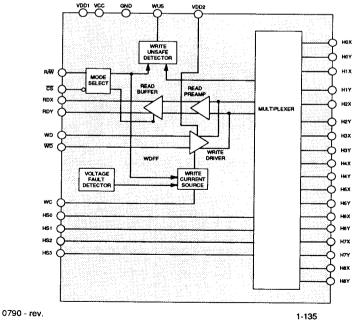
silicon systems*

SSI 32R527R 8 & 9-Channel Thin Film Read/Write Device Preliminary Data

July, 1990

DESCRIPTION

The SSI 32R527R Read/Write devices are bipolar monolithic integrated circuits designed for use with two terminal thin film recording heads. They provide a low noise read amplifier, write current control and data protection circuitry for eight or nine channels. Power supply fault protection is provided by disabling the write current generator during power sequencing. They require +5V and +12V power supplies and are available in a variety of package configurations. A mirror image pinout option is available to simplify flex circuit layout in multiple R/W device applications. The SSI 32R527R provides internal 500 Ω damping resistors.


FEATURES

· High performance:

Read mode gain = 120 V/V
Input noise = 0.85 nV/√Hz max.
Input capacitance = 35 pF max.
Write current range = 10 mA to 40 mA
Head voltage swing = 7 Vpp
Write current rise time = 9 ns

- · Enhanced system write to read recovery time
- Differential ECL-like write data input
- Open collector read outputs
- · Power supply fault protection
- Compatible with two & three terminal thin film heads
- Write unsafe detection
- +5V, +12V power supplies
- Mirror image pinout option

PIN DIAGRAM

нох [1	32] GND
HOY [2	31	N/C
н1Х [3	30	े टड
H1Y [4	29] RW
H2X [5	28	wc
H2Y [6	27	RDY
нзх [7	26] RDX
нзү [8	25) HSO
н4х [9	24	HS1
H4Y [10	23] HS2
н5х 🛚	11	22	vcc
ньү [12	21] WD
нех [13	20) WD
H6Y [14	19	wus
H7X [15	18	VDD
H7Y [16	17	N/C
			,

32-LEAD SOW, FLATPACK

CAUTION: Use handling procedures necessary for a static sensitive component.

CIRCUIT OPERATION

The SSI 32R527R addresses up to nine two-terminal thin film heads providing write drive or read amplification. Head selection and mode control is accomplished with pins HSn, $\overline{\text{CS}}$ and $R/\overline{\text{W}}$, as shown in Tables 1 & 2. Internal resistor pullups, provided on pins $\overline{\text{CS}}$ and $R/\overline{\text{W}}$ will force the device into a non-writing condition if either control line is opened accidentally.

WRITE MODE

The write mode configures the SSI 32R527R as a current switch and activates the Write Unsafe (WUS) detection circuitry. The Write Data Inputs (WD, $\overline{\text{WD}}$) determine the polarity of the head current. There is no internal toggle flip-flop.

The magnitude of the write current (0-pk) given by:

$$W = \frac{Vwc}{RWC}$$

where Vwc (WC pin voltage) = $1.65V \pm 5\%$, is programmed by an external resistor RWC, connected from pin WC to ground. In multiple device applications, a single RWC resistor may be made common to all devices. The actual head current lx, y is given by:

$$Ix, y = \frac{W}{1 + Rh/Rd}$$

where:

Rh = head resistance + external wire resistance, and Rd = damping resistance.

Power supply fault protection improves data security by disabling the write current generator during a voltage fault or power supply sequencing. Additionally, the write unsafe detection circuitry will flag any of the conditions listed below as a high level on the open collector output pin, WUS. Two transitions on pin WD and $\overline{\text{WD}}$, after the fault is corrected, are required to clear the WUS flag.

- · WD frequency too low
- · Device in read mode
- Device not selected
- · No write current

Power dissipation in Write Mode may be reduced by placing a resistor, Rw, between VDD1 and VDD2. The resistor value should be chosen such that Iw Rw≤3.0V for an accompanying reduction of (Iw)² Rw in power dissipation. If a resistor is not used, VDD2 should be connected to VDD1. Note that Rw will also provide current limiting in the event of a head short.

