
CoreI2C v6.0
Handbook

http://www.actel.com/survey/rating/?f=CoreI2C_HB.pdf

© 2009 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200090-5

Release: November 2009

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change without
notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized
person without prior written consent of Actel Corporation.

Trademarks
Actel, IGLOO, Actel Fusion, ProASIC, Libero, Pigeon Point and the associated logos are trademarks or registered
trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective
owners.

CoreI2C v6.0

Table of Contents
Introduction . 5
Core Overview . 5
Core Version . 5
Supported Interfaces . 5
Utilization and Performance . 6
Configuration Example . 9

1 Design Description . 11
I/O Signals . 11
Verilog/VHDL Parameters . 12
Serial and APB Interfaces . 14
Functional Block Descriptions . 15
Operation Details . 17
Register Map and Descriptions . 19

2 Tool Flows . 39
SmartDesign . 39
Simulation Flows . 41
Synthesis in Libero IDE: . 41
Place-and-Route in Libero IDE . 41

3 Example Application and Hints . 43
Software Driver . 43
Usage with Cortex-M1 . 43
Hints on I/O Pad Requirements . 43
Hints on Configuring WIRED-AND Bidirectional Buffers in RTL . 44
Hints on Meeting SMBus/PMBus Timing Requirements . 44

4 List of Document Changes . 45

A Product Support . 47
Customer Service . 47
Actel Customer Technical Support Center . 47
Actel Technical Support . 47
Website . 47
Contacting the Customer Technical Support Center . 47

Index . 49
3

Introduction

Core Overview

Intended Use
CoreI2C provides an APB-driven serial interface, supporting I2C, SMBus, and PMBus data transfers.
Several Verilog/VHDL parameters are available to minimize FPGA fabric area for a given
application. CoreI2C also allows for multiple I2C channels, reusing logic across channels to reduce
overall tile count.

Key Features
• Conforms to the Philips Inter-Integrated Circuit (I2C) v2.1 Specification (7-bit addressing

format at 100 Kbps and 400 Kbps data rates)

• Supports SMBus v2.0 Specification

• Supports PMBus v1.1 Specification

• Data transfers up to at least 400 kbps nominally; faster rates can be achieved depending on
external load and/or I/O pad circuitry

• Modes of operation configurable to minimize size

• Advanced Peripheral Bus (APB) register interface

• Multi-master collision detection and arbitration

• Own address and general call address detection

• Second Slave address decode capability

• Data transfer in multiples of bytes

• SMBus timeout and real-time idle condition counters

• IPMI 3 ms SCL low timeout

• Optional SMBus signals, SMBSUS_N and SMBALERT_N, controllable via APB IF

• Configurable spike suppression width

• Multiple channel configuration option

Core Version
This handbook supports CoreI2C version 6.0.

Supported Interfaces
CoreI2C is available with the following interfaces:

• Serial I2C/SMBus/PMBus Interface

• APB Interface for register access

These interfaces are further described in the "Serial and APB Interfaces" section on page 14.
CoreI2C v6.0 5

Introduction
Utilization and Performance
CoreI2C has been implemented in several of Actel’s device families using standard speed grades. A
summary of various implementation data is listed in Table 1 through Table 5 on page 8.

Table 1 • CoreI2C Device Utilization and Performance (Slave-only I2C configuration)

Family

Tiles Utilization
Performance

MHzSequential Combinatorial Total Device Total %

Fusion 51 310 361 AFS600 2.6 130

IGLOO®/e 51 310 361 AGLE600V2 2.6 54

ProASIC®3/E 51 310 361 M1A3P250 5.9 127

ProASICPLUS® 58 355 413 APA075 13 68

Axcelerator® 58 199 257 AX250 6.1 135

RTAX-S 58 299 257 RTAX250S 6.1 101

Note: Data in this table were achieved using the Verilog RTL with typical synthesis and layout
settings. Top-level parameters/generics were set as follows: I2C_NUM=1, OPERATING_MODE
= 1, BAUD_RATE_FIXED = 1, BAUD_RATE_VALUE = 6, BCLK_ENABLED = 0, GLITCHREG_NUM
= 3, SMB_EN = 0, IPMI_EN = 0, FREQUENCY = 0, FIXED_SLAVE0_ADDR_EN = 1,
FIXED_SLAVE0_ADDR_VALUE = 0x20, ADD_SLAVE1_ADDRESS_EN = 0,
FIXED_SLAVE1_ADDR_EN = 0, FIXED_SLAVE1_ADDR_VALUE = 0.

