MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, 16,384 BIT SCHOTTKY, BIPOLAR, PROGRAMMABLE READ-ONLY MEMORY (PROM), MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 Scope. This specification covers the detail requirements for monolithic silicon, PROM microcircuits which employ thin film nichrome (NiCr) resistors, platinum-silicide, tungsten (W), titanium-tungsten (TiW) or zapped vertical emitter as the fusible link or programming element. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the part number. A special test requirement is included in this specification to screen against devices which may contain excess moisture in the package materials or internal atmosphere (see freeze-out test of 4.2d).
 - 1.2 Part number. The part number shall be in accordance with MIL \pm M \pm 38510.
 - 1.2.1 Device type. The device type shall be as follows:

Device type	Circuit	Access times (ns)
01	2048 words/8 bits per word PROM with uncommitted collector	100, 50
02	2048 words/8 bits per word PROM with active pullup and a third high-impedance state output	100, 50
03	2048 words/8 bits per word PROM with uncommitted collector	55, 30
04	2048 words/8 bits per word PROM with active pullup and a third high-impedance state output	55, 30
05	4096 words/4 bits per word PROM with active pullup and a third high-impedance state output	80, 40

- 1.2.2 Device class. The device class shall be the product assurance level as defined in MIL+M-38510.
 - 1.2.3 Case outline. The case outline shall be designated as follows:

Letter	Case outline (see MIL-M-38510, appendix C)
J K R L 3	D-3 (24-lead, $1/2$ " x 1-1/4"), dual-in-line package F-6 (24-lead, $3/8$ " x $5/8$ "), flat package D-8 (20-lead, $1/4$ " x $1-1/16$ "), dual-in-line package D-9 (24-Jead, $1/4$ " x $1-1/4$ "), dual-in-line package C-4 (28-terminal, .450" x .450"), square chip carrier package

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Rome Air Development Center (RBE42), Griffiss AFB, NY 13441, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

1.3 Absolute maximum ratings:

```
-0.5 V dc to +7.0 V dc 
-1.5 V dc at -10 mA to +5.5 V dc 
-65 C to +150 C 
+300 C
Supply voltage range - - - - - - - - -
Input voltage range- - - - - - - - - - -
Storage temperature range- - - - - - -
Lead temperature (soldering, 10 seconds) - -
40°C/W maximum
                                        60°C/W maximum
0.08°C/W maximum 2/
 -0.5 V dc to +Vcc
Output voltage range - - - - - - - - -
100 mA
Maximum power dissipation (P<sub>D</sub>) 3/----
                                        1.02 W
Maximum junction temperature (T_j) 4/ - - -
                                        +175°C
```

1.4 Recommended operating conditions:

```
Supply voltage - - - - - - - - - 4.5 V dc minimum to 5.5 V dc maximum Minimum high-level input voltage (VIH) - 2.0 V dc Maximum low-level input voltage (VIL) - 0.8 V dc Normalized fanout (each output) - - - - 8 mA \frac{5}{} Case operating temperature range (T<sub>C</sub>) - \frac{5}{} C \frac{5}{}
```

2. APPLICABLE DOCUMENTS

2.1 Government specifications and standards. Unless otherwise specified, the following specifications and standards, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this specification to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL_STD_883 - Test Methods and Procedures for Microelectronics.

(Copies of specifications, standards, handbooks, drawings, and publications required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.)

2.2 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this specification shall take precedence.

3. REQUIREMENTS

- 3.1 Detail specification. The individual item requirements shall be in accordance with MIL-M-38510, and as specified herein. When manufacturer-programmed devices are delivered to the user, an altered item drawing shall be prepared by the contracting activity to specify the required program configuration.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.

^{1/} Heat sinking is recommended to reduce junction temperature.
2/ When a thermal resistance value is included in MIL-M-38510 appendix C, it shall supersede the value stated herein.

^{3/} Must withstand the added Pp due to short circuit test (e.g., Ios).

A/ Maximum junction temperature shall not be exceeded except for allowable short circuit duration burn-in screening conditions per method 5004 of MIL-STD-883.

5/ 16 mA for circuits A. B. D. F. H. and I devices.

- 3.2.1 $\underline{\text{Terminal connections.}}$ The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth tables.
- 3.2.2.1 Unprogrammed devices. The truth tables for unprogrammed devices for contracts involving no altered item drawing shall be as specified on figure 2. When required in groups A, B, or C inspection (see 4.4), the devices shall be programmed by the manufacturer prior to test in a checkerboard pattern (a minimum of 50 percent of the total number of bits programmed) or to any altered item drawing pattern which includes at least 25 percent of the total number of bits programmed.
- 3.2.2.2 <u>Programmed devices</u>. The truth tables for programmed devices shall be as specified by the altered item drawing.
- 3.2.3 <u>Functional block diagram</u>. The functional block diagram shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be as specified in 1.2.3.
- 3.3 Lead material and finish. The lead material and finish shall be in accordance with MIL-M-38510 (see 6.4).
- 3.4 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics shall be as specified in table I, and shall apply over the full recommended case operating temperature range.
- 3.5 Electrical test requirements. The electrical test requirements for each device class shall be as specified in table II and, where applicable, by the altered item drawing. The electrical tests for each subgroup are described in table III.
- 3.6 <u>Marking.</u> Marking shall be in accordance with MIL-M-38510. For programmed devices, the altered item drawing number shall be added to the marking by the programming activity.
- 3.7 <u>Processing options.</u> Since the PROM is an unprogrammed memory capable of being programmed by either the manufacturer or the user to result in a wide variety of PROM configurations, two processing options are provided for selection in the contract, using an altered item drawing.
- 3.7.1 Unprogrammed PROM delivered to the user. All testing shall be verified through group A testing as defined in 3.2.2.1 and tables II and III. It is recommended that users perform subgroups 7 and 9 after programming to verify the specific program configuration.
- 3.7.2 Manufacturer-programmed PROM delivered to the user. All testing requirements and quality assurance provisions herein, including the requirements of the altered item drawing, shall be satisfied by the manufacturer prior to delivery.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 14 (see MIL-M-38510, appendix E).
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-M-38510 and methods 5005 and 5007, as applicable, of MIL-STD-883, except as modified herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test (method 1015 of MIL-STD-883).
 - Test condition D or E, using the circuit shown on figure 4, or equivalent.
 - (2) $T_A = +125^{\circ}C$ minimum.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameter tests prior to burn-in is optional at the discretion of the manufacturer.
- c. The percent defective allowable (PDA) shall be as specified in MIL-M-38510.
- d. Freeze-out test. This test shall be conducted as a 100-percent screen on all class S devices having nichrome or platinum silicide as the fusing link. Within no more than 24 hours after completion of burn-in and prior to the final electrical test, all devices having nichrome or platinum silicide as the fusing link shall be subjected to a freeze-out test. If more than 24 hours have elapsed subsequent to the 125°C burn-in exposure, devices shall be conditioned at 125°C for a minimum of 5 hours immediately prior to the freeze-out test. When the freeze-out test is performed, the 25°C final electrical test parameters shall be completed 96 hours after the freeze-out test. The freeze-out test shall be conducted as follows:
 - (1) Connect devices in the electrical configuration of figure 7 or in the burn-in configuration of figure 4 with the bias cycled, 3 minutes on and 3 minutes off, throughout the duration of test.
 - (2) Reduce device temperature to $T_C = -10^{\circ} \text{C} \pm 2^{\circ} \text{C}$ with the bias cycled and maintain at that temperature for a minimum of 5 hours.
 - (3) With the cycled bias maintained, allow $T_{\rm C}$ to go to room temperature (by removal from the cold chamber or termination of forced cooling but with no forced heating) and retain for a minimum of 19 hours after the completion of the 5-hour cold soak. $T_{\rm C}$ shall not exceed 35°C during this period.
 - (4) Remove bias and subject all devices to subgroup 1 final electrical test to establish continuity of the nichrome or platinum silicide resistors and remove all failed devices from the lot. Count them as screening rejects subject to the PDA requirements of 4.2c.
- e. Class B devices processed to an altered item drawing may be programmed either before or after burn-in at the manufacturer's discretion. The required electrical testing shall include, as a minimum, the final electrical tests for programmed devices as specified in table II herein. Class S devices processed by the manufacturer to an altered item drawing shall be programmed prior to burn-in.
- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4). Qualification data for subgroups 7 through 11 shall be attributes only.
- 4.3.1 Qualification extension. When authorized by the qualifying activity, for qualification inspection, if a manufacturer qualifies to a faster device type which is manufactured identically to a slower device type on this specification, then the slower device type may be part I qualified by conducting only group A electrical tests and any electricals specified as additional group C subgroups and submitting data in accordance with MIL-M-38510, appendix D (i.e., groups B, C, and D tests are not required).
- 4.4 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions 1/ -55°C < T _C < +T25°C	Device type	Lim Min	ts Max	Unit
 High-level output voltage 	V _{ОН}	VCC = 4.5 V; IOH = -2 mA; VIH = 2.0 V; VIL = 0.8 V	02,04,05	2.4		٧
Low-level output voltage	V _{OL}	VCC = 4.5 V; IOL = 8 mA; 2/ VIH = 2.0 V; VIL = 0.8 V	 01,02 03,04,05 	 	0.5	٧
Input clamp voltage	AIC	V _{CC} = 4.5 V; I _{IM} = -10 mA; T _C = 25 °C	01,02 03,04,05		-1.5	٧
 Maximum collector cut-off current	ICEX	V _{CC} = 5.5 V; V _O = 5.2 V	01,03		100	μА
 High-impedance (off-state) output high current 	I OHZ	V _{CC} = 5.5 V; V _O = 5.2 V	02,04,05	 	100	μА
 High-impedance (off-state) output low current	IOLZ	V _{CC} = 5.5 V; V _O = 0.5 V	 02,04,05 	 	-100	μА
High-level input current	IIH	VCC = 5.5 V; VIN = 5.5 V	01,02 03,04,05		50	μА
Low-level input current	IIL	VCC = 5.5 V; VIN = 0.5 V	01,02 03,04,05	 	-250	μА
 Short circuit output current	105	V _{CC} = 5.5 V; V _O = 0.0 V <u>3</u> /	02,04,05	-10	-100	шA
 Supply current	ICC	 VCC = 5.5 V; VIN = 0; outputs = open	01,02 03,04,05	-	185	mA
Propagation delay time, high-to-low level logic, address to output	1		01,02 03,04 05		100 55 80	ns
Propagation delay time, low-to-high level logic, address to output	tpLH1		01,02 03,04 05		100 55 80	ns
Propagation delay time, high-to-low level logic, enable to output	t _{PHL2}	 	1 101,02 103,04 1 05		50 30 40	ns

See footnotes at end of table.

TABLE I. <u>Electrical performance characteristics</u> - Continued.

T	Γ	Conditions 1/	Device	Lim		I
! Test	Symbol	-55°C < T _C < +125°C	type	Min	Max	[Unit
	 	 	†	╁	 	†i
Propagation delay time,	tpi H2		101,02	1	50	ns
l low-to-high level	1		103,04		30	<u>I</u> į
logic, enable to output	1	1	05		40	!!!
			1	1	l	11

- 1/ Complete terminal conditions shall be specified in table III.
- $\underline{2}$ / I_{OL} = 16 mA for circuits A, B, D, F, H, I, and J.
- $\underline{3}/$ Not more than one output shall be grounded at one time. Output shall be at high logic level prior to test.

TABLE II. Electrical test requirements.

 	Subgroups (see table II 1/2/3/					
	Class S devices	Class B devices 				
 Interim electrical parameters (pre burn-in) (method 5004) 	1	1				
 Final electrical test parameters (method 5004) for unprogrammed devices 	1*,2,3,7*, 8	1*,2,3,7*, 8				
 Final electrical test parameters (method 5004) for programmed devices	11*,2,3,7*, 8,9,10,11	1*,2,3,7*, 8,9				
Group A test requirements (method 5005) 	11,2,3,7,8, 9,10,11	1,2,3,7,8, 9,10,11				
Group B test requirements (method 5005) subgroup 5 	11,2,3,7,8, 9,10,11	N/A				
 Group C end-point electrical parameters (method 5005) 	N/A	1,2,3,7,8				
 Group D end-point electrical parameters (method 5005) 	1,2,3,7,8	1,2,3,7,8				

- 1/ * PDA applies to subgroups 1 and 7 (see 4.2c).
- $\underline{2}$ / Any or all subgroups may be combined when using high-speed testers.
- 3/ Subgroups 7 and 8 shall consist of verifying the pattern specified.

