

Data Sheet

FEATURES:

- Organized as 256K x8 ROM + 32K x8 SRAM
- ROM/RAM combo on a monolithic chip
- Equavalent ComboMemory (Flash + SRAM): product for code development and pre-production
- Wide Operating Voltage Range: 2.7-3.3V
- Chip Access Time
 - 2.7V Operation: 500 ns (Max.)

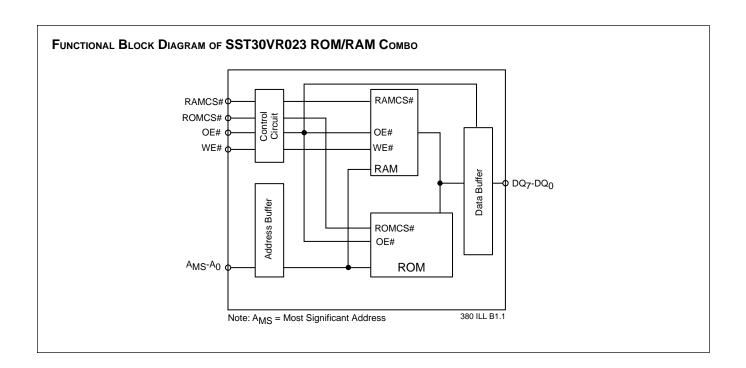
- · Low Power Dissipation:
 - Standby

3.0V Operation: 3 µW (Typical)

Operating

3.0V Operation: 10 mW (Typical)

- Fully Static Operation
 - No clock or refresh required
- Three state Outputs
- Packages Available
 - 32-Pin TSOP (8mm x 13.4mm)
 - 32-Pin TSOP (8mm x 14mm)


PRODUCT DESCRIPTION

The SST30VR023 is a ROM/RAM combo chip consisting of 2 Mbit Read Only Memory organized as 256 KBytes and a 256 Kbit Static Random Access Memory organized as 32 KBytes.

The device is fabricated using SST's advanced CMOS low power processing technology.

The SST30VR023 has an output enable input for precise control of the data outputs. It also has two separate chip enable inputs for selection of either ROM or RAM and for minimizing current drain during power-down mode.

The SST30VR023 is particularly well suited for use with low voltage supplies (2.7-3.3V) such as pagers, organizers and other handheld applications.

Data Sheet

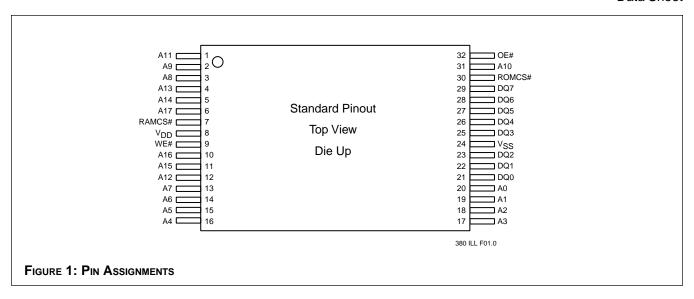


TABLE 1: PIN DESCRIPTION

Symbol	Pin Name
A _{MS} -A ₀	Address Inputs, $A_{MS} = A_{17}$ for ROM, A_{14} for RAM
WE#	Write Enable Input
OE#	Output Enable
RAMCS#	RAM Enable Input
ROMCS#	ROM Enable Input
DQ ₇ -DQ ₀	Data Inputs/Outputs
V_{DD}	Power Supply
Vss	Ground

380 PGM T1.1

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Voltage on Any Pin Relative to V _{SS}	0.5V to V _{DD} + 0.5V
Voltage on V _{DD} Supply Relative to V _{SS}	0.5 to 4.0V
Power Dissipation	1.0W
Storage Temperature	65°C to +150°C
Operating Temperature	40°C to +85°C
Soldering Temperature (10 Seconds Lead Only)	

OPERATING RANGE

Range	Ambient Temp	V _{DD}
Commercial	0 °C to +70 °C	2.7-3.3V
Extended	-20 °C to +70 °C	2.7-3.3V
Industrial	-40 °C to +85 °C	2.7-3.3V