READ MODE

The read mode configures the SSI 32R527R as a low noise differential amplifier and deactivates the write current generator and write unsafe detection circuitry. The RDX and RDY outputs are open collectors and are in phase with the "X" and "Y" head ports. The termination resistors for RDX/RDY should be 100Ω to Vcc.

IDLE MODE

The idle mode deactivates the internal write current generator, the write unsafe detector and switches the RDX, RDY outputs into a high impedance state. This facilitates multiple device applications by enabling the read outputs to be wire OR'ed and the write current programming resistor to be common to all devices. If multiple devices are wire OR'ed, series Schottky isolation diodes are recommended to reduce parasitic capacitance without degrading dynamic range.

FIGURE 1: OR'ed Devices w/ Schottky Isolation Diodes

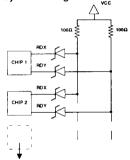


TABLE 1: Mode Select

CS	R/W	MODE
0	0	Write
0	1	Read
1	0	Idle
1	1	ldle

TABLE 2: Head Select 0 = Low level 1 = High level

HS3	HS2	HS1	HS0	HEAD
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8

PIN DESCRIPTIONS

NAME	TYPE	DESCRIPTION
HSO - HS3	ı	Head Select
CS	ı	Chip Select: a low level enables the device
R/W	ı	Read/Write: a high level selects Read mode
wus	0,	Write Unsafe: Open collector output, a high level indicates an unsafe writing condition
WD,WD	1	Write Data In: a negative polarity passes write current in the x-direction of the head.
H0X - H8X H0Y - H8Y	1/0	X, Y Head Connections: Current in the X-direction flows into the X-port
RDX, RDY	0*	X, Y Read Data: differential read data output, require 100 Ω termination resistor to Vcc
wc	*	Write Current: used to set the magnitude of the write current
vcc	-	+5V Logic Circuit Supply
VDD1	-	+12V
VDD2	-	Positive power supply for write current drivers: VDD1 - 3.0V ≤ VDD2 ≤ VDD1
GND		Ground

^{*}When more than one R/W device is used, these signals can be wire OR'ed.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	VALUE	UNITS
DC Supply Voltage		VDD	-0.3 to +14	VDC
		vcc	-0.3 to +7	VDC
Write Current		lw	100	mA
Digital Input Voltage		Vin	-0.3 to VCC +0.3	VDC
Head Port Voltage		VH	-0.3 to VDD +0.3	VDC
WUS Pin Voltage Range		Vwus	-0.3 to +14	VDC
Output Current	WUS	lwus	+12	mA
Storage Temperature		Tstg	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNITS
DC Supply Voltage	VDD	12 ± 10%	VDC
- t - t - t - t - t - t - t - t - t - t	vcc	5 ± 10%	VDC
Operating Temperature	Tj	+25 to +135	°C

DC CHARACTERISTICS

Unless otherwise specified, recommended operating conditions apply.

PARAMETER	CONDITIONS	MIN	МОМ	MAX	UNITS
VDD Supply Current	Read Mode		-	34	mA
	Write Mode	-	-	38 + lw	mA
	Idle Mode	-	-	14	mA
VCC Supply Current	Read Mode	-	-	52	mA
,,,,	Write Mode	-		45	mA
	Idle Mode	-	-	42	mA
Power Dissipation (Tj = +135°C)	Read Mode			670	mW
	Write Mode: lw = 20 mA, VDD2 = VDD1	-	-	900	mW
	VDD2 = VDD1 - 3.0V	-	-	900	mW
	Idle Mode	-		0.8	VDC
Input Low Voltage (VIL)		2.0		- 0.8	VDC
Input High Voltage (VIH)	VIII 0.00	-0.4		- <u>-</u>	mA
Input Low Current (IIL)	VIL = 0.8v	-0.4		100	μА
Input High Current (IHL)	VIH = 2.0v			0.5	VDC
WUS Output Low Voltage (VOL)	lol = 8 mA	8.5		10.0	VDC
VDD Fault Voltage		3.5		4.2	VDC
VCC Fault Voltage Head Current (HnX, HnY)	Write Mode, 0≤VCC ≤3.5V 0≤VDD ≤8.5V	-200	-	+200	μΑ
	Read/Idle Mode 0≤VCC ≤5.5V 0≤VDD ≤13.2V	-200	-	+200	μА
Data Input Capacitance	WD or WD to GND	Ì		10	pF
Data Input Current	WD or WD			150	μΑ
Differential Data Voltage	WD - WD	0.2			VDC
WD, WD Data Input Voltage Range	Low Level (WD VIL)	VCC -1.9			VDC
	High Level (WD VIH)			VCC + 0.1	VDC