Table 2 • CoreI2C Device Utilization and Performance (Master/Slave I2C configuration)

Family

Tiles Utilization
Performance

MHzSequential Combinatorial Total Device Total %

Fusion 73 451 524 AFS600 3.8 116

IGLOO/e 73 451 524 AGLE600V2 3.8 52

ProASIC3/E 73 451 524 M1A3P250 8.5 125

ProASICPLUS 81 499 580 APA075 18.9 69

Axcelerator 82 303 385 AX250 9.1 135

RTAX-S 82 303 385 RTAX250S 9.1 100

Note: Data in this table were achieved using the Verilog RTL with typical synthesis and layout
settings. Top-level parameters/generics were set as follows: I2C_NUM=1, OPERATING_MODE
= 0, BAUD_RATE_FIXED = 1, BAUD_RATE_VALUE = 6, BCLK_ENABLED = 0, GLITCHREG_NUM
= 3, SMB_EN = 0, IPMI_EN = 0, FREQUENCY = 0, FIXED_SLAVE0_ADDR_EN = 1,
FIXED_SLAVE0_ADDR_VALUE = 0x20, ADD_SLAVE1_ADDRESS_EN = 0,
FIXED_SLAVE1_ADDR_EN = 0, FIXED_SLAVE1_ADDR_VALUE = 0.
6 CoreI2C v6.0

Utilization and Performance
Table 3 • CoreI2C Device Utilization and Performance (IPMI Master-TX/Slave-RX I2C configuration)

Family

Tiles Utilization
Performance

MHzSequential Combinatorial Total Device Total %

Fusion 92 492 584 AFS600 4.2 121

IGLOO/e 92 492 584 AGLE600V2 4.2 52

ProASIC3/E 92 492 584 M1A3P250 9.5 118

ProASICPLUS 96 556 652 APA075 21 65

Axcelerator 101 325 426 AX250 10 111

RTAX-S 101 325 426 RTAX250S 10 86

Note: Data in this table were achieved using the Verilog RTL with typical synthesis and layout
settings. Top-level parameters/generics were set as follows: I2C_NUM=1, OPERATING_MODE
= 2, BAUD_RATE_FIXED = 1, BAUD_RATE_VALUE = 6, BCLK_ENABLED = 0, GLITCHREG_NUM =
3, SMB_EN=0, IPMI_EN = 1, FREQUENCY = 30, FIXED_SLAVE0_ADDR_EN = 1,
FIXED_SLAVE0_ADDR_VALUE = 0x20, ADD_SLAVE1_ADDRESS_EN = 1,
FIXED_SLAVE1_ADDR_EN = 1, FIXED_SLAVE1_ADDR_VALUE = 0x33.

Table 4 • CoreI2C Device Utilization and Performance (Master/Slave SMBus configuration)

Family

Tiles Utilization
Performance

MHzSequential Combinatorial Total Device Total %

Fusion 117 587 704 AFS600 5.1 112

IGLOO/e 117 587 704 AGLE600V2 5.1 46

ProASIC3/E 117 587 704 M1A3P250 11.5 111

ProASICPLUS 125 673 798 APA075 26 54

Axcelerator 127 400 527 AX250 12 109

RTAX-S 127 400 527 RTAX250S 12 80

Note: Data in this table were achieved using the Verilog RTL with typical synthesis and layout
settings. Top-level parameters/generics were set as follows: I2C_NUM=1, OPERATING_MODE
= 0, BAUD_RATE_FIXED = 1, BAUD_RATE_VALUE = 6, BCLK_ENABLED = 0, GLITCHREG_NUM
= 3, SMB_EN = 1, IPMI_EN = 0, FREQUENCY = 30, FIXED_SLAVE0_ADDR_EN = 1,
FIXED_SLAVE0_ADDR_VALUE = 0x20, ADD_SLAVE1_ADDRESS_EN = 0,
FIXED_SLAVE1_ADDR_EN = 0, FIXED_SLAVE1_ADDR_VALUE = 0.
CoreI2C v6.0 7

Introduction
Table 5 • CoreI2C Device Utilization and Performance (13 Channel IPMI configuration)