- 4.4.1 Group A inspection. Group A inspection shall be in accordance with table I of method 5005 of MIL-STD-883 and as follows:
 - a. Electrical test requirements shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 of table I of method 5005 of MIL-STD-883 shall be omitted.
 - c. For unprogrammed devices, a sample shall be selected to satisfy programmability requirements prior to performing subgroups 9, 10, and 11. Twelve devices shall be submitted to programming (see 3.2.2.1). If more than two devices fail to program, the lot shall be rejected. At the manufacturer's option, the sample may be increased to 24 total devices with no more than 4 total device failures allowable.
 - d. For unprogrammed devices, 10 devices from the programmability sample shall be submitted to the requirements of group A, subgroups 9, 10, and 11. If more than two total devices fail in all three subgroups, the lot shall be rejected. At the manufacturer's option, the sample may be increased to 20 total devices with no more than 4 total device failures allowable.
- 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of method 5005 of MIL-STD-883 and as follows:
 - a. Electrical test requirements shall be as specified in table II herein.
 - b. For qualification, at least 50 percent of the sample selected for testing in subgroup 5 shall be programmed (see 3.2.2). For quality conformance inspection, the programmability sample (see 4.4.1.c.) shall be included in the subgroup 5 tests.
 - c. Steady-state life test for class S devices shall be in accordance with table IIa (subgroup 5) of method 5005 of MIL-STD-883, using a circuit submitted to the qualifying activity for approval. If the alternate burn-in conditions are used, the circuit on figure 4 or equivalent shall be used.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table III of method 5005 of MIL-STD-883 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - Test condition D or E, using the circuit shown on figure 4, or equivalent.
 - (2) TA = +125°C minimum.
 - (3) Test duration 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.
 - c. For qualification, at least 50 percent of the sample selected for testing in subgroup 1 shall be programmed (see 3.2.2). For quality conformance inspection, the programmability sample (see 4.4.1c) shall be included in the subgroup 1 tests.
- 4.4.4 Group D inspection. Group D inspection shall be in accordance with table IV of method 5005 of MIL-STD-883. End-point electrical parameters shall be as specified in table II herein.
- 4.5 Methods of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows:
- 4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

- 4.6 <u>Programming procedure identification</u>. The programming procedure to be utlized shall be identified by the manufacturer's circuit designator. The circuit designator is cross referenced in 6.5 herein with the manufacturer's symbol or FSCM number.
- 4.7 Programming procedure for circuit A. The programming characteristics of table IVA and the following procedures shall be used for programming the device.
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6A and the programming characteristics of table IVA shall apply to these procedures.
 - b. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL compatible. An open circuit shall not be used to address the PROM.
 - c. Apply VpL voltage to Vcc.
 - d. Bring the $\overline{\text{CE}}_{X}$ inputs high and the CE_{X} inputs low to disable the device. The chip enables are TTL compatible. An open circuit shall not be used to disable the device.
 - e. Disable the programming circuitry by applying a voltage of $v_{0\text{PD}}$ to the outputs of the PROM.
 - f. Raise VCC to VpH with rise time less than or equal to tTLH.
 - g. After a delay equal to or greater than t_{D1}, apply only one pulse with amplitude of V_{OPE} and duration of t_p to the output selected for programming. Note that the PROM is supplied with fuses intact, which generates an output high. Programming a fuse will cause the output to go low.
 - h. Lower v_{CC} to v_{PL} following a delay of t_{D2} from programming enable pulse applied to an output.
 - i. Enable the PROM for verification by applying V_{IL} to $\overline{\text{CE}}_{x}$ and V_{IH} to CE_x.
 - j. Apply V_{PHV} to V_{CC} and verify bit is programmed.
 - k. Repeat 4.7a through 4.7j for all other bits to be programmed in the PROM.
 - If any bit does not verify as programmed, it shall be considered a programming reject.
- 4.8 Programming procedure for circuit B. The programming characteristics of table IVB and the following procedures shall be used for programming the devices:
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6B and the programming characteristics of table IVB shall apply to these procedures.
 - b. Apply v_{IH} to $\overline{\text{CE}}_1$ and the binary address of the PROM word to be programmed. Raise v_{CC} to v_{CCP} .
 - c. After a t_0 delay, apply only one v_{0p} to the output to be programmed high. Apply v_{0p} to one output at a time.
 - d. After a t_0 delay, a pulse \overline{CE}_1 to a V_{1L} level for a duration of t_p .
 - e. After t_{D} and a $t_{\hat{\text{D}}}$ delay, remove v_{OP} from the programmed output.
 - f. Other bits in the same word may be programmed sequentially while the V_{CC} input is at the V_{CCP} level by applying V_{OP} pulses to each output to be programmed and pulsing \overline{CE}_1 to the V_{IL} level, allowing for proper delays between V_{OP} and \overline{CE}_1 .

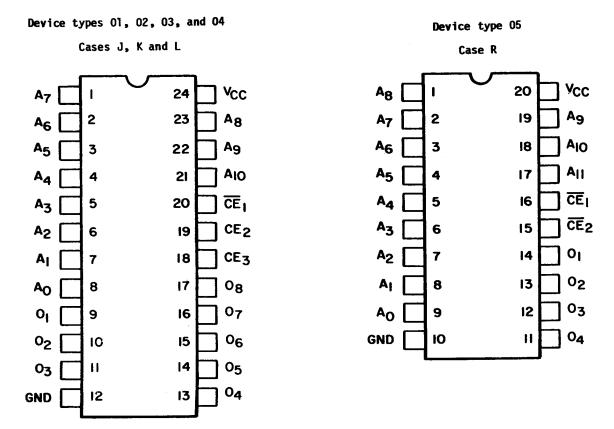
- g. Repeat 4.8b through 4.8e for all bits to be programmed.
- h. To verify programming, lower V_{CCP} to V_{CC} . Connect a 10 kilohm resistor between each output and V_{CC} . Apply V_{IL} to \overline{CE}_1 input. The programmed outputs should remain in the high state and the unprogrammed outputs should go to the low level.
- If any bit does not verify as programmed, it shall be considered a programming reject.
- 4.9 Programming procedures for circuit C, device types 02 and 04. The programming characteristics of table IVC, and the following procedures shall be used for programming device types 02 and 04.
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6C, device types 02 and 04, and the programming characteristics of table IVC, device types 02 and 04, shall apply to these procedures.
 - b. Terminate all device outputs with a 10 kilohm resistor to VCC. Apply $v_{I\,H}$ to CE1.
 - c. Address the PROM with the binary address of the selected word to be programmed. Raise VCC to VCCP.
 - d. After a t_D delay (10 μs), apply only one v_{OUT} pulse to the output to be programmed. Program one output at a time.
 - e. After a tp delay (10 μs), pulse $\overline{\text{CE}}_1$ input to logic "0" for a duration of t_p
 - f. After a t_0 delay (10 μs), remove the v_{00T} pulse from the programmed output. (Programming a fuse will cause the output to go to a high-level logic in the verify mode.)
 - g. Other bits in the same word may be programmed sequentially while the VCC input is at the VCCP level by applying VOUT pulses to each output to be programmed allowing a delay to to between pulses as shown on figure 6C.
 - h. Repeat 4.9b through 4.9g for all other bits to be programmed.
 - i. To verify programming, after t_D (10 μs) delay, lower v_{CC} to v_{CCH} and apply a logic "0" level to CE_1 input. The programmed output should remain in the "1" state. Again, lower v_{CC} to v_{CCL} and verify that the programmed output remains in the "1" state.
 - j. If any bit does not verify as programmed, it shall be considered a programming reject.
- 4.10 Programming procedure for circuit C, device type 05. The programming characteristics of table IVC, device type 05, and the following procedures shall be used for programming the device.
 - a. Connect the device in the electrical configuration for programming. The output pins shall be terminated with a 10K ohm resistor to GND and bypass VCC to GND with a 0.01 μF capacitor. The waveforms on figure 6C, device type 05, and the programming characteristics of table IVC, device type 05, shall apply to these procedures.
 - b. Disable the device by applying V $_{IH}$ to $\overline{\text{CE}}_2$ input and V $_{IL}$ to $\overline{\text{CE}}_1$. The chip enable pins are TTL compatible.
 - c. Apply V_{II} to all other pins.
 - d. Addressed the PROM with the binary address of the selected word to be programmed and reset $T_p\,=\,5~\mu s$. Address inputs are TTL compatible.

MIL-M-38510/210D

- e. After a delay of TD_1 , raise the V_{CC} pin to V_{CCp} .
- f. After a delay of TD2, raise the corresponding output pin to VOPF.
- g. After a delay of TD3, lower $\overline{\text{CE}}_2$ to V_{IL} for a duration of T_p and simultaneously lower the output to V_{IL} and wait TD4.
- h. Return the CE2 to VIH.
- i. Wait TD5 and lower VCC to VCCv.
- j. Wait TD₆ and lower \overline{CE}_2 to V_{IL} for the duration of T_V .
- k. A properly blown fuse will read Vol and unblown fuse will read VoH.
 - If the fuse is blown, go to n.
 - 2. If the fuse is unblown, to to 1.
- 1. If T_p is less than 30 μs , increment T_p by 5 μs and go to e. If T_p is \geq 5 μs go to m.
- m. If T_D is \geq 30 μ s, the device is a reject.
- n. After a delay of TD7, select the next output or address to be programmed.
- Repeat steps 4.10d through 4.10k until all required addresses are programmed.
- p. To verify the program keep V_{CC} pin at V_{CCV} . Apply V_{IL} to CE_2 . The programmed fuse will go to the low level and unblown fuse shall remain in the high level.
- 4.11 Programming procedure for circuit D. The programming characteristics on table IVD and the following procedures shall be used for programming the device.
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6D and the programming characteristics of table IVD shall apply to these procedures.
 - b. Select the word to be programmed by applying the appropriate voltages to the address pins as well as the required voltages to chip enable pins to select the device.
 - c. Apply the proper power, $V_{CC} = 6.5 \text{ V}$, GND = 0 V.
 - d. Verify that the bit to be programmed is in the "O" logic state.
 - e. Enable the chip for programming by application of the chip enable voltage, $V_{p(CE1)}=21.0~V$ to CE_1 (pin 20). CE_2 and CE_3 should be left high.
 - g. Apply I_{0p} programming current ramp to the output to be programmed. The other outputs shall be left open. Only one output may be programmed at a time. During the rise of the current ramp, the required current will be achieved to program the junction. As programming occurs a drop in voltage can be sensed at the output of the device. Upon detection of \mathbf{V}_{ps} , the current shall be held for \mathbf{t}_{hap} and then shut off.
 - h. Verify that the programmed bit is in the "1" logic state. Lower $V_P(CE_1)$ to 0 V and read the output.

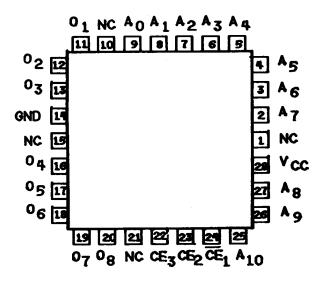
Note: The PROM is supplied with fuses generating a low-level logic output. Programming a fuse will cause the output to go to a high-level logic in the verify mode.

- i. Lower V_{CC} to 0 V. The power supply duty cycle shall be equal to or less than 50 percent.
- j. If the bit verifies as not having been programmed at V_{CC} = 6.5 V, then repeat the programming ramp sequence up to 15 times until the bit is programmed. If after 16 programming attempts, the bit does not program, then the device shall be considered a reject.
- k. If the bit verifies as having been programmed at V_{CC} = 6.5 V, then one of the following two conditions shall be followed:
 - (1) If the current required to program was less than $I_{0P}(\max)$, then proceed to step 1.
 - (2) If the current required to program was equal to or greater than $I_{OP}(max)$, then the device shall be considered a reject and no further attempts at programming other bits shall be attempted.
- Repeat 4.11a through 4.11k for all other bits to be programmed.
- m. If any bit does not verify as programmed, it shall be considered a programming reject.
- 4.12 Programming procedure for circuit E. The programming characteristics for this device have been discontinued.
- 4.13 Programming procedure for circuit F. The programming characteristics on table IVF and the following procedures shall be used for programming the devices:
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6F and the programming characteristics of table IVF shall apply to these procedures.
 - b. Raise VCC to 5.5 V.
 - c. Address the PROM with binary address of the selected word to be programmed. Address inputs are TTL compatible.
 - d. Disable the chip by applying v_{IH} to the $\overline{\text{CE}}$ inputs and v_{IL} to the CE inputs. The chip enable inputs are TTL compatible.
 - e. Apply the Vpp pulse to the programming pin $\overline{\text{CE}}_1$. In order to insure that the output transistor is OFF before increasing voltage on the output pin, the program pins voltage pulse shall precede the output pins programming pulse by T_{D1} and leave after the programming pins programming pulse by T_{D2} (see figure 6F).
 - f. Apply one Y_{OUT} pulse with duration of t_p to the output selected for programming. The outputs shall be programmed one output at a time, since internal decoding circuitry is capable of sinking only one unit of programming current at a time.


Note: The PROM is supplied with fuses generating a high-level logic output. Programming a fuse will cause the output to go to a low-level logic in the verify mode.

- g. Other bits in the same word may be programmed sequentially by applying v_{OUT} pulses to each output to be programmed.
- h. Repeat 4.13b through 4.13g for all other bits to be programmed.