WRITE CHARACTERISTICS

Unless otherwise specified, recommended operating conditions apply, Iw = 20 mA, $\,$ Lh = 1.0 μ H, Rh = 30 Ω and f(WD) = 5 MHz.

PARAMETER	CONDITIONS	MIN.	мом	MAX	UNITS
WC Pin Voltage (Vwc)		-	1.65 ±5%	-	v
Differential Head Voltage Swing		7	-	-	Vpp
Unselected Head Current		-	-	1	mA(pk)
Differential Output Capacitance		-	-	25	pF
Differential Output Resistance		400	500	750	Ω
WD, WD Transition Frequency	WUS = low	.85	- 1	-	MHz
Write Current Range		10	- 1	40	mA

READ CHARACTERISTICS

Unless otherwise specified, recommended operating conditions apply CL (RDX, RDY) < 20pF and RL1 (RDX, VCC) = RL2 (RDY, VCC) = 100Ω

PARAMETER		CONDITIONS	MIN	МОМ	MAX	UNITS
Differential Voltage Gain		Vin=1mVpp @ 300 KHz Tj = 25°C	85	-	150	V/V
Bandwidth	-1dB	Zs <5Ω, Vin=1 mVpp @ 300 kHz	25	-	-	MHz
	-3dB	Zs <5Ω, Vin=1 mVpp @ 300 kHz	45	-	-	MHz
Input Noise Voltage		BW = 15 MHz, Lh = 0, Rh = 0	-	0.62	0.85	nV/√Hz
Differential Input Capacitance		Vin = 1 mVpp, f = 5 MHz	-	-	35	pF
Differential Input Resistance		Vin = 1 mVpp, f = 5 MHz	280	320	-	Ω
Dynamic Range		AC peak-to-peak input voltage where gain falls to 90% of its small signal value, f = 5 MHz	6	•	-	mV
Common Mode Rejection Ratio		Vin = 0 VDC+100 mVpp 1 MHz <f< 10="" mhz<br="">10 MHz<f< 20="" mhz<="" td=""><td>54 48</td><td>-</td><td>-</td><td>dB dB</td></f<></f<>	54 48	-	-	dB dB
Power Supply Rejection Ratio		VPD or Vcc @ 100mVpp 1 MHz <f< 10="" mhz<br="">10 MHz<f< 20="" mhz<="" td=""><td>54 40</td><td>-</td><td></td><td>dB dB</td></f<></f<>	54 40	-		dB dB
Channel Separation		All unselected channels driven with 100 mVpp 1 MHz <f< 10="" mhz<="" td=""><td>43</td><td>_</td><td>_</td><td>dB</td></f<>	43	_	_	dB
		10 MHz <f< 20="" mhz<="" td=""><td>37</td><td>_</td><td>_</td><td>dB</td></f<>	37	_	_	dB
Output Offset Voltage			-300	-	+300	mV
RDX, RDY Common Mode		Read Mode	VCC - 1.1		VCC3	VDC
Output Voltage		Write Mode	-	VCC	-	VDC
Single Ended Output Resistand	ce	f = 5 MHz	10	-		ΚΩ

READ CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	МОМ	MAX	UNITS
Output Current		-	6	<u>-</u>	mA
Single Ended Output Capacitance	f = 5 MHz	-	-	10	pF

SWITCHING CHARACTERISTICS (See Figure 1)

Unless otherwise specified, recommended operating conditions apply, lw = 20 mA, Lh = $1.0 \,\mu\text{H}$, Rh = 30Ω and f(WD) = 5 MHz.