Family

Tiles Utilization
Performance

MHzSequential Combinatorial Total Device Total %

Fusion 989 6,001 6,990 AFS600 51 97

IGLOO/e 989 6,001 6,990 AGLE600V2 51 44

ProASIC3/E 989 6,001 6,990 M1A3P600 51 105

ProASICPLUS 1,099 6,887 7,986 APA600 37 47

Axcelerator 1,166 4,082 5,248 AX1000 29 69

RTAX-S 1,166 4,082 5,248 RTAX1000 29 64

Note: Data in this table were achieved using the Verilog RTL with typical synthesis and layout
settings. Top-level parameters/generics were set as follows: I2C_NUM=13,
OPERATING_MODE=2, BAUD_RATE_FIXED=1, BAUD_RATE_VALUE=7, BCLK_ENABLED=1,
GLITCHREG_NUM=3, SMB_EN=0, IPMI_EN=1, FREQUENCY=30, FIXED_SLAVE0_ADDR_EN=0,
FIXED_SLAVE0_ADDR_VALUE=32, ADD_SLAVE1_ADDRESS_EN=1,
FIXED_SLAVE1_ADDR_EN=1, and FIXED_SLAVE1_ADDR_VALUE=20.
8 CoreI2C v6.0

Configuration Example
Configuration Example
Figure 1 illustrates a typical application. Cortex™-M1, coupled with CoreI2C, masters
communication with a SMBus Temperature Sensor slave, and an I2C slave in FPGA #2. In FPGA #2,
CoreI2C is configured in Slave-only mode with CoreABC as its control.

Figure 1 • CoreI2C SMBus Application Example

VCC

SMBus Host Controller (Master/Slave mode)

SDA

SCL

VCC VCC

I2C Intelligent Device (Slave-only mode)

Cortex-M1 Core
I2C

APB
SDAO
SDAI

SCLI
SCLO

Temperature Sensor
SMBus Device

FPGA #1

FPGA #2

CoreABC
Core
I2C

APB
SDAO

SDAI

SCLI

SCLO

SMBus Host
Controller Source

Code

RP RP

SMBALERTI
SMBALERTO

RP

SMBALERT
CoreI2C v6.0 9

1 – Design Description

I/O Signals
The port signals for the CoreI2C macro are illustrated in Figure 1-1 and defined in Table 1-1.

Figure 1-1 • CoreI2C I/O Signal Diagram

Table 1-1 • CoreI2C I/O Signal Descriptions

Name Type Description

APB Interface

PCLK Input APB System Clock; Reference clock for all internal logic

PRESETN Input APB active low asynchronous reset

PADDR[8:0] Input APB address bus; address internal registers. Bits 8 to 5 function as
address pointers to one of the 16 channels.

PSEL Input APB Slave Select; select signal for register for reads or writes

PENABLE Input APB Strobe. This signal indicates the second cycle of an APB transfer.

PWRITE Input APB Write/Read. If high, a write occurs when an APB transfer takes
place. If low, a read takes place.

PWDATA[7:0] Input APB write data

PRDATA[7:0] Output APB read data

INT[I2C_NUM-1:0] Output Interrupt output; monitors status register.

SMBA_INT[I2C_NUM-1:0] Output Optional (if SMBus Enabled) interrupt output; monitors assertion of
SMBALERT_NI. Level sensitive; hence only the deassertion of
SMBALERT_NI will clear the interrupt.

SMBS_INT[I2C_NUM-1:0] Output Optional (if SMBus Enabled) interrupt output; monitors assertion of
SMBSUS_NI. Level sensitive; hence only the deassertion of
SMBALERT_NI will clear the interrupt.

Note: All signals are active high (logic 1) unless otherwise noted.

PRESETN

CoreI2C

PCLK

PENABLE

PADDR[8:0]

PRDATA[7:0]

INT[I2C_NUM-1:0]

PWRITE

SCLI[I2C_NUM-1:0]
SCLO[I2C_NUM-1:0]
SDAI[I2C_NUM-1:0]

SDAO[I2C_NUM-1:0]

PWDATA[7:0]

PSEL

APB IF

SMBSUS_NI[I2C_NUM-1:0]

SMBALERT_NI[I2C_NUM-1:0]
SMBALERT_NO[I2C_NUM-1:0]

SMBus
Optional
Signals

Serial IF

SMBSUS_NO[I2C_NUM-1:0]

SMBA_INT[I2C_NUM-1:0]
SMBS_INT[I2C_NUM-1:0]

BCLK
CoreI2C v6.0 11

Design Description
Verilog/VHDL Parameters
CoreI2C has parameters (Verilog) or generics (VHDL) for configuring the RTL code, described in
Table 1-2. All parameters and generics are integer types.

