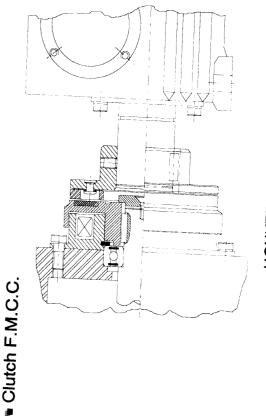


Stephenson Gobin Electromagnetic Type 51 Flange Mounted Clutches

- Installation
- Operation
- Maintenance

Installation Section


Clutch Type 51 F.M. (Flange Mounted Field).

F.M. clutches are the simplest type comprising a clutch field, rotor, and armature all

- The field should be mounted to a stationary surface, perpendicular to the axis of the shaft, using dimensions `a1' or `e4' to ensure good concentricity with the shaft. Often a standard series 6000 ball-bearing can be made to protrude form its housing to form a male spigot for dimension `e4'. A circlip groove is machined in all flange mounted fields to enable the location of such a bearing. Acceptable maximum eccentricity values are as follows: up to and including Size 11 - 0.05mm,
 - Size 12 and over 0.10mm
- The rotor should be pushed onto the shaft using a key to B.S.3673 for torsional locking. The axial position of the rotor relative to the field is controlled by dimension 'h1' using a shoulder or circlip and spacers. The rotor should be clamped axially using either a screw in the shaft end or a circlip and spacers.
- iii) Armature Installation.
- For C.L. Armatures: the customer furnished pulley or sproket must be counterbored For Ct. Armatures: the customer turnisned pulley or sproker must be counierbored observing dimensions n2, v and k to clear the fastener heads allowing the armature spring to lie flat against the pulley flange. The air-gap 'g' can be set using spacers which may be removed for subsequent wear adjustment. Always use Schnorr type shakeproof washers and a thread locking compound fastening the armature spring assembly to the customer's pulley

For C.C. Armatures (co-exially split shafts): the input ond output shaft must be Concentric within 0.05mm for sizes up to and including Size 11, and 0.08mm for Size 12 and over. The armature is mounted on the input/output shaft using a key to B.S.3673 for and over. The armature is mounted on the input/output shaft using a key to B.S.3673 for a size of the state of the s torsional locking and the set-screw provided for axial location and setting of the air-gap

For C.E. Armatures: some form of axial clamping using a tapped hole in the shaft end or screw thread machined onto the shaft is strongly recommended. This method is used by us and it forms a satisfactory method of holding all related clutch and brake parts firmly in position. An acceptable method of mounting pulleys, sprockets, or plate-wheels to the C.E. armature is to use the tapped holes 'u6'. This avoids set-screws, keys, or tapered locking elements and enables easy dismounting of the

Installation Section Bedding-in (all Clutch/Brake Devices)

The torque of clutches and brakes of the type we manufacture is affected by the average coefficient of friction across the faces of the armature and the clutch/brake, and the clamping pressure at the interface of these parts. This effective pressure in increased if the surfaces are in good intimate contact when engaged.

The degree of intimate contact is controlled to a minimum level during production by grinding the opposing faces in contact. This increases during normal operation where some slip occurs naturally, the amount of slip depends upon the magnitude of the load, speed, and cycle rate thus increasing the torque. We consider bedding-in to be essential and in most cases inevitable. If maximum torque is required immediately after installation then this process can be accelerated by lowering the operating voltage to 40/50% of the nominal value. This induces artificial slip during operation and results in an increase in the degree of

Care must be taken not to slip the device excessively as this will lead to an undesirable thermal overload causing electrical failure. Thermal overload may be avoided by cycling the unit 'on and off', allowing enough time for cooling between the periods of slip.