- i. Enable the chip by applying V_{IL} to the \overline{CE} inputs and V_{IH} to the CE inputs, and verify the program. Verification may check for a low output by requiring the device to sink 12 mA at V_{CC} = 4.2 V and 0.2 mA at V_{CC} = 6.2 V at T_{C} = 25°C.
- If any bit does not verify as programmed, it shall be considered a programming reject.
- 4.14 Programming procedure for circuit G. The programming characteristics of table IVG and the following procedures shall be used for programming:
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6G and the programming characteristics of table IVG shall apply to these procedures.
 - b. Select the desired word by applying high or low levels to the appropriate address inputs. Disable the device by applying a high level to one or more 'active low' chip Enable inputs. NOTE: Address and Enable inputs must be driven with TTL logic levels during programming and werification.
 - c. Increase VCC from nominal to VCCP (10.5 ±0.5 V) with a slew rate limit of IRR (1.0 to 10.0 V/ μs). Since VCC is the source of the current required to program the fuse as well as the ICC for the device at the programming voltage, it must be capable of supplying 750 mA at 11.0 V.
 - d. Select the output where a logical high is desired by raising that output voltage to V_{OP} (10.5 ±0.5 V). Limit the slew rates to I_{RR} (1.0 to 10.0 V/ $_{\mu}s$). This voltage change may occur simultaneously with the V_{CC} increase to V_{CCP} , but must not precede it. It is critical that only one output at a time be programmed since the internal circuits can only supply programming current to one bit at a time. Outputs not being programmed must be left open or connected to a high impedance source of 20 kilohms minimum (remember that the outputs of the device are disabled at this time).
 - e. Enable the device by taking the chip Enable(s) to a low level. This is done with a pulse PWE for 10 μs . The 10 μs duration refers to the time that the circuit (device) is enabled. Normal input levels are used and rise and fall times are not critical.
 - f. Verify that the bit has been programmed by first removing the programming voltage from the output and then reducing V_{CC} to 5.0 V (±0.25 V). The device must be Enabled to sense the state of the outputs. During verification, the loading of the output must be within specified I_{OL} and I_{OH} limits.
 - g. If the device is not to be tested for V_{OH} over the entire temperature range subsequent to programming, the verification of step 4.12f is to be performed at a V_{CC} level of 4.0 volts (±0.2 V). V_{OH} , during the 4 volt verification, must be at least 2.0 volts. The 4-volt V_{CC} verification assures minimum V_{OH} levels over the entire temperature range.
 - h. Repeat 4.14b through 4.14f for each bit to be programmed to a high level. If the procedure is performed on an automatic programmer, the duty cycle of VCC at the programming voltage must be limited to a maximum of 25 percent. This is necessary to minimize device junction temperatures. After all selected bits are programmed, the entire contents of the memory should be verified.
 - If any bit does not verify as programmed, it shall be considered a programming reject.


- 4.15 Programming procedure for circuit H. The programming characteristics of table IVH and the following procedures shall be used for programming the devices.
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6H and the programming characteristics of table IVH shall apply to these procedures.
 - b. Address the word to be programmed, apply 5 volts to \textbf{V}_{CC} and active levels to all chip Enable inputs.
 - c. Verify the status of a bit location by checking the output level.
 - d. Decrease VCC to 0 volts.
 - e. For bit locations that do not require programming, skip steps 4.15f through 4.15l.
 - f. Increase V_{CC} to $V_{CC(pr)}$ with a minimum current capability of 250 milliamperes.
 - g. Apply $v_{S(pr)}$ to all chip Enable inputs. I $\underline{<}25$ milliamperes. Active-high enables may be left high.
 - h. Connect all outputs, except the one to be programmed, to V_{1L} . Only one bit is to be programmed at a time.
 - Apply the output programming pulse for 20 microseconds. Minimum current capability of the programming supply should be 250 milliamperes.
 - j. After terminating the output pulse, disconnect all outputs from \textbf{V}_{IL} conditions.
 - k. Reduce the voltage at $\overline{\text{CE}}$ input to V_{IL} .
 - 1. Decrease VCC to 0 V.
 - m. Return to 4.15e until all outputs in the word have been programmed.
 - n. Repeat 4.15c through 4.151 for each word in memory.
 - o. Verify programming of every word after all words have been programmed using v_{CC} values of 4.5 and 5.5 volts.
 - p. If any bit does not verify as programmed, it shall be considered a programming reject.
- 4.16 Programming procedures for circuit I. The programming characteristics in table IVI and the following procedures shall be used for programming the device:
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6I and the programming characteristics of table IVI shall apply to these procedures.
 - b. Terminate all outputs with a 300-ohm resistor to v_{ONP} . Apply v_{IHP} to the CE2, CE3, and CE4 inputs and v_{ILP} to the CE1 inputs.
 - c. Address the PROM with the binary address of the selected word to be programmed. Raise V_{CC} to V_{CCP} .
 - d. After a delay of t1, apply only one V_{OP} pulse with a duration of tp, t2 and $d(V_{OP})/dt$ to the output selected for programming. After a delay of t2 and $d(V_{OP})/dt$, pulse CE2 from V_{IHP} to V_{CEP} for the duration of tp, $2d(V_{CE})/dt$, and t3; CE2 is then to go to V_{ILP} level.
 - e. To verify programming after $\overline{CE}1$ has been set to V_{ILP} , lower V_{CC} to V_{CCL} after a delay of t4. The programmed output should remain in the logic 'l' state.

- f. The outputs should be programmed one output at a time, since the internal decoding circuitry is capable of sinking only one unit of programming current at a time. Note that the PROM is supplied with fuses generating a low-level logic output. Programming a fuse will cause the output to go to a high level logic in the verify mode.
- g. Repeat 4.16b through 4.16f for all other bits to be programmed.
- h. If any bit does not verify as programmed, it shall be considered a programming reject.
- 4.17 Programming procedures for circuit J. The programming characteristics in table IVJ and the following procedures shall be used for programming the device:
 - a. Connect the device in the electrical configuration for programming. The waveforms on figure 6J and the programming characteristics of table IVJ shall apply to these procedures.
 - b. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
 - c. Disable the chip by applying input high (VIH) to the $\overline{\text{CS}}$ input. $\overline{\text{CS}}$ input must remain at VIH for programming. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
 - d. Disable the programming circuitry by applying an Output Voltage Disable of less than $V_{\rm OPD}$ to the output of the PROM. The output may be left open to achieve the disable.
 - e. Raise VCC to VpH with rise time equal to tr.
 - f. After a delay equal to or greater than t_d , apply a pulse with amplitude of $v_{\rm OPE}$ and duration of $t_{\rm D}$ to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
 - g. Other bits in the same word may be programmed while the V_{CC} input is raised to V_{PH} by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of t_d .
 - h. Lower V_{CC} to 4.5 volts following a delay of \mathbf{t}_d from the last programming enable pulse applied to an output.
 - i. Enable the PROM for verification by applying a logic "0" (V $_{\rm IL}$) to the $\overline{\mbox{CS}}$ input.
 - j. Repeat 4.17a through 4.17i for all other bits to be programmed in the PROM.
 - k. If any bit does not verify as programmed, it shall be considered a programming reject.
 - 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
 - 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

Device types 02 and 04

Case 3

TOP VIEW

FIGURE 1. Terminal connections.

Devices types 01, 02, 03, and 04

	<u>6</u> /	<u>6</u> /	<u>6</u> /		Address							Data										
Word No.	CE	CE ₂	CE3	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A _O	08	07	06	05	04	03	02	0 ₁
NA	L H	H X	H X	X	X X	X X	X	X X	X X	X X	X	X X	X X	X	5/ 0 C	<u>5/</u> 00	5/ 0C	5/ 00	<u>5/</u> 0 C	<u>5/</u> 0C	5/ 0C	5/ .0c

Device type 05

	<u>6</u> /	<u>6</u> /		Address							Data							
Word No.	CE	CE ₂	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A	A _O	04	03	02	01
NA	L	L X	: X X	X X	X X	X X	X X	X X	X X	X X	X	X X	X X	X X	5/ OC	<u>5/</u> 0C	<u>5/</u> 0 C	5/ OC

- 1. NA = Not applicable.
- X = Input may be high level, low level or open circuit.
 OC = Open circuit (high resistance output).

- OC Open circuit (night resistance output).
 Program readout can only be accomplished with enable input at low level.
 The outputs for an unprogrammed device shall be high for circuits A, C (device type 05), E, F, and J and low for circuits B, C (device types 02, 04), D, G, and I.
- 6. Enable inputs are ANDED.

FIGURE 2. Truth table (unprogrammed).

Device types 01 and 02 Circuit A

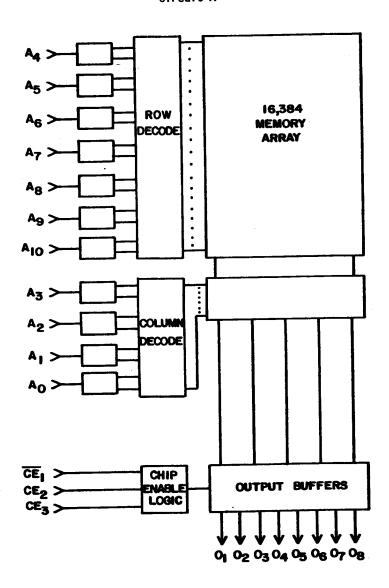


FIGURE 3. Functional block diagrams.

Device type Q5 Circuit A

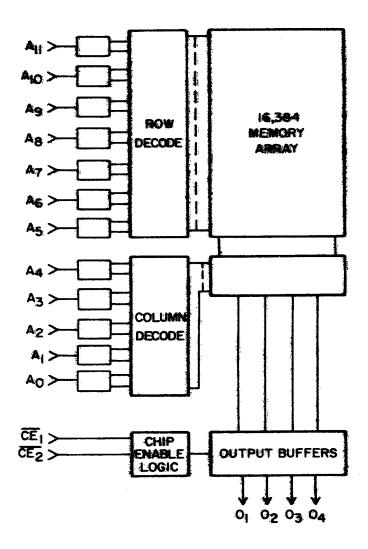


FIGURE 3. Functional block diagrams - Continued.

Device types 01 and 02 Circuit B

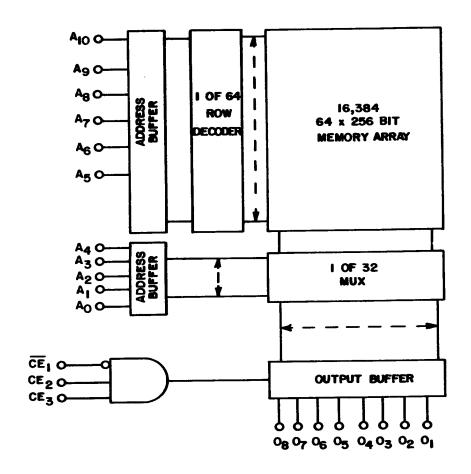


FIGURE 3. Functional block diagrams - Continued.

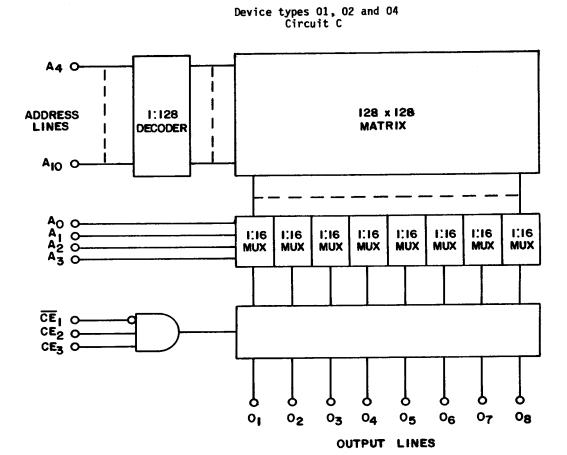


FIGURE 3. Functional block diagrams - Continued.

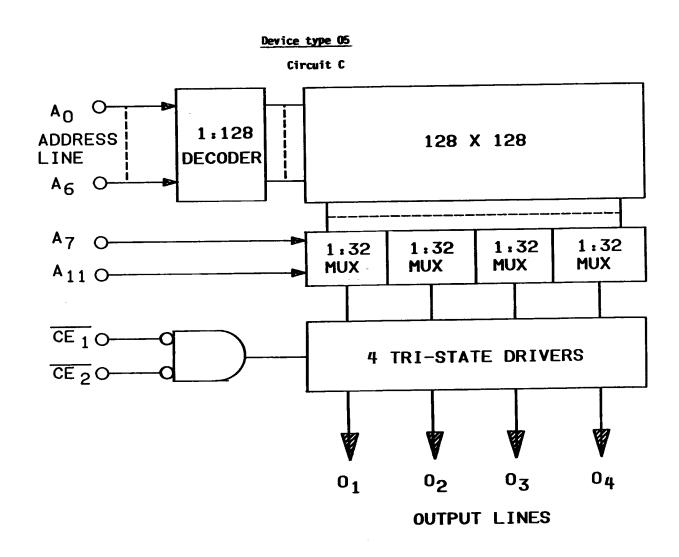


FIGURE 3. Functional block diagrams - Continued.