AC CONDITIONS OF TEST

710 COMPINIONS OF TEST
Input Pulse Level0-V _{DD}
Input & Output Timing Reference LevelsV _{DD} /2
Input Rise/Fall Time5 ns
Output Load

Data Sheet

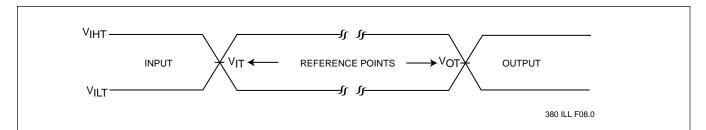
TABLE 2: RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
V_{DD}	Supply Voltage	2.7	3.3	V
Vss	Ground	0	0	V
V _{IH}	Input High Voltage	2.4	V _{DD} +0.5	V
V _{IL}	Input Low Voltage	-0.3	0.3	V

380 PGM T2.0

TABLE 3: DC OPERATING CHARACTERISTICS

		$V_{DD} = 3.0 \pm 0.3 V$.3V	
Symbol	Parameter	Min	Max	Units	Test Conditions
IΠ	Input Leakage Current	-1	1	μΑ	$V_{IN} = V_{SS}$ to V_{DD}
I _{LO}	Output Leakage Current	-1	1	μΑ	ROMCS# = RAMCS# = V _{IH} or OE# = V _{IH} or WE# = V _{IL} , V _{I/O} = V _{SS} to V _{DD}
I _{DD1}	ROM Operating Supply Current		4.0+1.1(f)	mA	$\begin{aligned} &ROMCS\#=V_{IL},RAMCS\#=V_{IH},V_{IN}=V_{IH}orV_{IL}\\ &I_{I/O}=Opens \end{aligned}$
I _{DD2}	RAM Operating Supply Current		2.5+1(f)	mA	ROMCS# = V _{IH} , RAMCS# = V _{IL} , I _{I/O} = Opens
I _{SB}	Standby V _{DD} Current		10	μΑ	$\begin{aligned} &ROMCS\# \geq V_{DD}\text{-}0.2V\\ &V_{IN} \geq V_{DD}\text{-}0.2V \text{ or } V_{IN} \leq 0.2V \end{aligned}$
V _{OL}	Output Low Voltage		0.4	V	I _{OL} = 1.0 mA
Vон	Output High Voltage	2.2		V	I _{OH} = -0.5 mA


Note: f = frequency of operation (MHz) = 1/cycle time

380 PGM T3.1

Table 4: Capacitance (Ta = 25 °C, f=1 Mhz)

Parameter	Description	Test Condition	Maximum
C _{I/O}	I/O Capacitance	V _{I/O} = 0V	8 pF
C _{IN}	Input Capacitance	$V_{IN} = 0V$	6 pF

380 PGM T4.0

AC test inputs are driven at V_{IHT} (0.9 V_{DD}) for a logic "1" and V_{ILT} (0.1 V_{DD}) for a logic "0". Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Inputs rise and fall times (10% \leftrightarrow 90%) are <5 ns.

FIGURE 2: AC INPUT/OUTPUT REFERENCE WAVEFORMS

Data Sheet

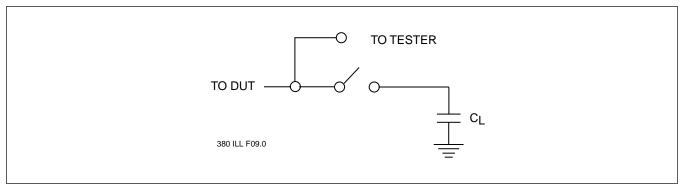


FIGURE 3: A TEST LOAD EXAMPLE

AC CHARACTERISTICS

I. ROM Operation

Table 5: Read Cycle Timing Parameters $V_{DD} = 3.0 V \pm 0.3$

Symbol	Parameter	Min	Max	Unit
T _{RC}	Read Cycle Time	500		ns
T _{AA}	Address Access Time		500	ns
Tco	Chip Select to Output		500	ns
T _{OE}	Output Enable to Valid Output		250	ns
T _{LZ}	Chip Select to Low-Z Output	25		ns
T _{OLZ}	Output Enable to Low-Z Output	25		ns
T _{HZ}	Chip Disable to High-Z Output		30	ns
T _{OHZ}	Output Disable to High-Z Output		30	ns
Тон	Output Hold from Address Change	15		ns