Operating Problems

Excessive Slipping / Inconsistent Operation

Some degree of slip occurs naturally during the operation of electromagnetically operated clutches and brakes. If the unit has been selected correctly then this slip should not be excessive. New units may need bedding-in to obtain immediate optimum torque, see the Installation / Bedding-in Section of this manual. The following are additional points which should be considered when investigating operational

- i) Large Air-gaps: the effective torque of a clutch or brake is affected by the size of the air-gap. A large air-gap reduces the clamping force between the interfaces of the clutch or brake A range air year reduces the claiming note between the small acceptance in inconsistent or surfaces thus reducing the torque. Excessive air-gaps can also result in inconsistent or intermitent operation. This occurs when the magnetic field no longer has the strength to pull the armature plate across the air-gap against the action of the of the return spring. The optimum air-gap value 'g' is given in the 'Dimensional Information Section' of this
- ii) Low Supply Voltage: for optimum performance we recommend that the supply voltage to any clutch or brake field is maintained at the device's nominal voltage within the range +5% to -10%. This voltage for d.c. devices must also be full-wave rectified if derived from an a.c. supply, smoothing also improves performance. Any reduction in this supply voltage will affect the magnetic field strength and may cause performance related problems.

iii) Electrical Problems :

- Electrical Fromities.

 (a) Open Circuit: Unit fails to operate at all, return for repair/replacement
- (b) Short Circuit: Unit continually 'blows' fuses, return for repair/replacement
- (c) Partial Short Circuit: Unit has a lower than expected resistance compared to rated wattage & voltage, return for repair/replacement
- iv) Contamination: this product is designed to be used in DRY running conditions, therefore the presence of water or oil and grease can seriously reduce torque. In applications where such contaminants are present particular care must be taken to prevent these from reaching the friction surfaces, this may be achieved by providing adequate sealing and
 - Singulary.

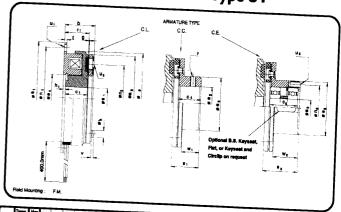
 Light contamination of the friction surfaces may be removed by lightly wiping the surfaces with a commercial degreasing fluid. Heavy contamination can never be removed successfully as any contaminant below the surface will inevitably be dissipated throughout the material resulting in a further failure. These units should be replaced or returned for
- y) Excessive Wear: some degree of wear is unavoidable because of natural slip but the presence of abrasive materials or foreign bodies in the atmosphere can accelerate this process. Accelerated wear results in need for frequent air-gap resetting operations and the
 - High operating temperatures and excessive heat build-up can also result in rapid wear, therefore good natural or forced ventilation may be required in some applications. particularly where rapid cycling or large inertia loads are cycled.

Maintenance Section

General

Stephenson Gobin Clutches and Brakes are robustly designed and are virtually maintenance free. However, in cases where they are used to control relatively large inertia loads or high switching frequencies are employed, they may periodically require the air-gap checking and adjusting. Where necessary, these air-gaps should be reset in accordance with the dimension 'g' in the dimensional information section of this manual. The period between adjustment is governed by the application and will differ depending upon your specific requirements.

Air-gap Resetting: ALWAYS remove all electrical supplies from machinery BEFORE attempting any adjustment.


Clutch Type 51: styles F.M., S.B., and B.B. can be adjusted by the removal of the correct number of shims between clutch rotor and armature hub.

Split shaft arrangements using C.C. style armature assemblies may only require the locking screw in the hub boss loosening and the hub sliding along the shaft unitl the required dimension is obtained

Other Armature styles are adjusted as follows:

- i) With the clutch coil de-energised measure the air-gap, in three places, between the clutch face and armature plate using feeler gauges
- ii) If the air-gap exceeds the dimension `g' by more than 0.20mm then some adjustment
- iii) Remove the armature assembly from the shaft and measure/remove the required number of shims to obtain the given dimension.
- iv) Examine the clutch rotor face and armature face for evidence of oil/greese, if the sufaces are contaminated consult the 'Operating Problems - Contamination' section of
- If the surfaces appear acceptable then re-fit the armature asssemly and re-check the
- vi) Operate the unit and check it is functioning correctly