Serial Interface

SCLI[I2C_NUM-1:0] Input Wired-AND serial clock input

SCLO[I2C_NUM-1:0] Output Wired-AND serial clock output

SDAI[I2C_NUM-1:0] Input Wired-AND serial data input

SDAO[I2C_NUM-1:0] Output Wired-AND serial data output

SMBus Optional Signals

SMBALERT_NI[I2C_NUM-1:0] Input Wired-AND interrupt signal input; used in Master/Host mode to
monitor if slave/devices want to force communication with the host.

SMBALERT_NO[I2C_NUM-1:0] Output Wired-AND interrupt signal input; used in Slave/device mode if the
core wants to force communication with a host.

SMBSUS_NI[I2C_NUM-1:0] Input Suspend Mode signal input; used if core is Slave/device.

Not a Wired-AND signal.

SMBSUS_NO[I2C_NUM-1:0] Output Suspend Mode signal output; used if core is the Master/host.

Not a Wired-AND signal.

Other Signals

BCLK Input Pulse for SCL speed control. Used only if the configuration bits cr[2:0]
= 111; otherwise, various divisions of PCLK are used.

Table 1-1 • CoreI2C I/O Signal Descriptions (continued)

Note: All signals are active high (logic 1) unless otherwise noted.

Table 1-2 • CoreI2C Parameters/Generics Descriptions

Parameter Name Valid Range Description Default

I2C_NUM 1 to 16 Number of I2C channels 1

FREQUENCY 1 to 255 PCLK frequency value in MHz. FREQUENCY parameter
is only necessary to configure optional SMBus or IPMI
timeout counters.

30

OPERATING_MODE 0 to 3 0: Full Master/Slave Tx/Rx modes.

1: Slave Tx/RX modes only.

2: Master Tx and Slave Rx modes only.

3: Slave Rx mode only.

0

BCLK_ENABLED 0 or 1 0: BCLK input is disabled, reducing tile count.

1: BCLK input is enabled.

1

BAUD_RATE_FIXED 0 or 1 0: Baud rate value (bits cr[2:0] in the Control Register)
modified by an APB-accessible register.

1: Baud rate value [bits cr[2:0] in the Control Register)
is fixed to the parameter BAUD_RATE VALUE, reducing
tile count.

0

12 CoreI2C v6.0

Verilog/VHDL Parameters
BAUD_RATE_VALUE 0 to 7 Fixed Baud Rate Values

Bit Value: SCL Frequency:

000 PCLK frequency/256

001 PCLK frequency/224

010 PCLK frequency/192

011 PCLK frequency/160

100 PCLK frequency/960

101 PCLK frequency/120

110 PCLK frequency/60

111 BCLK frequency/8

0

SMB_EN 0 or 1 1: Generates the SMBus logic: SMBus register, real-time
checks and timeout values.

0: SMBus logic not generated.
0

IPMI_EN 0 or 1 1: Generates 3 ms SCL Low IPMI Required Timeout
Counter with error status and interrupt.

0: IPMI Timeout Counter not generated.
0

GLITCHREG_NUM 3 to 15 Number of registers in the Glitch Filter. Correct value
to meet I2C fast mode (400 kbps) and fast mode plus (1
Mbps). 50 ns spike suppression will depend on the
PCLK frequency.

Guideline:

PCLK Freq (MHz) GlitchReg_Num for 50 ns
or Less Spike Suppression

Freq 60 3

60 < Freq  80 4

80 < Freq  100 5

100 < Freq 120 6

120 < Freq 140 7

140 < Freq  160 8

160 < Freq 180 9

180 < Freq 200 10

3

FIXED_SLAVE0_ADDR_EN 0 or 1 0: SLAVE0 address has APB write access.

1: SLAVE0 address is hardcoded, reducing tile count.

0

FIXED_SLAVE0_ADDR_VALUE 0x00 to 0x7F Hardcoded SLAVE0 address value. 0

ADD_SLAVE1_ADDRESS_EN 0 or 1 0: SLAVE1 address is not enabled.

1: SLAVE1 address is enabled.

0

FIXED_SLAVE1_ADDR_EN 0 or 1 0: SLAVE1 address has APB write access.

1: SLAVE1 address is hardcoded, reducing tile count.

0

FIXED_SLAVE1_ADDR_VALUE 0x00 to 0x7F Hardcoded SLAVE0 address value 0

Table 1-2 • CoreI2C Parameters/Generics Descriptions (continued)
CoreI2C v6.0 13

Design Description
Serial and APB Interfaces

Serial Interface
A typical I2C/IPMI/SMBus/PMBus 8-bit data transfer cycle is shown in Figure 1-2. A Master start
condition is signalled by the SDA line going low while the SCL line is high. After a start condition,
the master sends a slave address along with a read or write bit. The addressed slave acknowledges
its address with an ACK, and then multiple bytes can be transferred with an ACK/NACK for each
byte. Eventually the Master asserts a stop condition, which occurs when the SDA line goes high
while the SCL line is high.