380 PGM T5.0

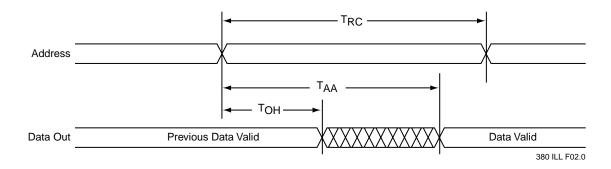
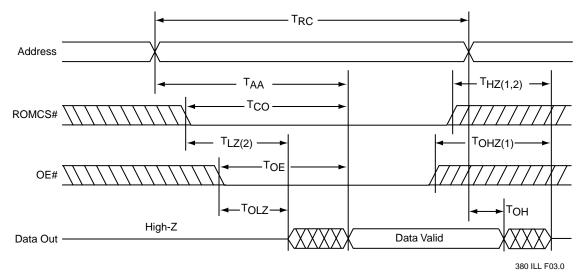



FIGURE 4: ROM READ CYCLE TIMING DIAGRAM (ADDRESS CONTROLLED) (ROMCS# = OE# = VIL)

Data Sheet

Notes: 1. T_{HZ} and T_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are referenced to the V_{OH} or V_{OL} .

 At any given temperature and voltage condition T_{HZ}(max) is less than T_{LZ}(min) both for a given device and from device to device.

FIGURE 5: ROM READ CYCLE TIMING DIAGRAM (ROMCS# OR OE# CONTROLLED)

II. SRAM Operation (ROMCS# = VIH)

TABLE 6: READ CYCLE TIMING PARAMETERS VDD=3.0 V ± 0.3

Symbol	Parameter	Min	Max	Unit
T _{RC}	Read Cycle Time	500		ns
T _{AA}	Address Access Time		500	ns
T _{CO}	Chip Select to Output		500	ns
T _{OE}	Output Enable to Valid Output	25		ns
T _{LZ}	Chip Select to Low-Z Output	25		ns
T _{HZ}	Chip Disable to High-Z Output		30	ns
T _{OHZ}	Output Disable to High-Z Output		30	ns
Тон	Output Hold from Address Change	15		ns

380 PGM T6.0

Table 7: Write Cycle Timing Parameters $V_{DD}=3.0 V \pm 0.3$

Symbol	Parameter	Min	Max	Unit
T _{WC}	Write Cycle Time	500		ns
T _{CW}	Chip Select to End-of-Write	365		ns
T _{AW}	Address Valid to End-of-Write	375		ns
T _{AS}	Address Set-up Time	0		ns
T _{WP}	Write Pulse Width	375		ns
TwR	Write Recovery Time	0		ns
T _{WHZ}	Write to Output High-Z		80	ns
T _{DW}	Data to Write Time Overlap	200		ns
T _{DH}	Data Hold from Write Time	0		ns
Tow	End Write to Output Low-Z	15		ns

380 PGM T7.0

Data Sheet

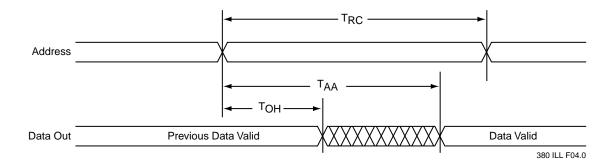
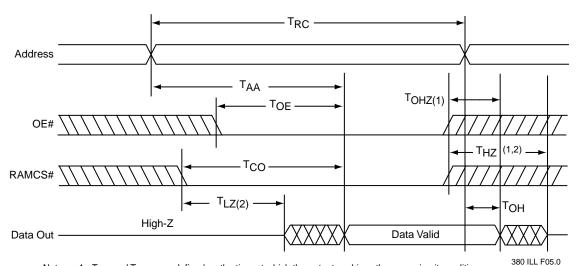
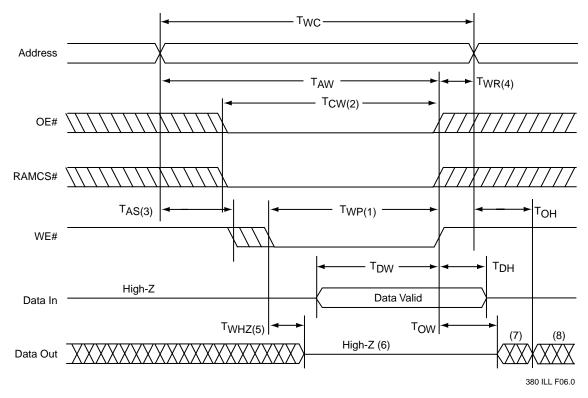



