3	2.5±0.20	М	0.3~2.0	
(2220)	(0.224±0.016)	(0.197±0.012)	(0.098±0.008)		(0.012~0.079)	

Unit: mm (inch)

注: *1. ±0.2mm交差、*2. ±0.15mm交差あり

Note: *1. Including dimension tolerance ± 0.2 mm (± 0.008 inch). *2. Including dimension tolerance ± 0.15 mm (± 0.006 inch).

概略バリエーション AVAILABLE CAPACITANCE RANGE

■汎用積層セラミックコンデンサ General Multilayer Ceramic Capacitors 316 Cap Type 107 325 212 432 Temp.Char BJ/X7R BJ/X5R F/Y5V BJ/X7R BJ/X5R F/Y5V BJ/X7R BJ/X5R F/Y5V BJ/X7R BJ/X5R F/Y5V BJ/X5R F/Y5V BJ/ X5R VDC [µF] [pF:3digits 223 0.022 D 333 0.033 G 0.047 473 D G 0.068 683 0.10 104 0.15 154 G 0.22 224 G 0.33 334 474 Α G 0.47 0.68 684 GG 105 Н 1.0 1.5 155 2.2 225 G Z 3.3 335 4.7 475 G 6.8 685 10.0 106 G G Z нн М 22.0 226 Z 47.0 476 100.0 107

■低背積層セラミックコンデンサ

	■ Neight and the state of th												
Cap	Туре		21	2		316			325				
	Temp.Char	BJ/	X7R	F/Y	′5V	BJ/X7R	BJ/X5R	F/Y	′5V	BJ/X7R	BJ/X5R	F/Y	′5V
	VDC	16	10	10	6.3	10	6.3	10	6.3	10	6.3	16	10
[μF]	[pF:3digits]												
0.47	474	D											
0.68	684	D											
1.0	105		D										
2.2	225			D		D							
3.3	335					F	D			D			
4.7	475				D		D	D		F			
6.8	685						F						
10.0	106							F	D		D	F	
22.0	226												F

温度特性コード			Temperature chara	acteristics		静電容量許容差(%)	tanδ(%)	
Temp. char.Code	準拠規格		温度範囲(℃)	基準温度(℃)	静電容量変化率(%)	Capacitance tolerance	Dissipation factor	
	Applicab	le standard	Temperature range	Ref. Temp.	Capacitance change			
BJ	JIS	BJ	-25~85	20	±10	±20(M)	2.5%max.**	
ь	EIA	X7R*	−55~125	25	±15	±10(K)	2.5 /oiliax.	
_	JIS	F	-25~85	20	+30 -80	+80 -20(Z)	7.00/***	
F	EIA	Y5V	−30~85	25	+22 -82	_20 (Z)	7.0%max.***	

★Some exceptions apply. Refer to the available capacitance range table for the parts which are only available in X5R.

★★3.5%max: LMKtype; 107type (C≦0.47 µF), 212type (C≦1.0 µF), 316/325/432type

EMKtype; 107/212/316/325type TMKtype; 316type (C>0.47 μF), 325type, 432type

GMKtype; 212type, 316type, 325type

UMKtype ; 212type (C>0.1 μ F), 316type (C \geq 0.47 μ F), 325type

★ ★5.0%max : JMKtype ; 107type, 212type, 316type, 325type, 432type, 550type LMKtype ; 107type (C>0.47 μ F), 212type (C≥2.2 μ F)

★★10%max: AMKtype; 212type

★★★9%max:LMKtype; 212type, 汎用316type (C=10µF) 低背316type (C=4.7μF)

UMKtype; 325type 16%max: JMKtype; 107/212/316/325/432type

LMKtype; 107/325/432, 汎用316type (C>10 µF)

DataSheet4しをJection Guide

et4U.com

アイテム一覧

特性図 Electrical Characteristics

信頼性 Reliability Data P.80

使网内见色膏taSheet4U.com

etc

■汎用積層セラミックコンデンサ General Multilayer Ceramic Capacitors —

アイテム一覧 PART NUMBERS

定格 電圧 RatedVoltage	形 名 Ordering code		公 称 静電容量 Capacitance [µF]	温度特性 Temperature characteristics	tan δ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W:フロー Wave soldering		厚 み Thickness [mm] (inch)
25V	TMK107BJ223□ A		0.022		2.5			
	EMK107BJ333□A		0.033					
16V	EMK107BJ473□A		0.047					
100	EMK107BJ683□A		0.068	BJ/X7R		R,W	±10% ±20%	0.8±0.10 (0.031±0.004)
	EMK107BJ104□A		0.1		3.5			
	LMK107BJ154□A		0.15					
	LMK107BJ224□A		0.22					
10V	LMK107BJ334□A		0.33					
	LMK107BJ474□A		0.47	BJ/X5R				
	LMK107BJ684□A		0.68	DJ/A3N	5	R		
6.3V	JMK107BJ105□A		1.0		5			
16V	EMK107F224ZA	•	0.22	·	7	R,W		
100	EMK107F474ZA		0.47	F/Y5V	'	Π,۷۷	+80%	0.8 ± 0.10
10V	LMK107F105ZA		1.0	1/150	16	R	-20%	(0.031 ± 0.004)
6.3V	JMK107F225ZA		2.2		10	_ n		

形名の□には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.