Device types 02, 03, and 04 Circuit D

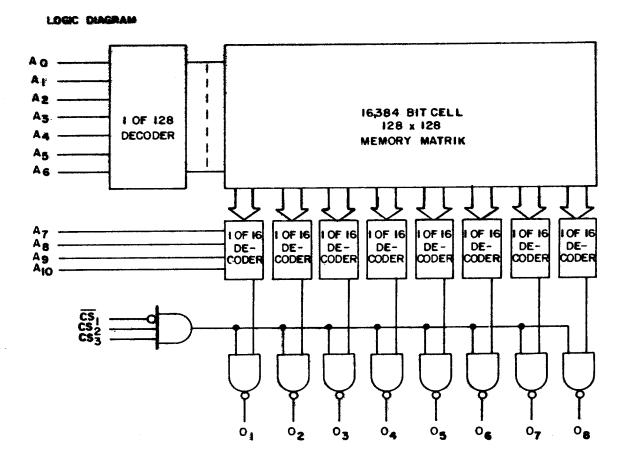


FIGURE 3. Functional block diagrams - Continued.

Device type 02 Circuits $\mbox{F and } \mbox{I}$

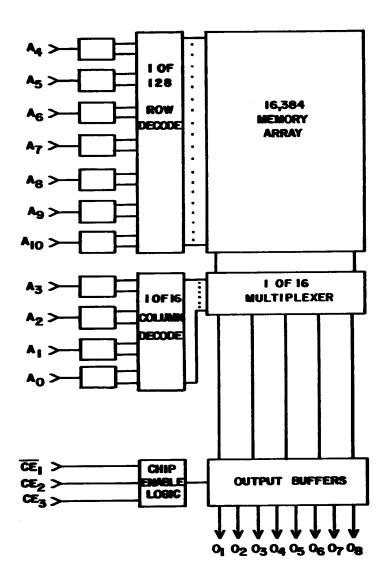


FIGURE 3. Functional block diagrams - Continued.

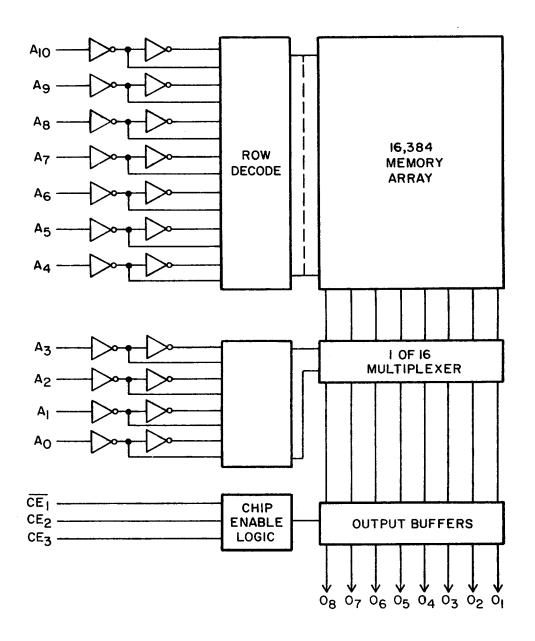


FIGURE 3. Functional block diagrams - Continued.

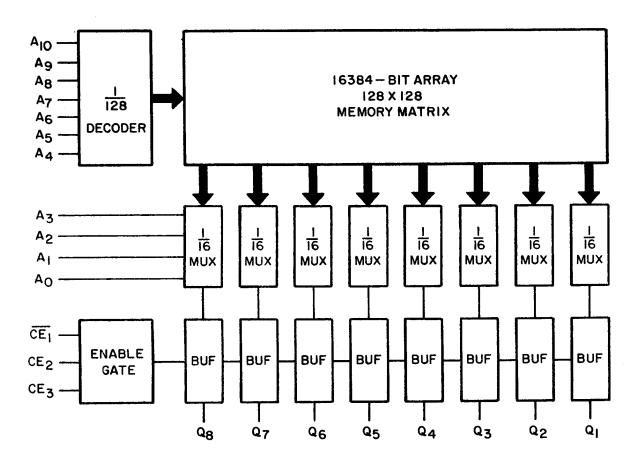


FIGURE 3. Functional block diagrams - Continued.

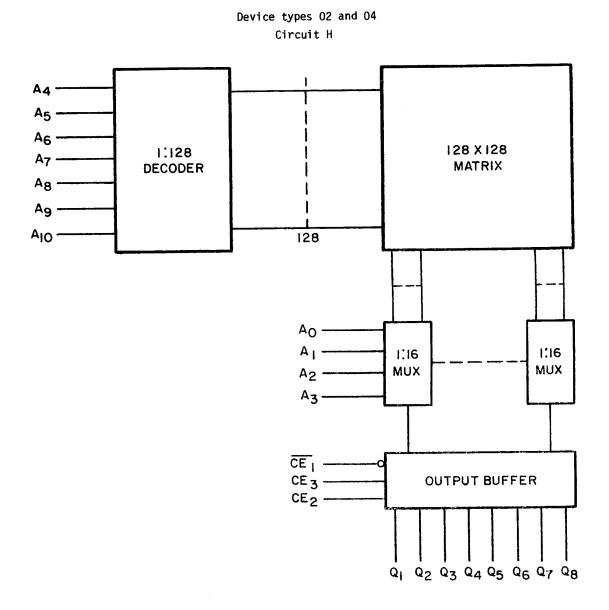


FIGURE 3. Functional block diagrams - Continued.

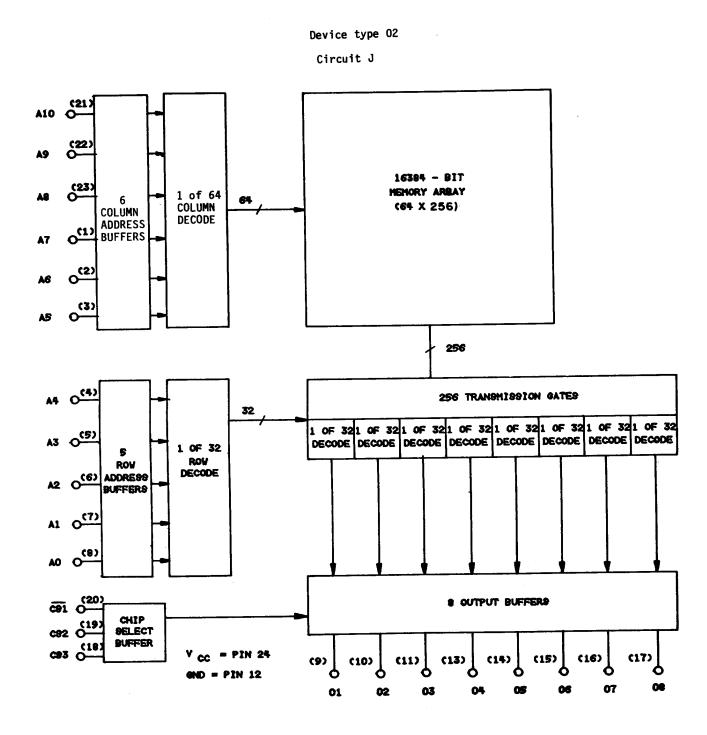
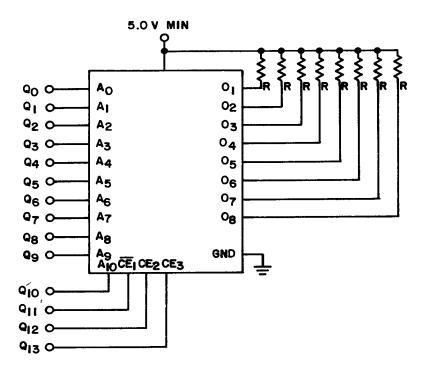
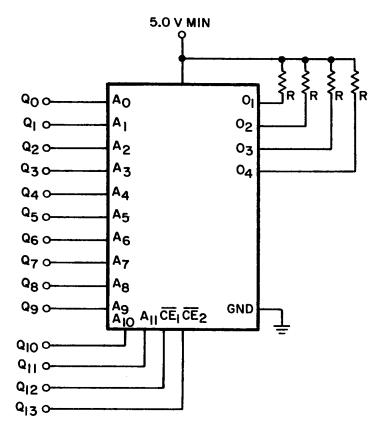



FIGURE 3. Functional block diagrams - Continued.

Device types 01, 02, 03, and 04



- 1. $R=560\Omega$ ±5% for circuits C, G and J (300 Ω ±5% for circuit A, B, F, and H devices, and 270 Ω ±5% for circuit I and circuit D devices). All outputs shall have separate identical loads.
- 2. All pulse generators have the following characteristics: $v_{\rm IL} = -1.5$ V minimum to 0.8 V maximum; $v_{\rm IH} = 2.0$ V minimum to 5.5 V maximum; 50% ±15% duty cycle and frequencies as specified in note 4. 3. $\rm V_{CC}$ shall be high enough to insure 5.0 V minimum at the device $\rm V_{CC}$ terminal.
- 4. Input frequencies are as follows:

Input	Frequency (±50%)
Q_{0}	$f_0 = 100 \text{ kHz Min}$
Q_1	$f_1 = 1/2 f_0$
q_2	$f_2 = 1/2 f_1$
q_3^-	$f_3 = 1/2 f_2$
Q ₄	$f_4 = 1/2 f_3$
Q_{5}	$f_5 = 1/2 f_4$
$^{ m Q}_{ m 6}$	$f_6 = 1/2 f_5$
Q_{7}	$f_7 = 1/2 f_6$
Q ₈	$f_8 = 1/2 f_7$
Q_{9}	$f_9 = 1/2 f_8$
^Q 10	$f_{10} = 1/2 f_9$
^Q 11	$f_{11} = 1/2 f_{10}$
^Q 12	$f_{12} = 1/2 f_{11}$
^Q 13	$f_{13} = 1/2 f_{12}$

FIGURE 4. Burn-in and life test circuit.

Device type 05

- 1. $R = 300\Omega \pm 5\%$ for circuits A and C. All outputs shall have separate identical loads. 2. All pulse generators have the following characteristics: $V_{IL} = -1.5 \text{ V}$ minimum to 0.8 V maximum; $V_{IH} = 2.0 \text{ V}$ minimum to 5.5 V maximum;
- 50% ±15% duty cycle and frequencies as specified in note 4. 3. V_{CC} shall be high enough to insure 5.0 V minimum at the device V_{CC} terminal.
- 4. Input frequencies are as follows:

Input	Frequency (±50%)
$\mathbf{q_0}$	f ₀ = 100 kHz Min
Q_1	$f_1 = 1/2 f_0$
q_2	$f_2 = 1/2 f_1$
q_3^-	$f_3 = 1/2 f_2$
$^{\mathrm{Q}}_{4}$	$f_4 = 1/2 f_3$
Q ₅	$f_5 = 1/2 f_4$
$^{ m Q}_{ m 6}$	$f_6 = 1/2 f_5$
^Q 7	$f_7 = 1/2 f_4$
Q ₈	$f_8 = 1/2 f_7$
Q_{9}	$f_9 = 1/2 f_8$
^Q 10	$f_{10} = 1/2 f_9$
Q _{ll}	f ₁₁ = 1/2 f ₁₀
^Q 12	f ₁₂ = 1/2 f ₁₁
Q ₁₃	$f_{13} = 1/2 f_{12}$

FIGURE 4. Burn-in and life test circuit - Continued.

VCC INPUT A_O Αı }R₁ A2 A₃ 01 02 A₄ **PULSE** 03 **A5** GENERATOR SEE TABLE A6 04 PRR ≥ I mHz Щ 05 **A7** 06 8A و 07 Α9 08 A_{IO} \$_{R2} CEI CE2 CE3 $-t_r < IOns$ tf < 10ns - 3.0 ± 0.1V 2.7 V INPUT 1.5 V tp<500ns $0.0 \pm 0.1 V$ tPLH -VOH 1.5 V OUTPUT WAVEFORM A VOL tPHL-VOH OUTPUT 1.5 V

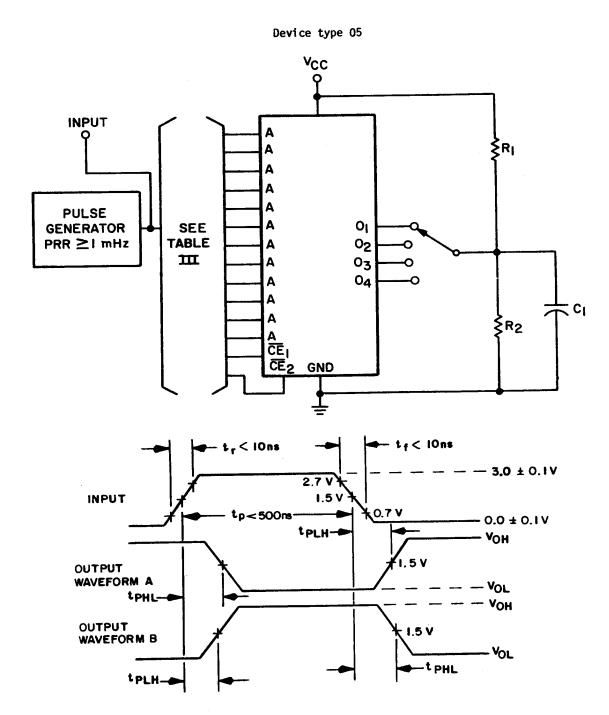
Device types 01, 02, 03, and 04

NOTES:

WAVEFORM B

tPLH --

1. Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting read-only memory.