A user of CoreI2C must configure the system (logic, I/O pads, external circuitry and pull-up resistors)
to ensure that the serial interface timings adhere to a given I2C/SMBus/PMBus specification.

Note: To adhere to additional SMBus/PMBus Hold times and Minimum Clock High Times, configure
PCLK to be within the 5 Mhz to 20 Mhz range. Additionally, choose a Baud Rate Value so that
the serial SCL clock will transfer data at or near the maximum frequency of 100 KHz (FSMB-
max) to ensure that other potential clock stretching devices on the bus will not slow the clock
frequency to below the minimum allowed SMBus clock of 10 KHz (FSMB-min).

For detailed timing information, refer to the I2C/IPMI/SMBus/PMBus Specifications directly.

APB Interface
Figure 1-3 and Figure 1-4 depict typical write cycle and read cycle timing relationships relative to
the system clock.

Figure 1-2 • Serial Interface Byte Transfer

SCL

SDA MSB LSB R/W ACK

S
Start

S
Start

P
Stop

Address Data

MSB LSB ACK

Figure 1-3 • Data Write Cycle

Figure 1-4 • Data Read Cycle

PCLK

PSEL

PWRITE

PENABLE

PADDR[8:0]

PWDATA[7:0]

Register Address

Register Data

PCLK

PSEL

PWRITE

PENABLE

PADDR[8:0]

PRDATA[7:0]

Register Address

Register Data
14 CoreI2C v6.0

Functional Block Descriptions
Functional Block Descriptions
CoreI2C, as shown in Figure 1-5, consists of APB interface registers, serial input spike filters,
arbitration and synchronization logic, and a serial clock generation block. The following sections
briefly describe each design block.

APB Interface
CoreI2C supports the Advanced Peripheral Bus (APB) interface, compatible with the Actel
Core8051s and Cortex-M1 processor cores, as well as the CoreABC generic APB-based state machine
controller.

The APB registers are defined and usage detailed in the "Register Map and Descriptions" section
on page 1-19.

Input Glitch/Spike Filters
Input signals are synchronized with the internal clock, PCLK. Spikes shorter than the
parameterizeable glitch register length are filtered out.

Arbitration and Synchronization Logic
In Master mode, the arbitration logic checks that every transmitted logic '1' actually appears as a
logic '1' on the bus. If another device on the bus overrules a logic '1' and pulls the data line low,
arbitration is lost and CoreI2C immediately changes from Master transmitter to Slave receiver. The

Figure 1-5 • CoreI2C Block Diagram (single channel)

SCLI[0:0]

Slave Address
Registers

Slave Address
Comparator

Shift Register

Arbitration and
Synchronization Logic

Serial Clock Generator

Control Register

Status Register

SMBus or IPMI
Register

Input Glitch Filter

Input Glitch Filter

Output

Output SCLO[0:0]

SDAI[0:0]

SDAO[0:0]

BCLK

PADDR[8:0]

PWDATA[7:0]

A
PB

 In
te

rf
ac

e

SMBA_INT[0:0]
SMBS_INT[0:0]

INT

PWRITE

PENABLE

PRDATA[7:0]

PSEL

PCLK
PRESETN

SMBSUS_NI[0:0]
SMBSUS_NO[0:0]
SMBALERT_NI[0:0]
SMBALERT_NO[0:0]

Optional SMBus
or IPMI Register

SMBus or IPMI
Timeout Counters
CoreI2C v6.0 15

Design Description
synchronization logic synchronizes the serial clock generator block with the transmitted clock
pulses coming from another master device.

The arbitration and synchronization logic also utilizes timeout requirements set forth in the SMBus
Specification Version 2.0, or creates a 3 ms IPMI SCL Low Timeout.

Serial Clock Generator
This programmable clock pulse generator provides the serial bus clock pulses when CoreI2C is in
Master mode. The clock generator is switched off when CoreI2C is in Save mode. The baud rate
clock (BCLK) is a pulse-for-transmission speed control signal and is internally synchronized with the
clock input. BCLK may be used to set the serial clock frequency when the cr[2:0] bits in the Control
Register are set to 111; otherwise, PCLK divisions are used to determine the serial clock frequency.
The actual non-stretched serial bus clock frequency can be calculated based on the setting in the
cr2-0 fields of the Control Register and the frequencies of PCLK and BCLK. Refer to Table 1-5 on
page 1-20 for configuration.