■212TYPE (0805 case size) -

et4U.com

定格 電圧 RatedVoltage	形 名 Ordering code	公 称 静電容量 Capacitance [µF]	温度特性 Temperature characteristics	tan δ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W:フロー Wave soldering	静電容量 許容差 Capacitance tolerance	厚 み Thickness [mm] (inch)
	UMK212BJ223□D	0.022					0.85±0.1
	UMK212BJ333□D	0.033					(0.033±0.004)
50V	UMK212BJ473□G	0.047		2.5			
50 V	UMK212BJ683□G	0.068					
	UMK212BJ104□G	0.1	Sheet4U.	2012			1.25±0.1
	UMK212BJ154□G	0.15	131166140.0	eom			(0.049±0.004)
35V	GMK212BJ224□G	0.22		3.5			
35 V	GMK212BJ334□G	0.33	BJ/X7R				
25V	TMK212BJ473□D	0.047	20/71/11	2.5	R,W	±10%	0.85±0.1
25 V	TMK212BJ683□D	0.068		2.5		±20%	(0.033±0.004)
	EMK212BJ154□G	0.15					
	EMK212BJ224□G	0.22					
16V	EMK212BJ334□G	0.33					
100	EMK212BJ474□G	0.47		3.5			
	EMK212BJ684□G	0.68		3.5			1.25±0.1
	EMK212BJ105□G	1.0	BJ/X5R				(0.049 ± 0.004)
	LMK212BJ684□G	0.68	BJ/X7R				
10V	LMK212BJ105□G	1.0	DO/X/TT				
	LMK212BJ225MG	2.2					
6.3V	JMK212BJ335MG	3.3	BJ/X5R	5	R	±20%	1.25±0.15
6.37	JMK212BJ475MG	4.7	DJ/AJH		n	±20%	(0.049±0.006)
4V	AMK212BJ106MG	10		10			1.25±0.20(0.049±0.008)
	UMK212F224ZD	0.22					0.85±0.1(0.033±0.004)
50V	UMK212F474ZG	0.47					
	UMK212F105ZG	 1.0		7	R,W	+80%	
16V	EMK212F105ZG	1.0	F/Y5V			−20%	1.25±0.1
100	EMK212F225ZG	2.2				20%	(0.049±0.004)
10V	LMK212F475ZG	4.7		9	R		(51515_51661)
6.3V	JMK212F106ZG	 10		16	n		

形名の□には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.

DataSheet4U.com www.DataSheet4U.com

DataSheet4U.com

DataShe

アイテム一覧 PART NUMBERS

■316TYPE(1206 case size) -

定格 電圧 RatedVoltage	Gracining code	公 称 静電容量 Capacitance [<i>µ</i> F]	温度特性 Temperature characteristics	tan δ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W:フロー Wave soldering	静電容量 許容差 Capacitance tolerance	厚 み Thickness [mm] (inch)
	UMK316BJ154□F	0.15		2.5			1.15±0.1 (0.045±0.004)
50V	UMK316BJ224□L	0.22		2.0			
	UMK316BJ474□L	0.47					1.6±0.2 (0.063±0.008)
35V	GMK316BJ684□L	0.68		3.5			1.0±0.2 (0.000±0.000)
	GMK316BJ105□L	1.0					
	TMK316BJ154□D	0.15					0.85±0.1 (0.033±0.004)
	TMK316BJ224□F	0.22	BJ/X7R	2.5	R,W	±10%	1.15±0.1 (0.045±0.004)
25V	TMK316BJ334□F	0.33		2.5		±20%	
25 V	TMK316BJ474□L	0.47					
	TMK316BJ684□L	0.68					1.6±0.2 (0.063±0.008)
	TMK316BJ105□L	1.0					
	EMK316BJ684□ F	0.68					4.45.10.4 (0.045.10.004)
	EMK316BJ105□F	1.0					1.15±0.1 (0.045±0.004)
16V	EMK316BJ225ML	2.2					
	EMK316BJ335ML	3.3	BJ/X5R	3.5			
	EMK316BJ475ML	4.7	DJ/AJN			±20%	
40)/	LMK316BJ335ML	3.3	BJ/X7R		R	120/0	1.6±0.2 (0.063±0.008)
10V	LMK316BJ475ML	4.7	D3/X/11				
6.3V	JMK316BJ106ML	10	BJ/X5R	5			
50V	UMK316F225ZG	2.2			R,W		
05)/	GMK316F225ZG	2.2	1		11, **		
35V	GMK316F475ZG	4.7	1	7	R	+80%	1.25±0.1 (0.049±0.004)
05)/	TMK316F225ZG	2.2	F/Y5V		R,W	-20%	
25V	TMK316F475ZG	4.7			·		
10V	LMK316F106ZL	10	1	9	R		4 0 1 0 0 (0 000 1 0 000)
100	LMK316F226ZL	22	1	16			1.6±0.2 (0.063±0.008)

et4U.com

形名の□には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.

DataSheet4U.com

■325TYPE(12	210 case size) ——	Datas	sheet4U.co	m				
定格 電圧 RatedVoltage	形 名 Ordering code	公 称 静電容量 Capacitance [<i>µ</i> F]	温度特性 Temperature characteristics	tan δ Dissipation factor [%]Max.	実装条件 Soldering method R:リフロー Reflow soldering W:フロー Wave soldering		厚 Thick [mm]	み ness (inch)
50V	UMK325BJ105□H	1.0	BJ/X7R		R,W	±10% ± 20%	1.5±0.1 (0.	059±0.004)
251/	GMK325BJ155MN	1.5	DJ/A/R					
35V	GMK325BJ225MN	2.2	BJ/X5R					
05)/	TMK325BJ335MN	3.3	BJ/X7R	3.5				
25V	TMK325BJ475MN	4.7	BJ/X5R		R	±20%		
16V	EMK325BJ475MN	4.7	BJ/X7R				1.9±0.2 (0.	075±0.008)
	EMK325BJ106MN	10	BJ/X5R					
10V	LMK325BJ106MN	10	BJ/X7R					
6.3V	JMK325BJ226MM	22	BJ/X5R	5			2.5±0.2 (0.	098±0.008)
50V	UMK325F475ZH	4.7		9				
35V	GMK325F106ZH	10		7	1	1.000.4	1.5±0.1 (0.	059±0.004)
25V	TMK325F106ZH	10	F/Y5V	,	R	+80%		
10V	LMK325F226ZN	22		16		-20%		
6.3V	JMK325F476ZN	47		10			1.9±0.2 (0.	075±0.008)

形名の□には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.

DataSheet4U.com www.DataSheet4U.com

アイテム一覧 PART NUMBERS

■432TYPE(18	312 case size) ——						
定格電圧	形名	公 称 静電容量	温度特性 Temperature	tan δ	実装条件 Soldering method	静電容量 許容差	厚 み Thickness
RatedVoltage	Ordering code	Capacitance [µF]	characteristics		R:リフロー Reflow soldering W:フロー Wave soldering		[mm] (inch)
25V	TMK432BJ106MM	10		3.5			
10V	LMK432BJ226MM	22	BJ/X5R	0.0	R	±20%	2.5±0.2 (0.098±0.008)
6.3V	JMK432BJ476MM	47		5			
10V	LMK432F476ZM	47	F/Y5V	16	В	+80%	2.5±0.2 (0.098±0.08)
6.3V	JMK432F107ZM	100	1/130	10	п	-20%	2.020.2 (0.00020.00)

