2N5905 LOW NOISE, LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET The 2N5905 is a high-performance monolithic dual JFET featuring tight matching and low drift over temperature specifications, and is targeted for use in a wide range of precision instrumentation applications where tight tracking is required. The hermetically sealed TO-78 package is well suited for hi-reliability and harsh environment applications. (See Packaging Information). ## 2N5905 Benefits: - Tight Tracking - Good matching - Ultra Low Leakage - Low Drift | | FEATURES | | | | | | | |---|--|-----------------------------|---|-------|-----------------|------------------------------------|---| | | LOW DRIFT | | $ V_{GS1-2}/T = 5\mu V/^{\circ}C$ TYP. | | | | | | | ULTRA LOW LEAKA | I _G = 150fA TYP. | | | | | | | | LOW PINCHOFF | | $V_p = 2V TYP.$ | | | | | | | ABSOLUTE MAXIMUM RATINGS | | | | | | | | @ 25°C (unless otherwise noted) | | | | | | | | | | Maximum Temper | | | | | | | | | Storage Temperature | | | | -65°C to +150°C | | | | | Operating Junction Temperature | | | | +150°C | | | | Maximum Voltage and Current for Each Transistor – N | | | | | | | | | | -V _{GSS} Gate Voltage to Drain or Source | | | 40V | | | | | | -V _{DSO} Draii | Drain to Source Voltage | | | 40V | | | | | -I _{G(f)} Gate | Gate Forward Current | | | 10mA | | | | | | Gate Reverse Current | | | 10μΑ | | | | | Maximum Power I | | > | | | | | | Device Dissipation @ Free Air – Total 40mW @ +125°C | | | | | | s°C | È | | | MATCHING CHARACTERISTICS @ 25°C UNLESS OTHERWISE NOTED | | | | | | d | | | SYMBOL | CHARACTERISTICS | VALUE | UN | ITS | CONDITIONS | 5 | | | V _{GS1-2} / T max. | DRIFT VS. | 40 | μV/°C | | V_{DG} =10V, I_{D} =30 μ A | Ū | | | | TEMPERATURE | | | | T _A =-55°C to +125°C | 5 | | | V _{GS1-2} max. | OFFSET VOLTAGE | 15 | mV | | V_{DG} =10V, I_{D} =30 μ A | ä | | i۱ | • | • | | | | - | | ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted) CHARACTERISTICS UNITS CONDITIONS SYMBOL MIN. TYP. MAX Breakdown Voltage 40 60 BV_{GSS} V $V_{DS} = 0$ $I_D=1nA$ 40 $I_S = 0$ Gate-To-Gate Breakdown V BV_{GGO} I_G= 1nA $I_D = 0$ TRANSCONDUCTANCE **Full Conduction** 300 70 500 μmho $V_{DG} = 10V$ $V_{GS} = 0V$ f = 1kHz Y_{fSS} Y_{fS} Typical Operation 50 **20**0 μmho $V_{DG} = 10V$ $I_D = 30 \mu A$ f = 1kHz|Y_{FS1-2} / Y_{FS} Mismatch 1 % DRAIN CURRENT _{DG}= 10V _{GS}= 0V Full Conduction 400 1000 μΑ I_{DSS} $|I_{DSS1-2}/I_{DSS}|$ Mismatch at Full Conduction 2 5 % **GATE VOLTAGE** V_{GS}(off) or V_n Pinchoff voltage 0.6 2 4.5 $V_{DS} = 10V$ I_D= 1nA V_{GS}(on) **Operating Range** 4 V $V_{DS}=10V$ $I_D=30\mu A$ **GATE CURRENT** $V_{DG} = 10V I_D = 30\mu A$ Operating 3 -I_Gmax. Αg T_A= +125°C -I_Gmax. High Temperature --3 nΑ At Full Conduction __ 5 рΑ $V_{DS} = 0V$ V_{GS}= 20V -I_{GSS}max. High Temperature --10 nΑ T_A= +125°C -I_{GSS}max. 1 Gate-to-Gate Leakage рΑ V_{GG}= 20V I_{GGO} **OUTPUT CONDUCTANCE Full Conduction** 5 $V_{DG} = 10V$ $V_{GS} = 0V$ Yos Operating 0.1 0.1 μmho $V_{DG} = 10V$ $I_D = 30 \mu A$ $|Y_{OS1-2}|$ Differential 0.01 0.1 **COMMON MODE REJECTION** CMR $-20 \log |\Delta V_{GS1-2}/\Delta V_{DS}|$ 90 dB $\Delta V_{DS} = 10 \text{ to } 20V$ $I_D = 30 \mu A$ 90 CMR -20 log $|\Delta V_{GS1-2}/\Delta V_{DS}|$ $\Delta V_{DS} = 5 \text{ to } 10V$ $I_D=30\mu A$ C_{DD} Drain-to-Drain - Note 1 – These ratings are limiting values above which the serviceability of any semiconductor may be impaired **NOISE** **Figure** Voltage **CAPACITANCE** Input Reverse Transfer Available Packages: NF e_n C_{ISS} C_{RSS} 2N5905 in TO-78 2N5905 available as bare die Please contact $\underline{\text{Micross}}$ for full package and die dimensions 70 3 1.5 0.1 dB nV/√Hz рF Micross Components Europe $V_{DS} = 10V$ Tel: +44 1603 788967 Email: chipcomponents@micross.com Web: http://www.micross.com/distribution $V_{DS} = 10V$ $V_{GS} = 0V$ V_{DG} =10V I_D =30 μ A f=10Hz NBW=1Hz $V_{GS} = 0V$ $V_{DG} = 20V \quad I_D = 30\overline{\mu A}$ f= 100Hz $R_G = 10M\Omega$ f= 1MHz NBW= 6Hz 20