Address Comparator
The comparator checks the received seven-bit slave address with its own slave address, and
optionally its own second address, slave1 (for dual-address applications). The comparator also
compares the first received eight-bit byte with the general call address (00H). If a match is found,
the Status Register is updated and an interrupt is requested.

Optional SMBus/IPMI Logic
The optional SMBus / IPMI logic includes the SMBus signals, clock-low timeout counters, and reset
logic; or when in IPMI mode, the optional 3 ms clock-low timeout counters (an SMBus clock low
master reset example is demonstrated in the "Operation Details" section on page 1-17).
SMBus/IPMI logic includes a top-level prescale counter, which counts in increments of 215
microseconds. A second smaller counter in each channel increments based on the prescale count of
215 microseconds. This design was chosen to reduce overall area at the expense of timeout
precision (when the clock-low condition occurs in IPMI mode, the free running 215 microsecond
counter may be anywhere in its count). As such, the 3 ms timeout flag will occur between 3.010 and
3.225 ms. The 35 ms SMBus master-holding-clock-low flag will occur between 35.045 and
35.260 ms, and the 25 ms SMBus timeout flag will occur between 25.155 and 25.370 ms.
16 CoreI2C v6.0

Operation Details
Operation Details

I2C Operating Modes
CoreI2C logic can operate in the following four modes:

1. Master Transmitter Mode:

Serial data output through SDA while SCL outputs the serial clock.

2. Master Receiver Mode:

Serial data is received via SDA while SCL outputs the serial clock.

3. Slave Receiver Mode:

Serial data and the serial clock are received through SDA and SCL.

4. Slave Transmitter Mode:

Serial data is transmitted via SDA while the serial clock is input through SCL.

Slave Mode Example
After setting the ens1 bit in the Control Register, the core is in the not addressed Slave mode. In
Slave mode, the core looks for its own slave address and the general call address. If one of these
addresses is detected, the core switches to addressed Slave mode and generates an interrupt
request. Then the core can operate as a Slave transmitter or a Slave receiver.

Transfer example:

• Microcontroller sets ens1 and aa bits

• Core receives own address and 0.

• Core generates interrupt request; Status Register = 0x60 (Table 1-11 on page 1-26)

• Microcontroller prepares for receiving data and then clears si bit.

• Core receives next data byte and then generates interrupt request. The Status Register
contains 0x80 or 0x88 value depending on aa bit (Table 1-11 on page 1-26).

• Transfer is continued according to Table 1-11 on page 1-26.

Master Mode Example
When the microcontroller wishes to become the bus master, the core waits until the serial bus is
free. When the serial bus is free, the core generates a start condition, sends the slave address and
transfers the direction bit. The core can operate as a Master transmitter or as a Master receiver,
depending on the transfer direction bit.

Transfer example:

• Microcontroller sets ens1 and sta bits.

• Core sends START condition and then generates interrupt request; Status Register = 0x08
(Table 1-9 on page 1-21).

• Microcontroller writes the Data Register (7-bit slave address and 0) and then clears si bit.

• Core sends Data Register contents and then generates interrupt request. The Status Register
contains 0x18 or 0x20 value, depending on received ACK bit (Table 1-9 on page 1-21).

• Transfer is continued according to Table 1-9 on page 1-21.
CoreI2C v6.0 17

Design Description
SMBus Clock Low Reset Example
If the clock line is held low by a Master who has initiated a bus reset with the SMBus register, the
following sequence should occur. Refer to Figure 1-6.

• Transfer example:

• The Master device sets SMBUS RESET bit, forcing the clock line low; the master device enters
the resetting state, 0xD0, and an interrupt is generated after 35 ms.

• A Slave device will enter the reset state, 0xD8, after 25 ms and an interrupt will be
generated. Once the interrupt is asserted, the APB controller of the slave device will need to
clear the interrupt within 10 ms per the SMBus Specification v.2.0, and the Slave device will
enter the idle state, 0xF8.

• After 35 ms, the Master device’s interrupt will be asserted, and the APB controller of the
master device will eventually clear the interrupt, forcing the Master device into the idle
state, 0xF8.

Figure 1-6 • SMBus Bus Reset Sequence

Host (Master)
resets the bus

SCL

Host sets SMBUS RESET
bit; clock line goes low.