2. $C_L = 30$ pF minimum, including jig and probe capacitance; $R_1 = 330\Omega \pm 25\%$ and

·VOL

- tPHL

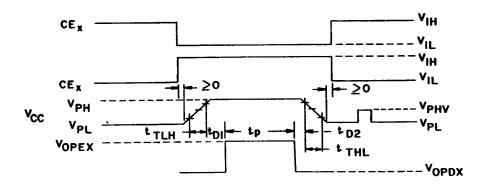

- $R_2 = 680\Omega \pm 20\%$.
- 3. Outputs may be under load simultaneously.

FIGURE 5. Switching time test circuit.

- 1. Test table for devices programmed in accordance with an altered item drawing may be replaced by the euqivalent tests which apply to the specific program configuration for the resulting read-only memory.
 2. C_L = 30 pF minimum, including jig and probe capacitance; R₁ = 330Ω ±25% and
- $R_2 = 680\Omega \pm 20\%$.
- 3. Outputs may be under load simultaneously.

FIGURE 5. Switching time test circuit - Continued.

NOTE: 1. All other waveform characteristics shall be as specified in table ${\bf IVA.}$

FIGURE 6A. Programming voltage waveforms during programming for circuit A.

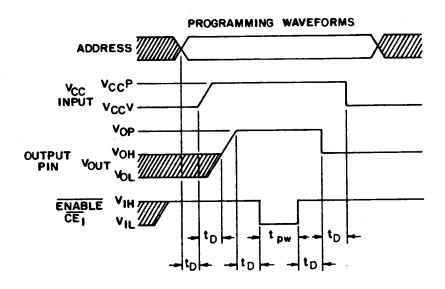
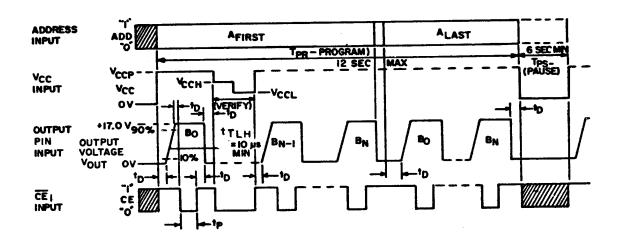
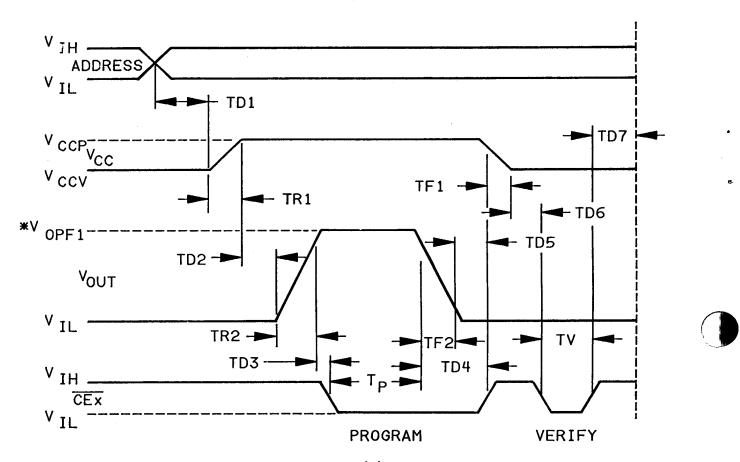




FIGURE 6B. Programming voltage waveforms during programming for circuit B.

NOTE: All other waveform characteristics shall be as specified in table IVC.

FIGURE 6C. Programming voltage waveforms during programming for circuit C, device types 02 and 04.

*Current clamp or voltage clamp will be needed.

FIGURE 6C. Programming voltage waveforms during programming for circuit C, device type 05 - Continued.

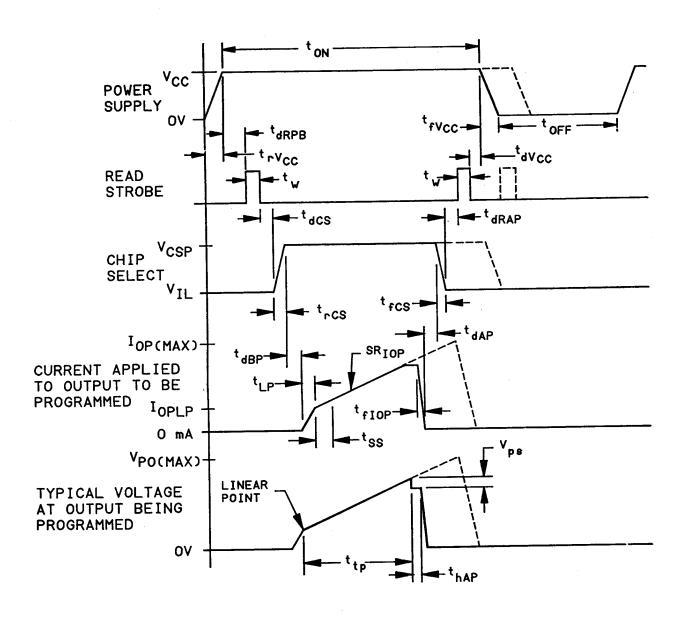
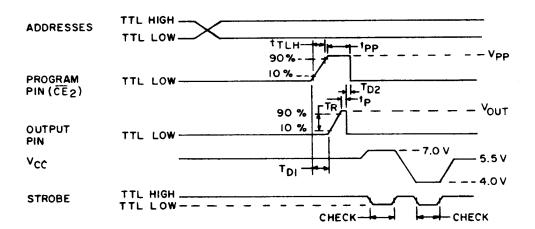



FIGURE 6D. Programming voltage waveforms during programming for circuit D.

FIGURE 6E. Programming waveforms for circuit E have been discontinued.

- Output load is 0.2 mA and 12 mA during 7.0 V and 4.0 V check, respectively.
 All other waveform characteristics shall be as specified in table IVF.

FIGURE 6F. Programming voltage waveforms during programming for circuit F.

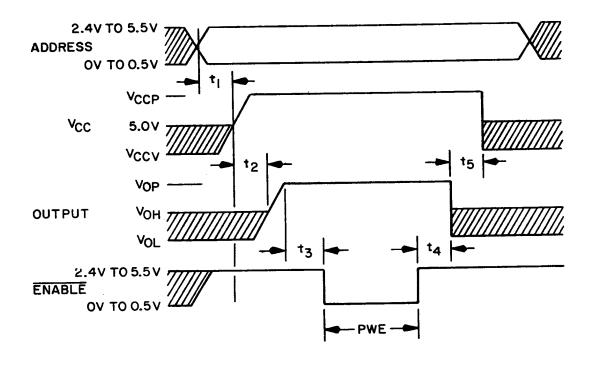


FIGURE 6G. Programming voltage waveforms during programming for circuit G.

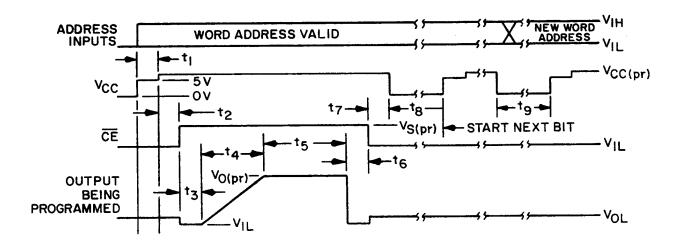
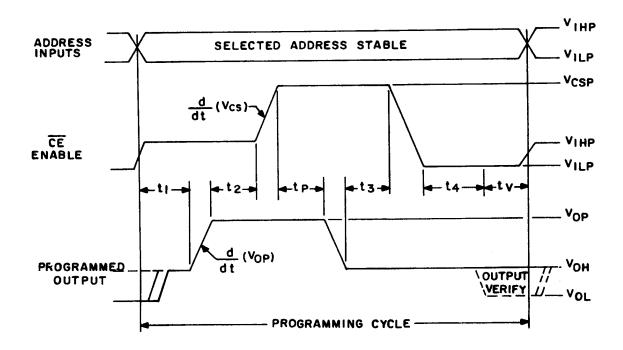



FIGURE 6H. Programming voltage waveforms during programming for circuit H.

NOTES:

- All delays between edges are specified from completion of the first edge, not midpoints.
- Delays t_1 , t_2 , t_3 , and t_4 must be greater than 100 ns; maximum delays of 1 μs are recommended to minimize heating during programming. 3. During t_γ the output being programmed is switched to the load R and verified.
- 4. Outputs not being programmed are connected to $V_{\mbox{\scriptsize ONP}}$ through resistor which provides output current limiting.

FIGURE 61. Programming voltage waveforms during programming for circuit I.

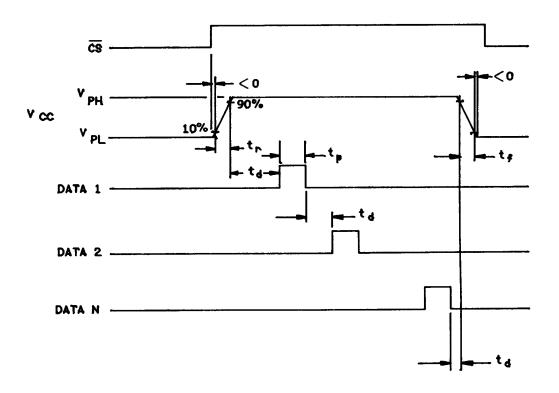
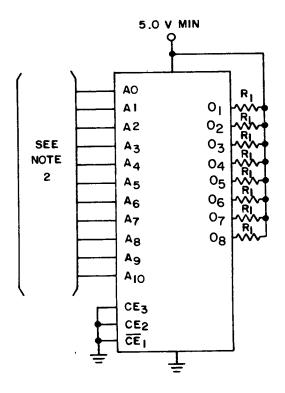
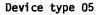
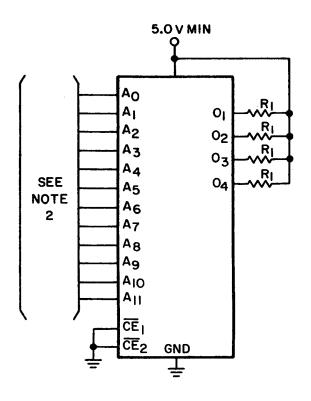



FIGURE 6J. Programming voltage waveforms during programming for circuit J.


Device types 01, 02, 03, and 04



NOTES:

- 1. R_1 = 4.7 k Ω ±5%. All bit outputs shall have separate identical loads.
- All address inputs shall be either high, low, or open.
 Burn-in circuit may be used to perform this test. (See 4.2 d.) All address input shall be either high, low, or open.

FIGURE 7. Freeze-out test bias configuration.

NOTES:

- 1. R_1 = 4.7 k Ω ±5%. All bit outputs shall have separate identical loads.
- All address inputs shall be either high, low, or open.
 Burn-in circuit may be used to perform this test. (See 4.2 d.) All address input shall be either high, low, or open.

FIGURE 7. Freeze-out test bias configuration - Continued.

la t		>: : : : : : : : : : : : : : : : : : :	* * * * * * * *	₹			4
Test limits	Max	(7) *2	5	75.	β	8	185
Test	Min			0.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ļ
Measured	terminal	**************************************	900643929	44444444444444444444444444444444444444	₹ \$	00000000000000000000000000000000000000	, v
42	υ	> U122222222222222		> vi			
23	20	-10 mA	à	y 8.6	5.5 V		ui.
22	64	-10 mA	74	y 5.0	۷ ۶۰۶		9
12	A10	-10 mA	% 		> .c. .c.		1
8	₽ <u>.</u>	-10 ™	» «,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.5 V	5.5 V	4.5 Y	9
61	CE ₂	-10 mA	2.0 4	. o . s	5.5 V	4 S . 0	L.
22	CE3	-10 m A	, 0	. v . c . c . c . c . c . c . c . c . c	¥ 5.5	0.0	ļ.
12	8		3/			5.2 v	L
91	6		3/			5.2 V	L.
6 7 8 9 10 11 12 13 14 15 16	8		%1			5.2 v	L
41	ş		≈ı			5.2 v	L.
a	*0) 3			5.2 V	
12	8	8					
=	હ)61 			5.2 V	
9	20) i			5.2 ¥	L
6	5		_ж і			5.2 ×	L
	₽	-10 m A	24 * * * * * * *	y 8.	8.5 ¥		ļ
,	Z'	-10 mA	އ	».s.	>- sr sr		
	2	-10 m A	24	> c.	> s.		L
5	₹	-10 mA	24	> 5.	× 5.		ļ
-	\$	-10 m	2	, s.o.	» «,		-
۳	Α.	-10 mA	24	× 5.0.	> 'G		-
2	9	-10 mA	21	,			1
-	A ₇	-10 mA	175	¥ 5.0	> u		-
Cases J,K	Test no.	128.48.00 11.12.12.12.12.12.12.12.12.12.12.12.12.1	5313887182	23 27 27 27 27 27 30 31 31 32 33 34	388 33 34 34 34 34 34 34 34 34 34 34 34 34	282888888	+
AIL-	arethod		2000	3006	3010		
	Symbol	V _{IC}	٧٥,	11	H	CEX	
1	Subgroup	1 +25°C					
	Ź 						

See footnotes at end of table.