Dimensional Information FM CLUTCH Type 51

_	4	Ľ	'n	9	4,	4,	ь	c.	, c	. 0	, [7 H	e	, e			٠,		J		_	Ι.	Т	1		Т		_	u.		_	_	_	_	_
00	0.30	7	T	8	28.6	28	18	5 12	,	+	-12	/ H	+	14	4	4	٠,		1		n,	_n	· In	y r	<u>. </u>	4	12	t	x4	III.	u,	u	, v	w,	
01	0.00	t.	-	8	30	31	-	5 13.	_								- 0.	1 0	.5	5	33.:	19.	5 -	15	.5 9	7	-	1.5	3.2	202.0		100	,	١.	٦
	0.75	H	+	4	32	-	+-	_	_	_	-	5 6.		1	5 12	- (2	0.	1 0	5 1	5	33.1	19.	5 -	16	5 12	8	-	_	_	202.6		-	ш		
	1.20	ŀ÷	+	+	_	34	-	20.2		_	6.9	6.	5	1:	3 12	: -	0.	1 2		5	38	23	+	_	212	_		-	_	_		-	-	8	_
_	_	Ľ	-	+	40	-		23,4	_	-	10	10	-	11	17	-	0.1	52	2 8		47	30	+-	-	-	-	-	-	_	302.6		M3	1.5	8	
-	1.60	•	LB	2	42	44	28.6	19	12	-	10	10	-				0.1				54	_	+	٠.	6 15	_	1	2	3.5	303.1	L-	МЗ	1.5	9.5	Ī
<u>05</u>	3	10	6	5	50	54	31.8	26.1	12	12	15	15	7				0.2				_	29	Ļ	-	4 15	_	_		5	243.1	-	M3	1.5	9.5	
06		15	R	ונ	63	66.5	28	22			17			-						-	58				1 15.	3 1	8 2	2	3.5	353.1	3xM3	144	1.5	9.5	-
07	•	15	88	,	63	68	36	22.5							2/	36	0.2	2 2	6.	1	72	46	33	24	18	2	7 2				3xM4				
08	16	18	100	1	BO	85	31	22.5 24	20	20	-	<u>''</u>	12								9.5	46	33	32	16	27	7 2				3xM4				
10	32	31	125	10	00	107	36						_				0.2					60	37	26.5	24.	34	2	5 1	5.5	3w4 1	3xM4	145	-	11.5	ł
1	-	25	143	-	_	107	_	_	_	_	30	_	_		42	55	0.2	3	9	7	12	76	47	30	30										
-	-	<u></u>	150	+	-	_	42	_			25	30	20	47.8	42	55	0.2	4.7	9	1	_	76	_		-	+	3				4xM4				
-	-	-	-	1		_	41	30	30	42	40	35	25	62	49	64	0.3	3.5	10		17	D6	52	=	30		-3	+	.5		4xM4	_	_	_	ŀ
-	-		190	-	- 1	70	47	38	38	54	50	40	30	80	65	75	0.3	3.5	19	+	-	~	-	33.5	48	63.	5 3.	5 6	.5	3x8.1	40044	M6	2.5	24	ŀ
<u>0 2</u>	40	•	230	20	0 2	13	54	40	48	67	65	60	10	100	92	an	0.5	-		H	•	20	62	37.5	48	_	-	-	3	bc8.2	BoM5	H8	9	30	į
4	_	_1		L	Т	П	Ţ		٦		7	-	7	-	7	+	0.0	-	70	21	5 1	58	75	44	59	80.1	6	1	35	x10.2	4xM6	Ma 1	1	39	ē
_					Т	1			7	7	-	+	+	-	4	+	-	_	_	-	4		1	_			Ĺ	7	T			7	7	7	-

TYPICAL IDENTIFICATION CODE 51 - 1224 - U001 - 24V = - 32W - 1295 DESIGN NUMBER DATE CODE WEEK & YEARS DATE CODE WEEK & YEARS	Keyways to B.S. 4235	Circlip Grooves to B.S. 3673	
PRODUCT TYPE 51 - 1224 - U001 - 24V = - 32W - 1295 DESIGN NUMBER			insulation Class I
DESIGN NUMBER	PRODUCT TYPE	1 - 1224 - U001 - 24V= - 32W - 1295	
	DESIGN NUMBER	'	DATE CODE (WEEK & YEAR)

STEPHENSON GOBIN (U.K. Sales)

(U.n. casss) K Moor Road, Ebblake Ind. Estate, Verwood, Dorset, BH31 6YS. Tel: 01202 823531, Fax: 01201 826765 STEPHENSON GOBIN (Export Sale ਵਾਸਤਾਨਾਰਾ ਕੁਹਾਗਾ (ਵxport ਠਗ਼ਾਰਾ) ph Etherley, Bishop Auckland, Co. Durham, England, DL14 0HY. Tel: +44(0) 1388 832252, Fax: +44(0) 1388 834220