25 ms 35 ms

Slave Reset
Status Set

Master Status xx 0xD0 0xF8

Master Int

Slave Status xx 0xD8 0xF8

Slave Int

Slave APB controller
must clear interrupt
within 10 ms, I2C enters
idle mode, 0xF8.

Host clears bit and
releases bus, entering
idle state, 0xF8.

Host 35 ms timeout
interrupt bit set, still
D0 state until cleared.
18 CoreI2C v6.0

Register Map and Descriptions
Register Map and Descriptions
PADDR[8:5] bits determine which I2C channel is being addressed, as shown in Table 1-3. Table 1-4
defines the register map and reset values of each channel's APB-accessible registers. 0x denotes
hexadecimal, 0b denotes binary, and 0d denotes decimal format. "X" implies an unknown
condition. "–"implies don't care condition. Type designations: R is read-only, R/W is read/write.

The following sections and tables detail the APB-accessible registers within each CoreI2C channel.

Table 1-3 • CoreI2C Per Channel Pointer Addressing

PADDR[8:5] Type Reset Value Brief Description

Channel ID Value N/A N/A Bits 8 to 5 of PADDR function as address pointers to one of the
16 channels. Note that the Channel ID Value does not apply to
the ADDR0 and ADDR1 registers shown in Table 1-4. The
values in those registers are the same for all channels.

PADDR[8:5] Channel Number

0000 0

0001 1

…… ….

1111 15

Table 1-4 • CoreI2C Internal Register Address Map

PADDR[4:0]
Register
Name Type Width Reset Value Brief Description

0x00 CTRL R/W 8 0x00 Control Register; used to configure each I2C channel.

0x04 STAT R 8 0xF8 Status Register; read-only value yields the current state
of the particular I2C channel.

0x08 DATA R/W 8 0x00 Data Register; I2C channel read/write data to/from the
serial IF.

0x0C ADDR0 R/W 8 0x00 Slave0 Address Register; contains the programmable
Slave0 address of all channels.

Note: The Slave0 Address Register is a single register
that is used in all channels. Only PADDR[4:0] are
required to write ADDR0; PADDR[8:5] are "don't
care" bits.

0x10 SMB R/W 8 0b01X1X000 SMBus or IPMI Register

SMBus Context: Configuration register for SMBus
timeouts and reset condition and for the optional
SMBus signals SMBALERT_N and SMBSUS_N.

IPMI Context: Enable/Disable IPMI SCL low timeout

0x1C ADDR1 R/W 8 0x00 Slave1 Address Register; contains the programmable
Slave1 address of all channels. When this Slave1
address is enabled yet fixed, the register will have a
R/W bit to enable/disable Slave1 comparisons. Only the
enable/disable bit will be R/W. The address is write
only.

Note: The Slave1 Address Register is a single register
that is used in all channels. Only the
enable/disable bit is R/W. Only PADDR[4:0] are
required to write ADDR0; PADDR[8:5] are "don't
care" bits.
CoreI2C v6.0 19

Design Description
Control Register
The Control Register is described in Table 1-5 and Table 1-6 on page 1-20. The CPU can read from
and write to this 8-bit, directly addressable APB. Two bits are affected by the CoreI2C: the si bit is
set when a serial interrupt is requested and the sto bit is cleared when a STOP condition is present
on the bus.

Table 1-5 • Control Register

PADDR[4:0] Register Name Type Width Reset Value Description

0x00 CTRL R/W 8 0x00 Control Register; used to configure each
I2C channel.

Table 1-6 • Control Register Bit Fields

Bits Name Type Description

7 cr2 R/W Clock rate bit 2; refer to bit 0.

6 ens1 R/W Enable bit. When ens1 = 0, the sda and scl outputs are in a high impedance table and
sda and scl input signals are ignored. When ens1 = 1, the channel is enabled.

5 sta R/W The START flag. When sta = 1, the channel checks the status of the serial bus and
generates a START condition if the bus is free.

4 sto R/W The STOP flag. When sto = 1 and the channel is in a Master mode, a STOP condition is
transmitted to the serial bus.

3 si R/W The Serial Interrupt flag. The si flag is set by the channel whenever there is a serviceable
change in the Status Register. After the register has been updated, the si” bit must be
cleared by software.

The si bit is directly readable via the APB INTERRUPT signal.

2 aa R/W The Assert Acknowledge flag.

When aa= 1, an acknowledge (ACK) will be returned when:

The "own slave address" has been received.

The general call address has been received while the gc bit in the Address register is set.

A data byte has been received while the channel is in the Master receiver mode.

A data byte has been received while the channel is in the Slave receiver mode.