TABLE III. Group A inspection 'or device types 01 and 03 - Continued. Terminal conditions: [Outputs not designated are open or 7 esistive coupled to 800 or voltage. Terminal conditions: Inputs not designated are high 2...2 or c0.8 V.

Subgroup	N1L- Subgroup Symbol ST9-883-			~									01		12 13	}	12	15 -1		11	 eg	61	8	12	- 22	23	* * * * * * * * * * * * * * * * * * *	Measured	Test limits		
	i i methoc	F	est no. A7			₹		₽				2 ₀		GND 	\$ 0		 S			్ల జ		CE2 T	 Œ	4 10		29	33,	terminal T terminal	Min	Max	
2	Same tests, terminal conditions, and limits as for subgroup 1, except	eminal co	ndition	s, and 1	mits as	for sub	group 1,	except	T _C = +125°C	2 . 52																					
	Same tests, terminal conditions, and limits as for subgroup 1, except	mufinal co	ndition	5, and 1:	mits as	for sub	group 1,	except	Jc = -55°c	ۍ. و.					1																
7 Funct- TC = +25°C fonal tests	Funct- 4/ fonal 4/	9	♣ 1	41	41	41	41	41		चे। 	<u>a</u> 1	41	91		₽ •		\$ 1	÷1	♣ 1		→ 1	÷1	 >i		→ 1	<u>4</u> 1	∂ 1	Outputs		 ≽i	
es 	Same tests, tenninal conditions, and limits as for subgroup 7, except	eninal co	ndition	s, and 1	mits as	for sub	group 7.	, except		T _C = +125°C and -55°C.	-55 °C.																				
9 +25°C	tpHL1 GALPAT tpL41 Fig. 5 tpHL2 Sequen- tpLH2 tial tpLH2 Fig. 5	64	।व्यव्यव्यक	ाळ्ळ्या	।व्यव्यक्षर्		।প্ৰপ্ৰথত 	।প্ৰপ্ৰথ 	।व्यव्यव्यक्त	।ख्रिक्रिंग		⊙⊧ : : 	Ø# : :		 -	٠	٠ ۵۴۰۰	Øk::	/s* · ·	·***	5.5 ¥ 5 8,4 5 8/	5.5.5 188/¥ 197	GND S8/2 18/3/20	(अस्त्रियंद्व	। अक्षे	ाञ्चल्रह्म	ाव्यव्यक्री	Outputs "		77/ 19/2/	e
 9	Same tests, terminal conditions, and Ilmits as for subgroup 9, except	eriatnal co	ndition	s, and 1	imits as	for sub	group 9,	except	T _C = +125°C.	25°C.					 																
=	Same tests, terminal conditions, and limits as for subgroup 10, except T $_{ m C}$ = -55 $^{\circ}$ C.	erminal co	ndition	s, and 1:	'mits as	for sub	group 10), excep	t T _C * -	55°C.																					-

E F	.		>			4	
ants –	Max			9,		9:	G
Test limits	ž.				2	0, ,	
Measured			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000000000	000000000000000000000000000000000000000	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8	*	ğ	> W::::::::::::::::::::::::::::::::::::	*******		>- 	
z	23	چ	-10 mA	2/13/	2/15/ 116/17/	0.5 V	
56	22	₽3	-10 mA	ä	2/15/ 15/ <u>17/</u>	.0 *	ν.
52	12	A ₁₀	-10 mA	2/13/	15/15/	y \$.0	
\$2	2	뱱	-10 a	* 8: * * * : * :		V 5.0	× 5.5
23	19	CE2	-10 mA	y		» «.	
22	2	CF.3	-10 m A	> 0::::::		y 5.0	
8	17	æ		3/	-2 mA		
8	16	0)	 i	≈1	-2 mA		
81	15	8		≥ E1	-2 m		
11	14	50		≈1	-2 IIA		
16	13	04		<u>~</u> i	¥ ?-		
±	12	CHD CHD	g				
:: ::	=	£		761	-2 mA		
12	9	8		۶۶.	-2 ak		
=	•	10		<u>اع</u>	-2 mA		
6		2	-10 m	24	11,5,15, 11,5,11,15,15	> 0 0	
8		₹	10 mg	%+ · · · · · ·	2/15/ 15/17/		\$ 5°
,	۰	22	-10 34	24	2/15/ 16/17/	× 5:	5.5
۰	۰,	₹	10 1	N# * * * * * *	2/15/ 16/17/	\$	15.
۵.	4	\$	-10 34	2/3	2/15/ 16/17/		in in
4		35	• 10 • 10	≈	2/15/	» s.	, s
~	~	و	-10 mA	2	72/25 112/25 112/26 112	>	> in
~		-	10 - 10 mg	1/2	15/16/	»	s:
Case 1	J,x,L	est 19	122.44.32.11.12.12.12.14.14.14.14.14.14.14.14.14.14.14.14.14.	222828722	244868		**************************************
AIL-	method			300	90:	6	01000
	oom/sc		V _{IC}	JO _A .	*0 _*		
1	dnoubanc		, +25°C				

45

Thill Group A inspection flow derice types 02 and 04 - Continued. Terminal conditions: inputs not designated are open or resistive coupled to $\overline{640}$ or voltage. Inputs not designated are high $\underline{2}.0$ V or $\underline{0}.0$ B V,

							Ì								İ															
Subgroup	Symbol	MIL- STD-883-	,	2	3	4		9	7	 -	•	===		13	4	91		 <u>s</u>	61 	8	22	23 2	24 2	92 52	27			 -		;
		method	<u> </u>	1	2	3	4		۰,		80		9	=	21	=======================================	=		 	=		19 2	21 02	- 1	23	2	terminal		\$	 5
		-	Test no.	A ₇	9	A _S	*	£.	24	₹	 Q		20	 %	8	2		8	6	 &	- F.	GE ₂ CE ₁	, v		7	, ,		£	× E	
1 [c = +25°c	1042											5.2 v	5.2 v	5.2 4	g	5.2 ¥	5.2 v	5.2 v	¥ 2.2 ¥	» × ° °	0 	> - -	>	<u> </u>		w = = = = = = = = = = = = = = = = = = =	00000000		8	₹
	1,012		67 69 70 71 72 73									y .c.	7 × ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	7 5.0		y 2.0	» s. o	» »	» s.	v 5.0				 			60666666		9	
	10s	301		14/2/ 117/15/	2/15/ 112/16/ 117/	2/15/ 16/17/	16/17/	2/15/ 16/17/	15/2/ 15/16/	16/17/	18/2/ 15/16/ 17/	Q 9	GND	GND		GWD	3	Q _M S	 0x	8 	~ 		5 v 2/15/	15/ 15/15/ 27/ 15/17/	5/ 2/15/	36	80888888	2	8	1
	22	3005		ON ON	95	OM9	8	 ONS	GND	GND	GNO				 •	 	-						GND GND	ONS	95 		, ,		- 5 <u>8</u>	T.
2	Same te	Same tests, terminal conditions, and limits as for subgroup 1, except	ninal con	ditions,	and Itmi	ts as fo.	r subgro.	up 1, ex	ည	* +125°C										-			1	-	-	-			1	T-
e	Same te	Same tests, terminal conditions, and limits as for subgroup 1, except	uinal con	ditions,	and limi	ts as for	r subgro	up 1, ext	ပ္	J_99- *																İ				1
7 C = +25°C	Funct- fonal tests	\$ 1	* *	41	- 21	\$ 1	4 1	2 1	→ 1	→ 1	≯ 1	75	∂ 1	 ⇒ı	95 95	 ≽ı	→	→ 1	→	3 1	→ 1	31	3	/5i	41	41	Outputs		<u>4</u> 1	T
œ	Same te	tests, terminal conditions, and limits as	nina) con	ditions,	and Ifmi	ts as for	for subgroup 7, except	y 2, ex	تا ا	. +125°C	and -55°C.							1	1	1	-[-	-	-	-	-			-	_
0 + 25°C	tont1 tol.11 tol.12 tol.12	GALPAT GALPAT F1g. 5 Sequen- t1a1 F1g. 5		। । । जिल्लास्य	।ख्यं व्यं य	।ख्यंख्यंत्र	।व्यव्यव्य)खेखेले	(खळ्ळाचा	।व्यव्ययं	ार्ख्यवर्धाः	۵	۵ _{+ • •}	Øŧ	g	Ø# : #	ò	٠	·	Ø# 1 1	100 × × × × × × × × × × × × × × × × × ×	8.5.5. 8.9.7. 9.9.7. 9.9.7. 9.9.7.	(3) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	।व्यक्तिर्धार		। व्यक्तिर्दार 	Outputs		22 M	£
10	Same te	Same tests, terminal conditions, and limits as for subgroup 9, except	ifinal con	ditions,	and limi	ts as for	r subgro	λ» °6 dr	cept Tc -	T _C = +125°C.						-			-	-	-	-	-	-	-	-	_		-	
11	Same te	Same tests, terminal conditions, and limits as for subgroup 10, except $T_{\rm C}$ = -55 $^{\circ}{\rm C}$	ifinal con	ditions,	and limi	ts as for	r subgrou	10, es	kcept T _C	55°C.																				

						
E it		>::::::::::::			4	
mits	Max				-250	8
Test limits				2.4	-1,0	
Measured	terminal	\$5555455456665555	002	00000	84 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84888888888888888888888888888888888888
02	λcc	> v::::::::::::::::::::::::::::::::::::		 	> v::::::::::::::::::::::::::::::::::::	
61	β ₁	-10 #A	/s+ : :		0.5 V	
18	A10	-10 mA	/2# # #		v 6.0	8.5.5 V
11.	A11	-10 mA	% = =		» s.	
1 16	F	-10 mA	8		> 2.	.5.5
115	CE2	- 10 mA	8			>
ŧ.	6		<u>્ર</u>	2 mA		
13	20		<u>بر</u>	-2 mA		
21	63		€i	3 mg		
F	04		હિ	-2 mA		
0.7	GND	N: : : : : : : : : : : : : : : : : : :				
6	₽	-10 mA	2/19/	% + = =	 	> 5.5
80	٩١	-10 mA	2/19/	%+	0.5	
-	A2	-10 mA	2/19/	Zŧ : :	o.5 v	. v. v.
9	A3	-10 mA	2/19/	7# : :	5.0 Y	5.5 V
2	₽¥	-10 mA	2/19/	24 = =	. o	.5. .5. .>-
4	A5	-10 mA	2/19/	/# = =	0.5 V	>
۳	₽ ₆	-10 mA	2/19/	/z# = =	y 8.0	S. 55 V
7	A7	-10 mA	Z# = =		> %	
	A8	¥	1/2/	7# : :	x s 0	
ase	no. A	1 1-10 2 2 3 3 3 4 4 4 4 4 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1	15 1 16 1 17 18	22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28887125126887
	883 method		3007	3006	00: : : : : : : : : : : : : : : : : : :	010:
	Symbol Symbol S	J1 _V	V _{OL}	V _{OH}	1 ₁	
	Subgroup Sy	1 +25°C	-L- <u>à</u>	·L	L	3010 HI

TABLE III. Group A inspection for device type 05 - Continued. (Outputs not designated are open or resistive coupled to GND or voltage. Terminal conditions: Inputs not designated are high $\underline{2}.0$ V or $\underline{<}0.8$ V.