PARAMETER	CONDITIONS	MIN	MAX	UNITS
R/ W				
R/W to Write Mode	Delay to 90% of write current	-	0.6	μs
R/W to Read Mode	Delay to 90% of 100mV 10MHz Read signal envelope or to 90% decay of write current	-	0.6	μs
CS				
CS to Select	Delay to 90% of write current or to 90% of 100mV 10MHz Read signal envelope	-	0.6	μs
CS to Unselect	Delay to 10% of write current	-	0.6	μs
HSn			. <u>.</u>	
HS0, 1, 2 to any Head	Delay to 90 % of 100mV 10MHz Read signal envelope	-	0.4	μs
WUS				
Safe to Unsafe - TD1		0.6	3.6	μs
Unsafe to Safe - TD2		-	11	μs
Head Current				
Prop. Delay - TD3	From 50 % points, Lh=0μh, Rh=0Ω	-	32	ns
Asymmetry	WD has 50 % duty cycle and 1ns rise/fall time, Lh=0μh, Rh=0Ω	-	1	ns
Rise/Fall Time	10% - 90% points, Lh=0μh, Rh=0Ω	-	9	ns

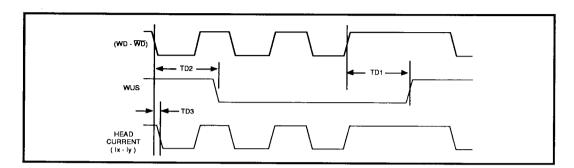


FIGURE 1: Write Mode Timing Diagram

APPLICATIONS INFORMATION

The specifications, provided in the data section, account for the worst case values of each parameter taken individually. In actual operation, the effects of worst case conditions on many parameters correlate. Tables 3 & 4 demonstrate this for several key parameters. Notice that under the conditions of worst case input noise, the higher read back signal resulting from the higher input impedance can compensate for the higher input noise. Accounting for this correlation in your analysis will be more representative of actual performance.

TABLE 3: Key Parameters Under Worst Case Input Noise Conditions

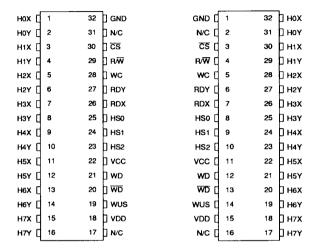
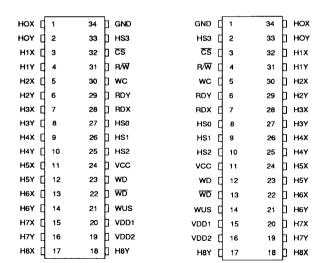

PARAMETER	Tj = 25°C	Tj = 135°C	UNITS
Input Noise Voltage (Max.)	0.70	0.85	nV/√Hz
Differential Input Resistance (Min.)	320	340	Ω
Differential Input Capacitance (Max.)	32	34	pF

TABLE 4: Key Parameters Under Worst Case Input Impedance Conditions


PARAMETER	Tj = 25°C	Tj = 135°C	UNITS
Input Noise Voltage (Max.)	0.58	0.71	nV/√Hz
Differential Input Resistance (Min.)	260	290	Ω
Differential Input Capacitance (Max.)	33	35	pF

0790 - rev. 1-141

PACKAGE PIN DESIGNATIONS (Top View)

8-Channel 32-Lead SOW 8-Channel 32-Lead SOW Mirror

THERMAL CHARACTERISTICS: Øja

32-Lead SOW	55°C/W
34-Lead SOL	50°C/W

9-Channel 34-Lead SOL 9-Channel 34-Lead SOL Mirror

1-142

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PKG. MARK
SSI 32R527R with Internal Damping I	Resistor	
8-Channel SOW	SSI 32R527R-8CW	32R527R-8CW
9-Channel SOL	SSI 32R527R-9CL	32R527R-9CL
SSI 32R527RM Mirror Image with Da	mping Resistor	•
8-Channel SOW	SSI 32R527RM-8CW	32R527RM-8CW
9-Channel SOL	SSI 32R527RM-9CL	32R527RM-9CL

Preliminary Data:

Indicates a product not completely released to production. The specifications are based on preliminary evaluations and are not guaranteed. Small quantities are available, and Silicon Systems should be consulted for current information.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680 (714) 731-7110, FAX (714) 731-5457