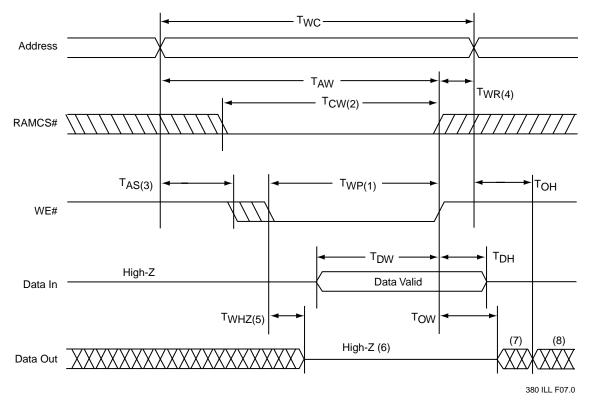
FIGURE 6: SRAM READ CYCLE TIMING DIAGRAM (ADDRESS CONTROLLED) (OE# or RAMCS# = VIL, WE# = VIH)


- Notes: 1. T_{HZ} and T_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are referenced to the V_{OH} or V_{OL}.

 2. At any given temperature and voltage condition T_{HZ}(max) is less than T_{LZ}(min) both for a given
 - device and from device to device.
 - 3. WE# is high for Read cycle.
 - 4. Address valid prior to coincidence with RAMCS# transition low.

FIGURE 7: SRAM READ CYCLE TIMING DIAGRAM (OE# OR RAMCS# CONTROLLED)

Data Sheet



- Notes: 1. A write occurs during the overlap (T_{WP}) of a low RAMCS# and low WE#. A write begins at the latest transition among RAMCS# going low and WE# going low: A write end at the earliest transition among RAMCS# going high and WE# going high, T_{WP} is measured from the beginning of write to the end of write.
 - 2. $T_{\mbox{CW}}$ is measured from the later of RAMCS# going low to the end of write.
 - 3. TAS is measured from the address valid to the beginning of write.
 - 4. TWR is measured from the end of write to the address change.
 - 5. If RAMCS#, WE# are in the read mode during this period, the I/O pins are in the outputs Low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
 - 6. If RAMCS# goes low simultaneously with WE# going low or after WE# going low, the outputs remain high impedance state.
 - 7. DOUT is the same phase of the latest written data in this write cycle.
 - 8. DOUT is the read data of new address
 - 9. ROMCS# = VIH

FIGURE 8: SRAM WRITE CYCLE TIMING DIAGRAM (OE# CLOCK)

Data Sheet

Notes: 1. A write occurs during the overlap (T_{WP}) of a low RAMCS# and low WE#. A write begins at the latest transition among RAMCS# going low and WE# going low: A write end at the earliest transition among RAMCS# going high and WE# going high, T_{WP} is measured from the beginning of write to the end of write.

- 2. $T_{\mbox{CW}}$ is measured from the later of RAMCS# going low to the end of write.
- 3. TAS is measured from the address valid to the beginning of write.
- 4. $T_{\mbox{WR}}$ is measured from the end of write to the address change.
- If RAMCS#, WE# are in the read mode during this period, the I/O pins are in the outputs Low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 6. If RAMCS# goes low simultaneously with WE# going low or after WE# going low, the outputs remain high impedance state.
- 7. D_{OUT} is the same phase of the latest written data in this write cycle.
- 8. $D_{\mbox{OUT}}$ is the read data of new address
- 9. ROMCS# = V_{IH}