■550TYPE(2:	220 case size) ——						
定格 電圧 RatedVoltage	形 名	公 称 静電容量 Capacitance	温度特性 Temperature characteristics	tactor	実装条件 Soldering method R:リフロー Reflow soldering W:フロー Wave soldering		厚 み Thickness [mm] (inch)
6.3V	JMK550BJ107MM	[μF] 100	BJ/X5R	[%]Max. 5	R	±20%	2.5±0.2 (0.098±0.008)

et4U.com

DataSheet4U.com

DataShe

DataSheet4U.com www.DataSheet4U.com

■低背積層セラミックコンデンサ Low profile Multilayer Ceramic Capacitors -

アイテム一覧 PART NUMBERS

■212TYPE(0	805 case size) ——						
定格電圧	形名	公 静電容量	温度特性 Temperature	tan δ Dissipation	実装条件 Soldering method	静電容量 許容差 Capacitance	厚 み Thickness
RatedVoltage	Ordering code	Capacitance [µF]	characteristics	factor [%]Max.	R:リフロー Reflow soldering W:フロー Wave soldering		[mm] (inch)
16V	EMK212BJ474□D	0.47			R, W	±10%	
100	EMK212BJ684□D	0.68	BJ/X7R	3.5	n, w	±20%	0.85±0.1 (0.033±0.004)
10V	LMK212BJ105□D	1.0			R	±20%	
10V	LMK212F225ZD	2.2	F/Y5V	9	R	+80%	0.85±0.1 (0.033±0.004)
6.3V	JMK212F475ZD	4.7	17130	16	n	-20%	0.00 = 0.1 (0.000 = 0.00 1)

形名の□には静電容量許容差記号が入ります。

■316TYPE(1206 d	case size)
-----------------	------------

定格 電圧 RatedVoltage	形 名 Ordering code	公 称 静電容量 Capacitance [µF]	温度特性 Temperature characteristics		実装条件 Soldering method R:リフロー Reflow soldering W:フロー Wave soldering	静電容量 許容差 Capacitance tolerance	厚 Thick [mm]	み ness (inch)
10V	LMK316BJ225MD	2.2	BJ/X7R	3.5			0.85±0.1 (0	0.033±0.004)
100	LMK316BJ335MF	3.3	Do/X/11	0.0			1.15±0.1 (0	0.045±0.004)
	JMK316BJ335MD	3.3			R	±20%	0.85+0.1 (0	0.033±0.004)
6.3V	JMK316BJ475MD	4.7	BJ/X5R	5			(,
	JMK316BJ685MF	6.8					1.15±0.1 (0	0.045±0.004)
10V	LMK316F475ZD	4.7		9		+80%	0.85±0.1 (0	.033±0.004)
	LMK316F106ZF	10	F/Y5V	16	R	+80% −20%	1.15±0.1 (0	0.045±0.004)
6.3V	JMK316F106ZD	 10		10		20%	0.85±0.1 (0	0.033±0.004)

et4U.com

- 023111 L(12	e io case size)						
定格	形名	公 称	温度特性	$tan \delta$	実装条件	静電容量	厚み
電圧	10 10	静電容量	Temperature		Soldering method	許容差	Thickness
RatedVoltage	Ordering code	Capacitance	characteristics	Dissipation factor	R:リフロー Reflow soldering		[mm] (inch)
	Ordering code	[μF]	Characteriotics	[%]Max.	W:フロー Wave soldering	tolerance	[IIIII] (IIIOII)
10V	LMK325BJ335MD	3.3	BJ/X7R	3.5			0.85±0.1 (0.033±0.004)
100	LMK325BJ475MF	4.7	BOXXIII	0.0	R	±20%	1.15±0.1 (0.045±0.004)
6.3V	JMK325BJ106MF	10	BJ/X5R	5			(0.0.0000,
	JMK325BJ106MD	10	Borxort				0.85±0.1 (0.033±0.004)
16V	EMK325F106ZF	10	F/Y5V	7	R	+80%	1.15±0.1 (0.045±0.004)
10V	LMK325F226ZF	22	1/130	16	n n	-20%	(3.01020.001)

DataShe

www.DataSheet4U.com DataSheet4U.com

特性図 ELECTRICAL CHARACTERISTICS

インピーダンス・ESR-周波数特性例 Example of Impedance ESR vs. Frequency characteristics

・当社積層セラミックコンデンサ例 (Taiyo Yuden multilayer ceramic capacitor)