			L	L		<u> </u>	L					
i i		4		¥	=					S = :		
imits -	Max —	0: : :	8	-100	165			41		8855		
Test limits	A.			우 : :								
	Tterminal T	\$ 000 o	\$ 5000 4 5000	4.000	υολ			Outputs		Outputs " "		
02	رد ا ۸ دد	5.5 ×			<u>.</u>			41		स्थित्वर्थान्त्र		
£	- A9			%⊧ : :	ON9			41		।व्बर्ख्यव्य		
<u>.</u>	 ₩10			// _* : :	QNS -			41		।প্ৰপ্ৰথত		
41	\ \ \ \ \ \ \ \ \ \ \ \ \			/2# : :	GNS			<u>4</u> 1		।ख्युक्यर्थर		
1 I6	GE ₁	7		ν " "	ONS -			<u>4</u> 1		GNS 98/9		
15	CES	4.5 ¥		۸ : "	GND			<u>4</u> 1		GND GND 8/8		
- 14 - 1	10	 5.2 Y	V 5.0.5	GND				≯ i		/g# : #		
EI —	20	5.2 V	0.5 V	GND				} 1		Ø⊧ = =		
12	03	5.2 ¥	0.5 V	GND				4 1		Ø# = =		
=	04	5.2 V	0.5 V	GND				41		% ===		
91	GND	GND "						SS CS	-55°C.	S: ::		;
6	A ₀			2) ‡ : :	SK SK			<u>4</u> 1	ီ ၁	।व्यक्तियर		
	A ₁			/z# : :	GND _	= +125°C.	-55°C.	91 .	+125°C and	।প্রপ্রথান	25°C.	ۍ ت
	Α2			/2# ::	GND	ပ္	٦٥ =	4/	ت ا	व्यक्षयं	except $T_C = +125^{\circ}C$.	except T _C = -55°C.
9	A ₃			 	GND	except	except	4/	except	জ্ঞ	except	except
ιn	A4			, ± , = , =	GND	bgroup 1,	bgroup 1,	/4	group 7, except	।প্রপ্তর্থ	ogroup 9,	ogroup 9,
4	A ₅			/2# = =	GNÐ	s for sul	for su	/ 5	s for sul	। अक्रियं	for sut	for sut
ю	γe			/‡ : :	GND	imits a:	imits as	4/	imits a	।প্ৰপ্ৰথ	imits as	imits as
2	A7			/s+ : :	GND	is, and 1	is, and	4/	Is, and	।व्यक्तियंथ	s, and	s, and
1	A8			/# : :	GND	ondition	ondition	/ 1	ondition	।व्हर्जायोर्भ	ondition	ondition
Case R	no.	51 52 54	55 56 57 58	59 61 62	63	inal c	inal c	64	inal c	65 1 68 1 68 1	inal c	inal c
	STD- 883 method			3011	3005	Same tests, terminal conditions, and limits as for sub	Same tests, terminal conditions, and limits	41	Same tests, terminal conditions, and limits as for sul	GALPAT Fig.5 Sequen- tial Fig. 5	Same tests, terminal conditions, and limits as for sub	Same tests, terminal conditions, and limits as for sub
	Symbol	Іонд	IOLZ	105	oo _l	Same te	Same te	Funct- ional tests	Same te	th.1 tp.11 tp.12 tp.12	Same te	Same te
	Subgroup	1 Tc = +25°C	- — — •			2	e e	7 Funct- C = +25°C ional tests	80	၁ - 52 - ၁	10	11

- 1/ For unprogrammed devices, apply 13.0 V on pin 1(A7) and pin 2(A6), for device types 01 and 02, and on pin 1 (A8) for device type 05 for circuit A devices.
- $\frac{2}{V_{IH}}$ = 2.0 V, V_{IL} = 0.8 V.
- $3/I_{OL} = 8$ mA for circuits C and G.
 - I_{OL} = 16 mA for circuits A, B, D, F, H, I, and J.
- The functional tests shall verify that no fuses are blown for unprogrammed devices or that the altered item drawing pattern exists for programmed devices (see table II and 3.2.2.2). All bits shall be tested. Terminal conditions shall be as follows:
 - a. Inputs: H = 2.4 V, L = 0.4 V
 - b. Outputs: Output voltage shall be:

 $H \ge 1.5 \text{ V}$ and $L \le 1.5 \text{ V}$.

- c. The functional tests shall be performed with V_{CC} = 4.5 V and V_{CC} = 5.5 V.
- 5/ GALPAT (programmed PROM). This program will test all bits in the array, the addressing and interaction between bits for ac performance, tpHL1, tpLH1. Each bit in the pattern is fixed by being programmed with an "H" or "L".

Description:

- Word 0 is read.
- Word 1 is read.
- Word 0 is read. Word 2 is read. Word 0 is read.
- The reading procedure continues back and forth between word 0 and the next higher numbered word until word 2047 or 4095 is reached, then increments to the next word and reads back and forth as in steps 1 through 7 and shall include all words. Pass execution time = $(n^2 + n)$ x cycle time, n = 2048 or 4096. The GALPAT tests shall be performed with $V_{CC} = 4.5$ V and 5.5 V.
- 6/ The outputs are loaded per figure 5.
- $\frac{7}{1}$ tp_{HL1}, tp_{LH1} = 100 ns for device types 01 and 02 and 55 ns for device types 03 and 04.
- Sequential test (programmed PROM). This program will test all bits in the array for tpHL2 and tpLH2.

Description:

- 1. Each word in the pattern is tested from the enable lines to the output lines for recovery.
 2. Word 0 is addressed. Enable line is pulled HI to LO and LO to HI. t_{PHL2} and t_{PLH2} are
- read. Word 1 is addressed. Same enable sequence as above.

- The reading procedure continues until word 2047 or 4095 is reached. Pass execution time = 2048 x cycle time (or 4096 x cycle time). The sequential tests shall be performed with $V_{CC} = 4.5 \text{ V}$ and 5.5 V.
- $\underline{9}$ / tpHL2, tpLH2 = 50 ns for device types 01 and 02 and 30 ns for device types 03 and 04.
- 10/ For unprogrammed devices, apply 13 V on pin 8(A $_0$) for circuit I devices.
- 11/ For unprogrammed devices, 12.0 V on pin 6(A₂) and 0.0 V on pin 5(A₃) for circuit F devices.
- 12/ For unprogrammed devices, apply 13 V on pin $2(A_6)$ for circuit I devices.
- For unprogrammed devices, apply 10 V to pin 4(A₄), apply V_{OH} to pin 21 (A₁₀), and apply V_{OL} to pin 23(A₈) for circuit H.
- $\underline{14}/$ For unprogrammed devices, apply 10.5 V on pin 1(A7) for circuit B devices.
- 15/ For unprogrammed devices, apply 10.5 V to pin 3(A₅), apply 0 V to pins 4, 5, 6, 7, 8 (A₄, A₃, A₂, A₁, A₀), and apply 3 V to pins 1, 2, 21, 22, 23, (A₇, A₆, A₁₀, A₉, A₈) for circuit G devices.
- For unprogrammed device, type 02 (82S191), with date codes before 8626, apply 10.0 V on pin $6(A_2)$; apply 5.0 V to all other addresses for circuit C devices.
- For unprogrammed device types 02 (with date codes of 8626 or later) and 04 (82S191A), apply 10.0 V on A4; apply 5.0 V on A0, A1, A2, A3 and A6; and apply 0.5 V on A5, A7, A8, A9 and A10 for circuit C devices.
- $\underline{18}$ / For unprogrammed devices, apply 12.0 V on pin 8(A₀) for circuit D devices.
- For unprogrammed device type 05, apply 15.0 V to pin 4(A₅); apply 0.0 V to pins 5, 9(A₄, A₀); apply 4.5 V to pins 3, 6, 7, 8(A₆, A₃, A₂, A₁) for circuit C devices.

TABLE IVA. Programming characteristics for circuit A.

Do nome to n	Symbol	Min	Limits 1/ Recommended	Max	Unit
Parameter 	J				
Address input voltage $2/$	VIL VIH VIH	2.4	5.0 0.4	5.0 0.5	٧
Programming Voltage to V _{CC} low Program verify Verify voltage	VPH 3/ VPL VPHV VR 4/	10.75 0.0 	11.0 0.0 5.5	11.25 1.5 5.5	V " "
Programming input low current at V _{PH}	IILP		-300	 -600 	μА
Programming voltage (V _{CC}) transition time	t _{TLH}	1 1	5 1 5	10 10 10	μ S μS
 Programming delay 	t _{D1}	10	10 10 5	 20 5	μS
 Programming pulse width	 t _p <u>5</u> /	 90 	100 	 110 	μS
Programming duty cycle	 PDC		 30 	60	% %
 Output voltage Enable Disable 	V _{OPE} 6/	10.5	10.5 5.0	11.0	 V V

During the programming the chip must be disabled for proper operation.

 $^{1/}T_{C} = 25^{\circ}C.$

 $[\]underline{2}$ / No inputs should be left open for V_{IH} .

^{3/} V_{PH} source must be capable of supplying one ampere.

 $[\]underline{4/}$ It is recommended that post programming dual verification be made at V minRand V maxR

⁵/ Note step j in programming procedure.

 $[\]underline{6}$ / V_{OPE} source must be capable of supplying 10 mA minimum.

TABLE IVB. Programming characteristics for circuit B.

	Т	T	Γ	Limits		
Parameter	Symbol	Conditions $1/$	Min	Recommended	Max	Unit
VCC required during programming	VCCP		10.5	11.0	11.5	V
V _{OUT} current limit during programming	I I OP		20	25	30	l i mA i
Output programming voltage	Vout		10.5	11.0	11.5	 V
Pulse width of programming voltage	tp		9	10	11	 μS
Programming delay	to		0	1	10	 μs
VCCP or VOUT transition time	t _{TL} H	Rise time of	1	5 	10	V/μs
V _{CCP} current	ICCP		800	900	1,000	mA
Low VCC for verification	VCCL		3.9	4.0	4.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
High V _{CC} for iverification	V _{CCH}		5.8	6.0	6.2	V
Address input voltage	IVIH		2.4	5.0	5.5	V
Maximum duty cycle iduring automatic iprogramming of program ipin and output pin	D.C.	tp/tc		25 	50	%

 $1/T_{C} = +25^{\circ}C.$

TABLE IVC. Programming characteristics for circuit C, device types 02 and 04.

		T		Limits		Ţ
Parameter	Symbol	Conditions $1/$	Min	Recommended	Max	TUnit
Programming voltage to VCC	V _{CCP} <u>2</u> /	I _{CCP} = 375 ±75 mA tran- sient or steady state	8.5	8.75	9.0	\
Verification upper limit	VCCH		5.3	5.5	5.7	 V
Verification lower limit	VCCL		4.3	4.5	4.7	 V
Verify threshold	ν _s <u>3</u> /		1.4	1.5	1.6	V
Programming supply current	I CCP	V _{CCP} = +8.75 ±.25 V	300		450	 mA
Input voltage high level "1"	V _{IH}		2.4		5.5	V
Input voltage low level "O"	VIL		0 	0.4	0.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Input current	IIH	V _{IH} = +5.5 V	 		50	μ A
Input current	IIL	V _{IL} = +0.4 V			- 500	 μ Α
Output programming voltage	Vout <u>4</u> /	IOUT = 200 ±20 mA; tran- sient or steady state	16 	17 	18 	 V
Output programming current	IOUT	VOUT = +17 V	180	200	220 	m A
Programming voltage transition time	tTLH		10		50 	μS
CE programming pulse width	t _p		300 1	400	500	μS
Pulse sequence delay	to		10	1		μS

 $^{1/}T_{C} = +25^{\circ}C.$

 $[\]underline{2}/$ Bypass v_{CC} to GND with a 0.01 μF capacitor to reduce voltage spikes.

^{3/} Vs is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

 $[\]frac{4}{}$ Care should be taken to insure the 17 V $^{\pm}1$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.

TABLE IVC. Programming characteristics for circuit C, device type 05. - Continued

 	7			Limits	W 2	Unit
Parameter	Symbol	Conditions $\frac{1}{2}$	Min	Recommended	max	1
rogramming voltage to V _{CC} 2/	YCCP	ICCP = 425 ±75 mA tran- sient or steady state	8.5	8.75	9.0	 V
erify voltage	ACCA		4.75	5.0	5.25	٧
nput voltage high level	VIH	I _{IH} = 50 μA	2.4	3.0	l 5.5 	V
Input voltage low level	VIL	I _{IL} = 500 μA	0.0	0.0	0.5	V
Forced output current	I _{OPF}	VOPF = 17.5 ±0.5 V	150	185	220	l mA
Forced output voltage (program) <u>3</u> /	V _{OPF1}	IOPF = 300 ±25 mA	17.0	17.5	118.0	V
Forced output voltage (program) <u>3</u> /	V _{OPF2}	I _{OPF} = 300 ±25 mA	20.0		22.0	V I
Output voltage high	v _{он}		2.4		5.25	V
Output voltage low	VOL		0.0	l l	0.45	٧
V _{CC} delay time	T ₀₁	50% to 10%	10	10	25	 μS
V _{OUT} delay time	T _{D2}	190% V _{CCP} to	1.0	1.0	5.0	μ s
Pulse sequence delays	T _{D3} -	See figure 6C	1.0	1.0	10	! μS
V _{CC} rise time	T _{R1}	0% to 100%	4.0	7.0	8.0	 μS
V _{OUT} rise time	T _{R2}	10% to 90%	3.0	10	17	μS
 V _{CC} fall time	T _{F1}	100% to 0%	2.0	4.0	10	ļμs

TABLE IVC. Programming characteristics for circuit C, device types 05. - Continued

	!	-[T	Limits		<u> </u>
Parameter	Symbol	Conditions $\underline{1}$	Min 	Recommended	Max	Unit
V_{OUT} fall time	T _{F2}	100% to 0%	4.0	7.0	20	μS
CE ₂ programming pulse width <u>4</u> /	Тр	10% to 10%	5.0	10	30	μS
CE ₂ verify pulse width	Ту	10% to 10%	5.0	5.0	10	μS
Clock pulse width (CK)	Twc	50% to 50%	0.5	0.75	1.0	μS

 $^{1/}T_{C} = +25^{\circ}C.$

^{2/} If the overall program/verify cycle exceeds the recommended value, a 25% duty cycle must be used for $v_{\rm CCP}.$

^{3/} VopF supply should regulate to ±0.25 V at I_{OPF} . Maximum slew rate for VopF should be 1.0 V/µs.