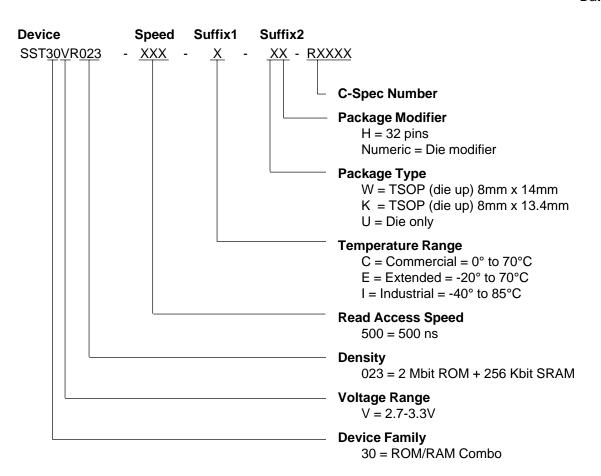
FIGURE 9: SRAM WRITE CYCLE TIMING DIAGRAM (OE# FIXED)

Data Sheet

TABLE 8: FUNCTIONAL DESCRIPTION/TRUTH TABLE

Address Inputs	ROMCS#	RAMCS#	WE#	OE#	DQ7-DQ0	
X	Н	Н	Х	Х	Z	Standby
A17-A0	L	Н	Х	Н	Z	Output Floating
A17-A0	L	Н	Х	L	Dout	ROM Read
Only A14-A0 are valid *	Н	L	Н	Н	Z	Output Floating
Only A14-A0 are valid *	Н	L	Н	L	Dout	RAM Read
Only A14-A0 are valid *	Н	L	L	Н	Din	RAM Write

^{*} A17-A15 must be fixed to "L" or "H"


380 PGM T9.2

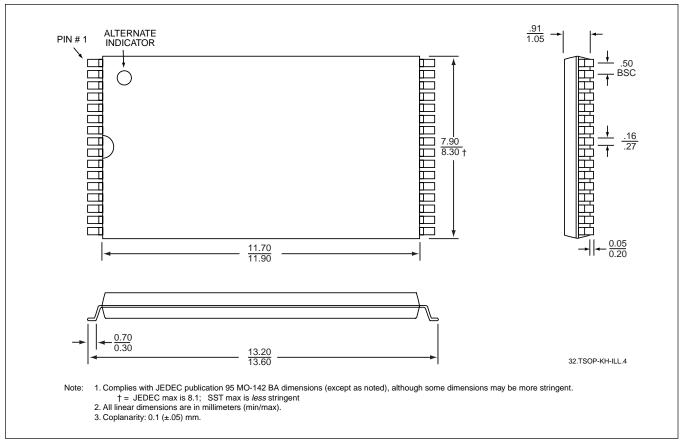
Note: (1) It is forbidden that ROMCS# pin and RAMCS# pin will be "0" at the same time.

(2) X means Don't Care.

Data Sheet

SST30VR023 Valid combinations

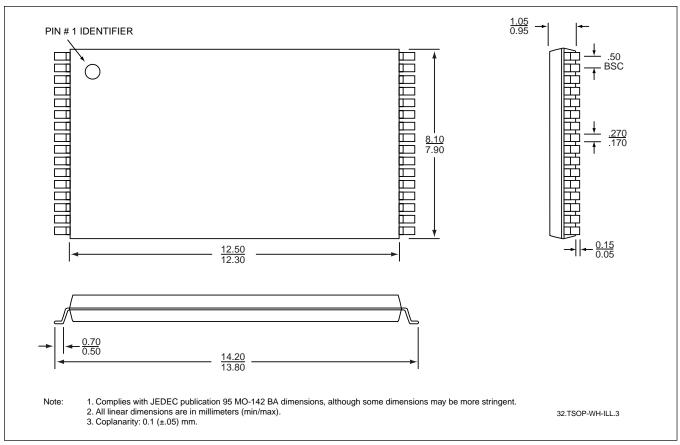
SST30VR023-500-C-WH SST30VR023-500-C-KH SST30VR023-500-C-U1


SST30VR023-500-E-WH SST30VR023-500-E-KH SST30VR023-500-I-WH SST30VR023-500-I-KH

Example: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Data Sheet

PACKAGING DIAGRAMS



32-Pin Thin Small Outline Package (TSOP) 8mm x 13.4mm

SST PACKAGE CODE: KH

Data Sheet

32-Pin Thin Small Outline Package (TSOP) 8mm x 14mm SST Package Code: WH