DataShe

DataSheet4U.com www.DataSheet4U.com

et4U.com

特性図 ELECTRICAL CHARACTERISTICS

DataShe

www.DataSheet4U.com DataSheet4U.com

RELIABILITY DATA

Multilayer Ceramic Capacitor Chips

			·				
	Item		mpensating (Class 1)	-	vity (Class 2)	Test Methods and Remarks	
		Standard	High Frequency Type	Standard Note1	High Value	High Capacitance Type BJ(X7R): -55 to +125°C	
	1.Operating Tempera Range	ture −55 to +125°C		B: −55 to +125°C F: −25 to +85°C	-25 to +85°C	BJ(X5R) : −55 to +85°C	
	2.Storage Tempera	ure −55 to +125°C		B: −55 to +125°C	-25 to +85℃	F(Y5V): -30 to +85°C High Capacitance Type BJ(X7R): -55 to +125°C	
	Range			F: -25 to +85℃		BJ(X5R): -55 to +85°C F(Y5V): -30 to +85°C	4
	3.Rated Voltage	50VDC,25VDC,	16VDC	50VDC,25VDC	50VDC,35VDC,25VDC	(2 / 22 / 22 / 22 / 22 / 22 / 22 / 22	
		16VDC			16VDC,10VDC,6.3VDC 4DVC		CAPACITORS
	4.Withstanding Voltage	No breakdown or dam	- No abnormality	No breakdown or dama	ge	Applied voltage: Rated voltage×3 (Class 1)	ĕ
	Between terminals	age				Rated voltage×2.5 (Class 2)	음
						Duration: 1 to 5 sec.	<u>o</u> '
						Charge/discharge current: 50mA max. (Class 1,2)	SF
	5.Insulation Resistance	10000 MΩ min.		500 MO "F or 10000	MΩ., whichever is the	Applied voltage: Rated voltage	
	omodianon ricolotarios	10000 1112 111111		smaller.	ma i, minerever le me	Duration: 60±5 sec.	
				Note 4		Charge/discharge current: 50mA max.	
	6.Capacitance (Tolerance	e) 0.5 to 5 pF: ±0.25 pF	0.5 to 2 pF : ±0.1 pF	B: ±10%, ±20%	BJ: ±10%, ±20%	Measuring frequency:	
		1 to 10pF: ±0.5 pF	2.2 to 5.1 pF : ±5%	F:+80 %	F: +80 %	Class1: 1MHz±10%(C≦1000pF) 1 k Hz±10%(C>1000pF)	
		5 to 10 pF: ±1 pF				Class2 : 1 k Hz±10%(C≦22 _µ F)	
		11 pF or over: ± 5%				120Hz±10Hz(C>22 _{\(\mu\)} F) Measuring voltage:	
		±10%				Class1 : 0.5~5Vrms(C≦1000pF)	
		105TYPERA, SA, TA, UA only	y			1±0.2Vrms(C>1000pF) Class2: 1±0.2Vrms(C≦22 _u F)	
		0.5~2pF: ±0.1pF 2.2~20pF: ±5%				0.5±0.1Vrms(C>22 μ F)	
		2.2 20pi . ±070				Bias application: None	
	7.Q or Tangent of Loss Ar	gle Under 30 pF	Refer to detailed speci-	B: 2.5% max.(50V, 25V)	BJ: 2.5% max.(50V, 35V, 25V)	Multilayer:	
	(tan δ)	: Q≧400 + 20C	fication	F: 5.0% max. (50V, 25V)	3.5% max. ※	Measuring frequency:	
		30 pF or over : Q≧1000			5.0% max. **	Class1: 1MHz±10%(C≦1000pF) 1 k Hz±10%(C>1000pF)	
.com		C= Nominal capacitance			10.0% max. ※	Class2: 1 k Hz±10%(C≦22µF)	DataSh
			Da	taSheet4U.co		120Hz±10Hz(C>22 _{\(\mu\)} F) Measuring voltage:	
					5.0% max. ※	Class1: 0.5~5Vrms(C≦1000pF)	
					9.0% max. *	1±0.2Vrms(C>1000pF) Class2: 1±0.2Vrms(C≦22μF)	
					11.0% max. */ 16.0% max. */	0.5±0.1Vrms(C>22 _{\(\mu\)} F)	
					20.0% max. %	Bias application: None High-Frequency-Multilayer:	
						Measuring frequency: 1GHz	
					% See Table.1	Measuring frequency: 1GHz Measuring equipment: HP4291A	
						Measuring frequency: 1GHz	
	8.Temperature (Without	CK: 0±250	CH: 0±60	B:±10%(-25~85°C)		Measuring frequency: 1GHz Measuring equipment: HP4291A	
	8.Temperature (Without Characteristic voltage	CK: 0±250 CJ: 0±120	CH: 0±60 RH: -220±60	B: ±10%(-25~85°C) F: +30 %(-25~85°C)	※ See Table.1	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A	
		CJ: 0±120 CH: 0±60		F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30	RH: -220±60	F: +30 %(-25~85°C)	** See Table.1 BJ: ±10%(-25~85°C) F: +30 % (-25~85°C)	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation.	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation.	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (Ces - C20) C20 × ΔT × 10 6 (ppm/C)	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (Ces - C20) C20 × ΔT 10 6 (ppm/C) High permittivity:	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 X \text{DT} \text{ 10} \text{ 6} \text{ (ppm/C)} High permittivity: Change of maximum capacitance deviation in step 1 to 5	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature) Temperature at step 4: maximum operating temperature	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature) Temperature at step 4: maximum operating temperature	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60 UK: -750±250	RH: -220±60	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60	RH: -220±60 (ppm/°C)	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C85 - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C	
	Characteristic voltage	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±250 UK: -750±250 UJ: -750±120 SL: +350 to -1000 (ppm/c)	RH: -220±60 (ppm/°C)	F: +30 %(-25~85°C) B(X7R): ±15%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (Ces - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R and Y5V shall be +25°C Warp: 2mm	
	Characteristic voltage applicatio	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60 UK: -750±250 UJ: -750±120 SL: +350 to -1000 (ppm/C)	RH: -220±60 (ppm/°C)	F: +30 %(-25-85C) B(X7R): ±15% F(Y5V): +22/8	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C 85 - C 20) C 20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 3: +20°C (Reference temperature) Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R and Y5V shall be +25°C	
	Characteristic voltage application of Capacitance of Capacitance application of Capacitance of C	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±250 UK: -750±250 UJ: -750±120 SL: +350 to -1000 (ppm/co	RH: -220±60 (ppm/°C)	F: +30 %(-25-85C) B(X7R): ±15% F(Y5V): +22/8	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (Ces - C20) C20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R and Y5V shall be +25°C Warp: 2mm Testing board: paper-phenol substrate	
	Characteristic voltage application of Capacitance of Capacitance application of Capacitance of C	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60 UK: -750±250 UJ: -750±120 SL: +350 to -1000 (ppm/C) Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF.	RH: -220±60 (ppm/C) Appearance: No abnormality Capacitance change:	F: +30 %(-25-85C) B(X7R): ±15% F(Y5V): +22/-82% Appearance: No abnormality Capacitance change: B, BJ: Within ±12.5%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (C 85 - C 20) C 20 × ΔT × 10 6 (ppm/C) High permitivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R and Y5V shall be +25°C Warp: 2mm Testing board: paper-phenol substrate Thickness: 1.6mm	
	Characteristic voltage application of Capacitance of Capacitance application of Capacitance applicatio	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60 UK: -750±250 UJ: -750±120 SL: +350 to -1000 (ppm/C) Appearance: No abnormality Capacitance change:	RH: -220±60 (ppm/C) Appearance: No abnormality Capacitance change:	F: +30 %(-25-85C) B(X7R): ±15% F(Y5V): +22/-82 % Appearance: No abnormality Capacitance change:	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (Ces - C20) C20 × ΔT × 10 6 (ppm/C) High permittivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 3: +20°C (Reference temperature) Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R and Y5V shall be +25°C Warp: 2mm Testing board: paper-phenol substrate Thickness: 1.6mm The measurement shall be made with board in the bent position.	et4II com
ıSheet4l	Characteristic voltage application of Capacitance of Capacitance application of Capacitance applicatio	CJ: 0±120 CH: 0±60 CG: 0±30 PK: -150±250 PJ: -150±120 PH: -150±60 RK: -220±250 RJ: -220±120 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -330±60 TK: -470±250 TJ: -470±120 TH: -470±60 UK: -750±250 UJ: -750±120 SL: +350 to -1000 (ppm/C) Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF.	RH: -220±60 (ppm/C) Appearance: No abnormality Capacitance change:	F: +30 %(-25-85C) B(X7R): ±15% F(Y5V): +22/-82% Appearance: No abnormality Capacitance change: B, BJ: Within ±12.5%	<pre></pre>	Measuring frequency: 1GHz Measuring equipment: HP4291A Measuring jig: HP16192A According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. (Ces - C20) C20 × ΔT × 10 6 (ppm/C) High permittivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: +20°C Temperature at step 2: minimum operating temperature Temperature at step 3: +20°C (Reference temperature) Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C Reference temperature for X7R, X5R and Y5V shall be +25°C Warp: 2mm Testing board: paper-phenol substrate Thickness: 1.6mm The measurement shall be made with board in the bent position.	et4U.com