^{4/} $\overline{\text{CE}}_2$ rise time slew rate should be 1.0 V/ns maximum. $\overline{\text{CE}}_2$ fall time slew rate should be 10.0 V/ns maximum.

TABLE IVD. Programming characteristics for circuit D.

				Limits		T
Parameter	Symbol	Conditions $\underline{1}/$	Min	Recommended	Max	Tunit
Power supply voltage	VCC		6.4	6.5	6.6	V .
Power supply rise time $2/$	tr(VCC)		0.2	2.0		μS
Power supply fall time <u>2</u> /	tf(VCC)		0.2	2.0		μS
V_{CC} on time $3/$	ton	See programming				!
V _{CC} off time 4/	toff	[Time diagram 				! ! !
Duty cycle for VCC		ton toff + ton			50 	% %
Read delay before programming	t _{dRBP}	 Initial check 		3.0		μS
Fuse read time	t _W <u>5</u> /	[[1.0	(μS
Delay to V _{CC} off	td(vcc) <u>5</u> /		 	1.0	 	μS
Delay to read after programming	td _{RAP} <u>5</u> /	 Programming verification		3.0		 μS
Chip select programming voltage	VCSP		20.0	20.0	22.0	 V
 Chip select program current limit	I CSP		 175 	180	 185 	l mA l
Input voltage low	VIL	i 	0.0	0.0	0.4	V
 Input voltage high	l V I H		2.4	5.0	5.0	V
 Delay to chip deselect	tdCS			1.0		μS
 Chip select pulse rise time	trcs		1 3.0	4.0		ļμS
 Delay to chip select time	t _{dAP}	T 1	0.2	1.0	 	ļμS
Chip select pulse fall time	tfCS		0.1	0.1	1.0	μS

	T	1		Limits		
Parameter	Symbol 	Conditions <u>1</u> /	Min	Recommended	Max	Tunit
l Programming current linear point 	I OPLP			10 10 	20] mA
Output programming current l limit	IOP(MAX)	Apply current ramp to selected output	155	160	165	mA
 Output programming voltage limit 	VOP(MAX)	 	24	25 	26	٧
Current slew rate	SR _{IOP}	 Constant after Tinear point	0.9	1.0	1.1	mA/μs
Blow sense voltage	V _{PS}		0.7] 		V
 Delay to programming ramp 	 t _{dBP} 		2.0	3.0		μS
 Time to reach linear point 	 t _L p 		0.2	1.0	10	μS
 Program sense inhibit	 t _{ss} 		2.0	 3.0 	10	 μS
Time to program fuse	t _{tp}	 	3.0	1	150	μS
Programming ramp hold time	t _{hAP}	 After fuse programs 	1.4	1.5	1.6	μS
 Programming ramp fall time <u>2</u> /	t _{fIOP}			0.1	0.2	μS

 $[\]underline{1}/T_{C} = +25^{\circ}C.$

TABLE IVE. Programming characteristics for circuit E. - discontinued

^{2/} Rise and fall times are from 10% to 90%.

^{3/} Total time $v_{\rm CC}$ is on to program fuse is equal to or greater than the sum of all the specified delays, pulse widths and rise/fall times.

^{4/} toff is equal to or greater than ton.

^{5/} Proceed to next address after read strobe indicates programmed cell.

TABLE IVF. Programming characteristics for circuit F.

		T	τ	Limits		Τ
Parameter	Symbol	Conditions $1/$	Min	Recommended	Max	TUnit
V _{CC} required during programming	VCCP		5.4	5.5	5.6	V
Rise time of program pulse to data out or program pin	tTLH		0.34	0.40	0.46	V/μs
Programming voltage on program pin	Vpp		32.5	33	33.5	V
Output programming voltage	VOUT		25.5	26	26.5	l V
Programming pin pulse width (CE)	tpp	 Chip disabled VCC = 5.5 V	 	 100 	180	 μS
Pulse width of programming voltage	tp		1 1		40 	 μS
Required current limit of power supply feeding program pin and output during program	Ι _L	Vpp = 33 V, VOUT = 26 V, VCC = 5.5 V	240			m A
Required time delay between disabling memory output and application of output programming pulse	T _{D1}	 	70	80 	90	μS
Required time delay between removal of programming pulse and enabling memory output	T ₀₂	T 	100			ns
Output current during verification	I _{OLV1}	Chip enabled Y _{CC} = 4.0 V	11	12	13	l mA
	I _O LV2	Chip enabled V _{CC} = 7.0 V	0.19	0.2	0.21	mA
Address input voltage	AIH		2.4	5.0	5.5	٧
	AIF	 	10.0	0.4	0.8	V
Maximum duty cycle during automatic programming of program pin and output pin	D.C.	t _{p/tc}			25	%

 $\underline{1}/T_{C} = 25^{\circ}C.$

TABLE IVG. Programming characteristics for circuit G.

 	Т	T	T	Limits		т
Parameter	Symbol	Conditions 1/	Min	Recommended value	Max	†Unit ∐
Required VCC for programming	VCCP		10.0	10.5	11.0	 V
I _{CC} during programming	ICCP	V _{CC} = 11 V	 	 	750	l mA
 Required output voltage for programming 	VOP]	10.0	10.5	11.0	V
Output current while programming	IOP	V _{OUT} = 11 V	 		20	l mA
Rate of voltage change of V _{CC} or output	IRR		1.0	 	10.0	V/μs
Programming pulse width (enabled)	PWE		j 9 	1 10 	11	μs I
Required V _{CC} for verifi- cation	VCCV		3.8	4.0	4.2	V
Maximum duty cycle for V _{CC} at V _{CCP}	MDC		 	 25 	25	g
Address set-up time	t ₁	1	100	 		ns
V _{CCP} set-up time	t ₂	2/	5			μS
V _{CCP} hold time	t ₅		100			ns
V _{OP} set-up time	 t3 		100	 		ns
V _{OP} hold time	t4		100			ns

 $[\]underline{1}/T_{C} = +25^{\circ}C.$

 $[\]underline{2}/$ v_{CCP} setup time may be greater than 0 if v_{CCP} rises at the same rate or faster than $v_{OP}.$

TABLE IVH. Programming characteristics for circuit H. 1/

Parameters	Symbol .	Min	Nom	Max	Unit	
Steady-state supply voltage	vcc	4.75	5	5.25	٧	
Input voltage	ν _{IH}	3	4	5	γ	
	۸IΓ	0	0	0.5	,	
Voltage all outputs exept the one to be programmed		0	0	0.5	٧	
Supply voltage level to program a bit	VCC(pr)	5.75	6	6.25	٧	
Select or enable level to program a bit	l ^V S(pr)	9.75	10	11	٧	
Output level during interval t5	V _O (PR)	15.75	16	16.25	٧	
Supply voltage during vertification (see step 0)	Low	4.4	4.5	4.6	٧	
	 High 	5.4	5.5	5.6		
Time for V_{CC} to settle and to verify need to program	t ₁	0	 5 	10	μS	
Timing from $V_{CC} = 6 V$ until chip select (enable) is at 10 V	t ₂	 5 	5	10	μS	
Timing from chip select (enable) high to start of program ramp	t ₃	0.1	5	10	μS	
Ramp time, output program pulse	t4	10	15	20	l lμs	
Duration of output program pulse	t ₅	15	 20 	20	 μs 	
Time from end of program pulse to chip select (enable) low	t ₆	5	5	 10 	μS	
Time from chip select (enable) low to $V_{CC}=0$ V	t ₇	0.1	5	5	μS	
Time for cooling between bits	t ₈	30	50	100	μS	
Time for cooling between words	to	30	50		μS	

 $[\]underline{1}/T_{C} = +25^{\circ}C.$

TABLE IVI. Programming characteristics for circuit I.

Parameter	Symbol	Conditions $\underline{1}$	Min	Limits Recommended	Max	Tunit
VCC during programming	VCCP		5.0	 	5.5	 V
High level input voltage during programming	VIHP	- 	2.4		5.5	 V
Low level input voltage during programming	VILP		0.0	 	0.45	V
Chip enable voltage during programming	V _{CEP}	CE1 pin	14.5		15.5	V
Output voltage during programming	V _{OP}		19.5		20.5	٧
Voltage on outputs not to be programmed	VONP		0		V _{CCP} +0.3	i v
Current on outputs not to be programmed	IONP				20	m A
Rate of output voitage change	d(V _{OP}) dt		20		250	V /μs
Rate of chip enable voltage change	d(V _{CE}) dt	ICE1 pin	100		1000	 V/μs
Programming period	tp		50		100	μS
VCC during programming verification	YCCL		4.5		5.0	μS

 $[\]underline{1}/T_{C} = +25^{\circ}C.$

TABLE IVJ. Programming characteristics for circuit J. 1/

		T	Limits 1/	1	
Parameter	Symbol	Min	Recommended	Max	Unit
Address input voltage <u>2</u> /	AIF AIH	2.4	5.0 0.4	5.0	۷ ۷
Programming/verify voltage to V _{CC}	V _{PH}	11.75	12.0 4.5	12.25	V V
Programming voltage current limit with V _{PH} applied	ICCP	600	600	650	mA
Voltage rise and fall time	ltr tf	1.0	1.0 1.0	10	μS μS
Programming delay	td	10	10	100	μS
Programming pulse width	tp	100		1000	μS
Programming duty cycle	DC		50	90	 %
Output voltage Enable Disable <u>3</u> /	VOPE VOPD	10.0	10.5 5.0	11.0	 V V

 $[\]underline{1}/T_{C} = +25^{\circ}C.$

 $[\]underline{2}$ / Address and chip select shall not be left open for V_{IH} .

³/ Disable condition shall be met with output open circuit.

- 6.2 Ordering data. The acquisition document should specify the following:
 - a. Complete part number (see 1.2).
 - b. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - c. Requirements for certificate of compliance, if applicable.
 - d. Requirements for notification of change of product or process to the contracting activity in addition to notification to the qualifying activity, if applicable.
 - Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - f. Requirements for product assurance options.
 - g. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - h. Requirements for programming the device, including processing option.
 - i. Requirements for "JAN" marking.
- 6.3 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-M-38510, MIL-STD-1331, and as follows:

GND	Ground zero voltage potential.
V _{IN}	Voltage level at an input terminal.
V _{IC}	Input clamp voltage.
I _{IN}	Current flowing into an input terminal.

6.4 <u>Logistic support.</u> Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), and lead material and finish C (see 3.3). Longer length leads and lead forming shall not affect the part number. It is intended that spare devices for logistic support be acquired in the unprogrammed condition (see 3.7.1) and programmed by the maintenance activity, except where use quantities for devices with a specific program or pattern justify stocking of preprogrammed devices.

6.5 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-M-38510.

Military	Generic-industry	Circuit	Fusible	Symbol/
	type/manufacturer d	esignator	r link	FSCM number
<u>device type</u>	76160 /Harris	Δ	NiCr	CDWD/34371
01 6/	~/DIDU //Harris	P.	TiW	CECD/50364
″ 01 <u>5</u> /	53S1680/Monolithic Memories	, r	NiĈr	CDKB/18324
01 <u>6</u> /	82S190 /Signetics Corp.	•	TiW/W	CCXP/27014
01 -	77S190 /National	G	• • • •	GGX1 / E / G 2 1
02 6/	76161 /Harris	Α	NiCr	
02 =	53\$1681/Monolithic Memories	В	TiW	
02.04	82S191A/Signetics Corp.	С	NiCr	
02,04	3636 /Intel	Ε	Polysilicon	CECC/34649
	29681 /Raytheon	Ē	NiCr	CRP/07933
02	77S191 /National	G	TiW/W	
02		ŭ	TiW	CGO/01295
02,04	28S166A/Texas Instrument	ve j	Platinum silicide	CDWN/34335
02	27S191 /Advanced Micro Device	1	NiCr	CGG/04713
02	76161 /Motorola	J.	ZVE 7/	CFJ/07263
03	—93Z510 /Fairchild	υ		010/07200
04.02	93Z511 /Fairchild	U	ZVE	
05, 6/	76165 /Harris	Α	NiCr	
05, <u>3</u> ,	82HS195/Signetics Corp.	С	ZVE	

- $\underline{6}/$ This generic-industry types is no longer manufactured.
- 7/ Zapped vertical emitter.

6.6 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians: Army - ER Navy - EC Air Force - 17

Review activities: Army - AR, MI Navy - OS, SH, TD

Air Force - 11, 19, 85, 99

DLA - ES

User activities:

Army - SM Navy - AS, CG, MC

Preparing activity: Air Force - 17

Agent: DLA - ES

(Project 5962-0707)