(Unit: mm)

RELIABILITY DATA

Multilayer Ceramic Capacitor Chips

ltem	Temperature Con	Specific	ed Value High Permitti	ivity (Class 2)		
Item	Temperature Con	npensating (Class 1)	High Permitti	ivity (Class 2)	Total Matheday and Double I	
			High Permittivity (Class 2)		Test Methods and Remarks	
	Standard	High Frequency Type	Standard Note1	High Value		
10.Body Strength		No mechanical damage.		3	High Frequency Multilayer: Applied force: 5N R0.5 Duration: 10 sec Pressing Jig	
	_		_	_	Duration: 10 sec. Press Chip Chip L ≥ W	
11.Adhesion of Ele	No separation or indica	Lition of separation of electr	rode.		Applied force: 5N Duration: 30±5 sec. Hooked jig R=05 Chip Cross-section	
12.Solderability	At least 95% of termina	al electrode is covered by r	new solder.		Solder temperature: 230±5°C	
13.Resistance to s	oldering Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnorn	a a libr	Duration: 4±1 sec. Preconditioning: Thermal treatment (at 150°C for 1 hr)	
io.nedsuite e d	mality Capacitance change: Within ± 2.5% or	mality Capacitance change:	Capacitance change: V		(Applicable to Class 2.) Solder temperature: 270±5°C Duration: 3±0.5 sec.	
	±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage	Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No	Insulation resistance: In	itial value between terminals): No	Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 min. 150 to 200°C, 2 to 5 min. or 5 to 10 min. Recovery: Recovery for the following period under the standard condition after the test. 24±2 hrs (Class 1) 48±4 hrs (Class 2)	
4U.com	(between terminals): No abnormality		taSheet4U.co	m		
14.Thermal shock	Appearance: No abnormality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	mality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No	tan δ: Initial value Insulation resistance: In	Vithin ±7.5% (B, BJ) Vithin ±20% (F)	Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature 30±3 min. Step 2: Room temperature 15 min. Step 3: Maximum operating temperature 30±3 min. Step 4: Room temperature 15 min. Number of cycles: 5 times Recovery after the test: 24±2 hrs (Class 1) 48±4 hrs (Class 2)	
15.Damp Heat (ste	Appearance: No abnormality Capacitance change: Within ±5% or ±0.5pF, whichever is larger. Q: C≥30 pF : Q≥350 10≤C<30 pF: Q≥275 + 2.5C C<10 pF : Q≥200 + 10C C: Nominal capacitance: 1000 MΩ min.	mality Capacitance change: Within ±0.5pF, Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Insulation resistance: 50 M Ω μ F or 1000 M Ω whichever is smaller.	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ $\tan \delta$: BJ: 5.0% max. 7.5% max. $\%$ 20.0% max. $\%$ F: 11.0% max. 7.5% max. $\%$ 16.0% max. $\%$ 19.5% max. $\%$ 25.0% max. $\%$ % See Table.2 Insulation resistance: 50 M Ω μ F or 1000 M Ω whichever is smaller.	Multilayer: Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-0}$ hrs Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 $^{+24}_{-0}$ hrs Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 24±2 hrs (Class 1)	

RELIABILITY DATA

Multilayer Ceramic Capacitor Chips

		Specifie	ed Value		
Item	Temperature Com	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
16.Loading under Damp Heat	Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnor-	According to JIS C 5102 Clause 9. 9.
	mality	mality	mality	mality	Multilayer:
	Capacitance change:	Capacitance change:	Capacitance change:	Capacitance change:	Preconditioning: Voltage treatment (Class 2)
	Within ± 7.5% or	C≦2 pF: Within ±0.4 pF	B: Within ±12.5%	BJ: Within ± 12.5%	Temperature: 40±2℃
	±0.75pF, whichever is	C>2 pF: Within ±0.75	F: Within ±30%	(50V, 35V, 25V)	Humidity: 90 to 95% RH
	larger.	pF	tan δ: B: 5.0% max.	Within ±15.0% (16V	Duration: 500^{+24}_{-0} hrs
	Q: C≧30 pF: Q≧200	C: Nominal capaci-	F: 7.5% max.	and under)	Applied voltage: Rated voltage
	C<30 pF: Q≥100 +	tance		F: Within ±30%	Charge and discharge current: 50mA max. (Class 1,2)
	10C/3	Insulation resistance:	Insulation resistance:	tan δ: BJ: 5.0% max.	Recovery: Recovery for the following period under the stand
	C: Nominal capaci-	500 MΩ min.	25 MΩ μ F or 500 MΩ,	7.5% max.*	condition after the removal from test chamber.
	tance		whichever is the smaller.	20.0% max. *	24±2 hrs (Class 1)
	Insulation resistance:			F: 11.0% max.	48±4 hrs (Class 2)
	500 MΩ min.			7.5% max.**	 High-Frequency Multilayer:
				16.0% max.*	Temperature: 60±2°C
				19.5% max.*	Humidity: 90 to 95% RH
				25.0% max.*	Duration: 500 ⁺²⁴ ₋₀ hrs
				*See Table.2	Applied voltage: Rated voltage
				Insulation resistance:	Charge and discharge current: 50mA max.
				25 MΩ μF or 500 MΩ,	Recovery: 24±2 hrs of recovery under the standard co
				whichever is the smaller.	tion after the removal from test chamber.
17.Loading at High Tempera-	Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnormality	According to JIS C 5102 clause 9.10.
ture	mality	mality	mality	Capacitance change:	Multilayer:
	Capacitance change:	Capacitance change:	Capacitance change:	BJ: Within ±12.5%	Preconditioning: Voltage treatment (Class 2)
	Within ±3% or	Within ±3% or	B: Within ±12.5%	F: Within ±30%	Temperature:125±3°C(Class 1, Class 2: B, BJ(X7R))
	±0.3pF, whichever is	±0.3pF, whichever is	F: Within ±30%	tan δ: 5.0% max.	85±2°C (Class 2: BJ,F)
	larger.	larger.	tan δ:	7.5% max.*	Duration: 1000 ⁺⁴⁸ ₋₀ hrs
	Q: C≧30 pF : Q≧350	Insulation resistance:	B: 4.0% max.	20.0% max.*	Applied voltage: Rated voltage×2
	10≦C<30 pF: Q≧275	1000 MΩ min.	F: 7.5% max.	F: 11.0% max.	Recovery: Recovery for the following period under the s
	+ 2.5C	Da	Insulation resistance:	7.5% max.*	dard condition after the removal from test chamber.
	C<10 pF: Q≧200 +		50 MΩ μ F or 1000 MΩ,	16.0% max.*	As for Ni product, thermal treatment shall be perform
	10C		whichever is smaller.	19.5% max.%	prior to the recovery.
	C: Nominal		Willeflever is smaller.	25.0% max.%	24±2 hrs (Class 1)
				%See Table.2	, , ,
	capacitance Insulation resistance:			Insulation resistance: 50	48±4 hrs (Class 2) High-Frequency Multilayer:
	1000 MΩ min.			MΩμF or 1000 $MΩ$, which-	Temperature: 125±3°C (Class 1)
				ever is smaller.	Duration: 1000 +48 hrs
					Applied voltage: Rated voltage×2
					Recovery: 24±2 hrs of recovery under the standard co
					tion after the removal from test chamber.

Note 1: For 105 type, specified in "High value".

Note 2: Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 +0 /-10 °C followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 3: Voltage treatment (Multilayer): 1 hr of voltage treatment under the specified temperature and voltage for testing followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 65 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

Note 4: Specified value for Instration Resistance of JMK212BJ475M only: 100MΩ μF or more.

Table. 1 tanδ(D. F.)

et4U.com

Item	tanδ
BJ: LMK type; 063 type $(0.50.047 \mu\text{F})$ 105 type $(0.50.047 \mu\text{F})$ 107 type $(0.50.47 \mu\text{F})$ 212 type $(0.51 \mu\text{F})$ 316 / 325 / 432 type EMK type; 105 / 107/212 / 316 / 325 type TMK type; 316 type($0.50.047 \mu\text{F}$) 325 / 432 type GMK type; 212 type $(0.50.22 \mu\text{F})$ 316 type $(0.50.22 \mu\text{F})$ 315 type $(0.50.68 \mu\text{F})$ 325 type UMK type;212 type $(0.50.68 \mu\text{F})$ 325 type UMK type;212 type $(0.50.68 \mu\text{F})$ 325 type	3.5%max.
316 type (C≥0.47 µF) 325 type (C≦1 µF)	
BJ: JMK type LMK type; 105 type ($C \ge 0.056 \mu F$) 107 type ($C > 0.47 \mu F$) 212 type ($C > 1 \mu F$) J4K, E4K type F: 105 type (50V, 25V)	5.0% max.
F: LMK type; 212 type 316 type (C=10 μF): 汎用 (C=4.7 μF): 低背 325 type (C > 10 μF) EMK type; 105 type (C ≥ 0.068 μF) UMK type; 325 type (C ≥ 4.7 μF)	9.0% max.
BJ: AMK type	10.0% max.
F: LMK type; 105 type (C =0.22 μF)	11.0% max.
F: JMK type; 105 / 107 / 212 / 316 / 325 / 432 type LMK type; 107 type,325 type 432 type,316 type (C > 10μF) E4K type	16.0% max.
F: AMK type	20.0% max.

Table. 2 tanδ(D. F.)

Item	tan∂
BJ: JMK type	
LMK type; 063 type	
105 type (C≧0.056 μF)	
107 type (C≧0.47μF)	7.5% max.
212 type (C > 1 μF)	
J4K, E4K type	
F: 105 type(50V, 25V)	
F: LMK type; 105 type (C=0.22 μF)	16.0% max.
F: JMK type; 105 / 107 / 212 / 316 / 325 / 432 type	
LMK type; 107 type	19.5% max.
432 type	
E4K type	
BJ: AMK type	20.0% max.
F: AMK type	25.0% max.

www.DataSheet4U.com

梱包 PACKAGING

①標準数量 Standard quantity ■袋づめ梱包 Bulk packaging

形式(EIA) Type	製品厚み Thickness		標準数量 Standard quantity
Туре	mm(inch)	code	[pcs]
□MK105(0402)	0.5	V	
E VK105(0402)	(0.020)	W	
□MK107(0603)	0.8 (0.031)	A Z	
□MK212(0805)	0.85 (0.033)	D	
	1.25 (0.049)	G	
□4K212(0805)	0.85 (0.033)	D	
	0.85 (0.033)	D	
□MK316(1206)	1.15 (0.045)	F	1000
	1.25 (0.049)	G	
	1.6 (0.063)	L	
□4K316(1206)	1.15 (0.045)	F	
	0.85 (0.033)	D	
	1.15 (0.045)	F	
□MK325(1210)	1.5 (0.059)	Н	
	1.9 (0.075)	N	
	2.5 (0.098)	М	

②テーピング材質 Taping material

紙テープ Card board carrier tape

エンボステープ Embossed Tape

DataShe

チップ詰状態 Chip filled チップ Chip

③バルクカセット Bulk Cassette

105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch)

■テーピング梱包 Taped packaging

et4U.com

形式(EIA) Type	■テーピング梱包	i aped packaging			
MK063(0201)				Standard [po	quantity
MK105(0402)		· ·	code		
E VK105(0402) 0.5 W 10000 — □MK107(0603) 0.8 A 4000 — □MK212(0805) 0.85 D 4000 — □MK212(0805) 1.25 G — 3000 □4K212(0805) 0.85 D 4000 — □AK212(0805) 0.85 D 4000 — □AK316(1206) 1.15 F — 3000 □AK316(1206) 1.15 F — 2000 □AK316(1206) 1.15 F — 2000 □AK316(1206) 1.15 F — 2000 □AK316(1206) 1.15 F <td>□MK063(0201)</td> <td></td> <td></td> <td>15000</td> <td>_</td>	□MK063(0201)			15000	_
E VK105(0402) (0.020) W □MK107(0603) 0.8 A 4000 — □MK212(0805) 0.85 D 4000 — □MK212(0805) 0.85 D 4000 — □AK212(0805) 0.85 D 4000 — □AK316(1206) 0.85 F — 3000 □AK316(1206) 0.045 F — 2000 □AK316(1206) 0.059 H — 2000 □AK325(1210) 0.059 N — 2000 □AK325(1210) 0.098 M — <t< td=""><td>□MK105(0402)</td><td></td><td></td><td>10000</td><td>_</td></t<>	□MK105(0402)			10000	_
MK107(0603)	E VK105(0402)	, ,	W	10000	
□MK212(0805) (0.033) D 4000 — 1.25 (0.049) G — 3000 □AK212(0805) (0.033) D 4000 — 0.85 (0.033) D 4000 — □MK316(1206) 1.15 F — 3000 1.25 (0.045) F — 3000 1.6 (0.049) G — 2000 □4K316(1206) (0.045) F — 2000 □AK316(1206) (0.045) F — 2000 □AK316(1206) (0.045) F — 2000 □AK316(1206) (0.045) F — 2000 □AK325(1210) (0.045) F — 2000 □AK325(1210) (0.059) H — 2000 □AK432(1812) (0.098) M — 500 □AK432(1812) (0.098) M — 500	□MK107(0603)			4000	_
1.25	□MK212/090E)		D	4000	_
MK316(1206) (0.033) D 4000 −	□IVIN2 12(0605)		G	_	3000
MK316(1206)	□4K212(0805)		D	4000	_
MK316(1206)			D	4000	_
1.25 (0.048) G 3000 1.6 (0.063) L - 2000 - 2000	□MK316(1206)		F		
1.6 (0.063) L		1.25	G	_	3000
□4K316(1206)		1.6	L		
0.85 (0.033) D 1.15 (0.045) F - 2000 1.5 (0.059) H - 2000 1.9 (0.075) N - 2000 1.9 (0.075) N - 2.5 (0.098) M - 500 - 500 1.9 (0.098) M - 500 - 500 1.9 (0.098) M - 500 - 500 1.9 (0.098) M - 500 1.9 (0.098) M - 500 1.9 (0.098) M - 500 1.9 (0.098) 0.098 0.	□4K316(1206)	1.15	F	_	2000
1.15		0.85	D		
□MK325(1210)		1.15	F		
(0.075) N 2.5 (0.098) M — 500 MK432(1812) 2.5 M — 500 MK550(2220) 2.5 M — 500	□MK325(1210)		Н	_	2000
(0.098) M − 500 □MK432(1812) 2.5 (0.098) M − 500			N		
□MK432(1812) 2.5 M — 500 □MK550(2220) 2.5 M — 500		2.5	М	_	500
□MK550(2220) 2.5 M _ 500	□MK432(1812)	2.5	М	_	500
t411 com			М	_	500

DataSheet4U.com

DataSheet4U.com

梱包 PACKAGING

③テーピング寸法 Taping dimensions 紙テープ Paper Tape (8mm幅) (0.315inches wide)

Type	チッフ	プ挿入部	挿入ピッチ	テープ厚み		
(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness		
	Α	В	F	Т		
□MK063(0201)	0.37±0.06	0.67±0.06	2.0±0.05	0.42±0.02		
_IVIN003(0201)	(0.06±0.002)	(0.027±0.002)	(0.079±0.002)	(0.017±0.001)		
☐MK105(0402)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max.		
E VK105(0402)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max.)		
□MK107(0603)	1.0±0.2	1.8±0.2				
	(0.039±0.008)	(0.071±0.008)				
☐MK212(0805)	1.65±0.2	2.4±0.2	4.0±0.1	1.1max.		
□4K212(0805)	(0.065±0.008)	(0.094±0.008)	(0.157±0.004)	(0.043max.)		
□MK316(1206)	2.0±0.2	3.6±0.2				
□IVII\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(0.079±0.008)	(0.142±0.008)				
Link* movies also						

Unit: mm(inch)

エンボステープ Embossed tape (12mm幅) (0.472inches wide)

Туре	チッフ	°挿入部	挿入ピッチ	テーフ	プ厚み
(EIA)	Chip	cavity	Insertion Pitch	Tape Th	nickness
	Α	В	F	K	Т
□MK432(1812)	3.7±0.2 (0.146±0.008)	4.9±0.2 (0.193±0.008)	8.0±0.1 (0.315±0.004)	3.4max. (0.134max.)	0.6max. (0.024max.)
□MK550(2220)	5.4±0.2 (0.213±0.008)	6.1±0.2 (0.240±0.008)	8.0±0.1 (0.315±0.004)	3.5max. (0.138max.)	0.6max. (0.024max.)

Unit: mm(inch)

④リーダ部/空部 Leader and Blank portion

⑤リール寸法 Reel size

⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.

et4U.com

エンボステープ Embossed tape (8mm幅) (0.315inches wide)

Туре	チッフ	[°] 挿入部	挿入ピッチ	テーフ	プ厚み
(EIA)	Chip	cavity	Insertion Pitch	Tape Th	ickness
	Α	В	F	K	Т
□MK212(0805)	1.65±0.2	2.4±0.2			
	(0.065±0.008)	(0.094±0.008)			
□MK316(1206)	2.0+0.2	3.6±0.2	4.0±0.1	2.5max.	0 6max
□4K316(1206)	(0.079±0.008)	(0.142±0.008)	(0.157±0.004)	(0.098max.)	
☐MK325(1210)	2.8±0.2	3.6±0.2		3.4max.	
□IVIR323(1210)	(0.110±0.008)	(0.142±0.008)		(0.134max.)	

Unit: mm(inch)

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions	Technical considerations
1.Circuit Design	Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. 2. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.	
2.PCB Design	Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance.	1.The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amourts.(larger fillets which extend above the component end terminations) Examples of improper pattern designs are also shown.

- Therefore, the following items must be carefully considered in the design of solder land patterns:
- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-re-

(1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs

Recommended land dimensions for wave-soldering (unit: mm)

Ту	ре	107	212	316	325
	L	1.6	2.0	3.2	3.2
Size	W	0.8	1.25	1.6	2.5
A	Ą	0.8~1.0	1.0~1.4	1.8~2.5	1.8~2.5
Е	3	0.5~0.8	0.8~1.5	0.8~1.7	0.8~1.7
()	0.6~0.8	0.9~1.2	1.2~1.6	1.8~2.5

Recommended land dimensions for reflow-soldering (unit: mm)

Ту	ре	063	105	107	212	316	325	432	550
Size	L	0.6	1.0	1.6	2.0	3.2	3.2	4.5	5.7
Size	W	0.3	0.5	0.8	1.25	1.6	2.5	3.2	5.0
P	4	0.20~0.30	0.45~0.55	0.6~0.8	0.8~1.2	1.8~2.5	1.8~2.5	2.5~3.5	3.7~4.7
E	3	0.20~0.30	0.40~0.50	0.6~0.8	0.8~1.2	1.0~1.5	1.0~1.5	1.5~1.8	1.5~2.3
		0.25~0.40	0.45~0.55	0.6~0.8	0.9~1.6	1.2~2.0	1.8~3.2	2.3~3.5	3.5~5.5

Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns.

Туре		316 (4 circuits)	212 (4 circuits)
Size		3.2	2.0
w w		1.6	1.25
а		0.7~0.9	0.5~0.6
	b	1	0.5~0.6
С		0.4~0.5 0.2~0	0.2~0.3
d		0.8	0.5

et4U.com

87

DataSheet4U.com

PRECAUTIONS

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions		Technical consider	rations
2.PCB Design		(2) Examples	of good and bad solder application	1
		Items	Not recommended	Recommended
		Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist
		Component placement close to the chassis	Chassis — Solder(for grounding)	Solder-resist
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron—	Solder-resist
		Horizontal component placement		Solder-resist
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips can	1	• •	pacitor layout; SMD capacitors should stresses from board warp or deflection.
	be subjected to mechanical stresses in subsequent manufac- turing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.	Deflection of the board	Not recommended	Position the component at a right angle to the direction of the mechanical stresses that are anticipated.
	DataSheet4	of mechanical	•	pard, it should be noted that the amounting on capacitor layout. The example
		Perforati		D B
			Slit Magnitude of stress A	- >B = C>D>E
		the capacitors of	can vary according to the method usest stressful to most stressful: pu	is, the amount of mechanical stress on ised. The following methods are listed sh-back, slit, V-grooving, and perfora- also consider the PCB splitting proce-

www.DataSheet4U.com

et4U.com

PRECAUTIONS

recautions on the use of Multilayer Ceramic Capacitors					
Stages	Precautions	Technical considerations			
3.Considerations for automatic placement	Adjustment of mounting machine 1. Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards. 2. The maintenance and inspection of the mounters should be conducted periodically.	1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the capacitors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle: (1)The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. (2)The pick-up pressure should be adjusted between 1 and 3 N static loads. (3)To reduce the amount of deflection of the board caused by impact of the pick-up nozzle supporting pins or back-up pins should be used under the PC board. The following dia grams show some typical examples of good pick-up nozzle placement:			
			Not recommended	Recommended	
		Single-sided mounting	Cracks	Supporting pin—	
		Double-sided mounting	Solder peeling Cracks	Supporting pin-	
		cracking of the this, the monito	capacitors because of mechanica	nozzle height can cause chipping or al impact on the capacitors. To avoid ment pin in the stopped position, and bin should be conducted periodically.	

Selection of Adhesives

1. Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.

1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied $\ensuremath{\mathsf{I}}$ to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives.

(1)Required adhesive characteristics

- a. The adhesive should be strong enough to hold parts on the board during the mounting &
- b. The adhesive should have sufficient strength at high temperatures.
- $\ensuremath{\text{c}}.$ The adhesive should have good coating and thickness consistency.
- d. The adhesive should be used during its prescribed shelf life.
- e. The adhesive should harden rapidly
- f. The adhesive must not be contaminated.
- g. The adhesive should have excellent insulation characteristics.
- h. The adhesive should not be toxic and have no emission of toxic gasses.

(2)The recommended amount of adhesives is as follows;

Figure	212/316 case sizes as examples	
a	0.3mm min	
b	100 ~120 μm	
С	Adhesives should not contact the pad	

DataSheet4U.com

et4U.com

www.DataSheet4U.com

93

PRECAUTIONS

Precautions on the use of Multilaver Ceramic Capacitors

Stages	Precautions	Technical considerations	
. Soldering	Selection of Flux 1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1)Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2)When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3)When using water-soluble flux, special care should be taken	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The	4 CAPACITORS
	to properly clean the boards. Soldering	cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux. 1-1. Preheating when soldering	ITORS
	Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	Heating: Ceramic chip components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C.	
		Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.	
		Recommended conditions for soldering [Reflow soldering] Temperature profile	
	DataSheet4	50	DataSh
		Caution 1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the capacitor, as shown below:	
		Capacitor Solder T PC board	
		Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible.	
		[Wave soldering] Temperature 230°C	

- 1. Make sure the capacitors are preheated sufficiently.
- 2. The temperature difference between the capacitor and melted solder should not be $\frac{1}{2}$ greater than 100 to130℃
- 3. Cooling after soldering should be as gradual as possible.
- 4. Wave soldering must not be applied to the capacitors designated as for reflow soldering only.

www.DataSheet4U.com DataSheet4U.com

PRECAUTIONS

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions	Technical considerations	
4. Soldering		[Hand soldering] Temperature Temperature (C) 300 280 Preheating 280°C	4
		Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the capacitor.	CAPACITORS
5.Cleaning	Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics.	1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor or deteriorate the capacitor's outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked;	
	Data Ohaas M	Ultrasonic output Below 20 W/ℓ Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less	DataShe
6.Post cleaning processes	1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recommended.	O.com	
7.Handling	Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices.		
	Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto the floor or a hard		

www.DataSheet4U.com DataSheet4U.com

surface, they should not be used.

against other boards or components.

(2)When handling the mounted boards, be careful that the mounted components do not come in contact with or bump

PRECAUTIONS

Precautions on the use of Multilayer Ceramic Capacitors

Stages	Precautions	Technical considerations
8.Storage conditions	Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40°C Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so ceramic chip capacitors should be used within 6 months from the time of delivery. The packaging material should be kept where no chlorine or sulfur exists in the air. 2. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

et4U.com

DataSheet4U.com

www.DataSheet4U.com DataSheet4U.com

4 CAPACITORS