When aa = 0, a not acknowledge (NACK) will be returned when:

A data byte has been received while the channel is in the Master receiver mode.

A data byte has been received while the channel is in the Slave receiver mode.

1 cr1 R/W Serial clock rate bit 1; refer to bit 0.

0 cr0 R/W Serial clock rate bit 0;

Clock Rate is defined as follows:

cr2 cr1 cr0 SCL Frequency

0 0 0 PCLK frequency/256

0 0 1 PCLK frequency/224

0 1 0 PCLK frequency/192

0 1 1 PCLK frequency/160

1 0 0 PCLK frequency/960

1 0 1 PCLK frequency/120

1 1 0 PCLK frequency/60

1 1 1 BCLK frequency/8
20 CoreI2C v6.0

Register Map and Descriptions
Status Register
The Status Register is read-only. The status values are listed, depending on mode of operation, in
Table 1-9 through Table 1-13 on page 1-32. Whenever there is a change of state, an INTERRUPT
(INT) is asserted. After updating any registers, the APB interface control must clear the INTERRUPT
(INT) by clearing the si bit of the Control Register.

Table 1-9 through Table 1-13 on page 1-32 define Status Register Code Descriptions and
subsequent Action based on the four possible operating modes.

Table 1-7 • Status Register

PADDR[4:0] Register Name Type Width
Reset
Value Description

0x04 STAT R 8 0xF8 Status Register; read-only value yields the
current state of each I2C channel.

Table 1-8 • Status Register Bit Fields

Bits Name Type Field Description

7:0 Status R Read-Only Status Code. Refer to Following Tables for Code Descriptions based on
Operating Mode.

Table 1-9 • Status Register – Master Transmitter Mode

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

0x08 A START condition
has been
transmitted.

Load SLA + W – 0 0 – SLA + W will be transmitted; ACK will be
received.

0x10 A repeated START
condition has been
transmitted.

Load SLA + W – 0 0 – SLA + W will be transmitted; ACK will be
received.

or load SLA + R – 0 0 – SLA + R will be transmitted; channel will be
switched to MST/REC mode.

0x18 SLA + W has been
transmitted; ACK has
been received.

Load data byte 0 0 0 – Data byte will be transmitted; ACK will be
received.

or no action 1 0 0 – Repeated START will be transmitted.

or no action 0 1 0 – STOP condition will be transmitted; sto
flag will be reset.

or no action 1 1 0 – STOP condition followed by a START
condition will be transmitted; sto flag will
be reset.

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
CoreI2C v6.0 21

Design Description
0x20 SLA + W has been
transmitted; NACK
has been received.

Load data byte 0 0 0 – Data byte will be transmitted; ACK will be
received.

or no action 1 0 0 – Repeated START will be transmitted.

or no action 0 1 0 – STOP condition will be transmitted; sto
flag will be reset.

or no action 1 1 0 – STOP condition followed by a START
condition will be transmitted; sto flag will
be reset.

0x28 Data byte in Data
Register has been
transmitted; ACK has
been received.

Load data byte 0 0 0 – Data byte will be transmitted; ACK bit will
be received.

or no action 1 0 0 – Repeated START will be transmitted.

or no action 0 1 0 – STOP condition will be transmitted; sto
flag will be reset.

or no action 1 1 0 – STOP condition followed by a START
condition will be transmitted; sto flag will
be reset.

0x30 Data byte in Data
Register has been
transmitted; NACK
has been received.

No action 1 0 0 – Repeated START will be transmitted.

or no action 0 1 0 – STOP condition will be transmitted; sto
flag will be reset.

or no action 1 1 0 – STOP condition followed by a START
condition will be transmitted; sto flag will
be reset.

0x38 Arbitration lost in
SLA + R/W or data
bytes.

No action 0 0 0 – The bus will be released; not-addressed
slave mode will be entered.

or no action 1 0 0 – A START condition will be transmitted
when the bus becomes free.

Table 1-9 • Status Register – Master Transmitter Mode (continued)

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
22 CoreI2C v6.0

Register Map and Descriptions
0xD0 SMB_EN = 1:

SMBus Master Reset
has been activated.

No action – – – – Wait 35 ms for interrupt to be set, clear
interrupt and proceed to 0xF8 state.

Only valid when SMB_EN = 1.

0xD8 IPMI_EN = 1:

3 ms SCL low time
has been reached.

No action – – 0 – 3 ms SCL low time has been reached.

Only valid when IPMI_EN = 1.

Table 1-9 • Status Register – Master Transmitter Mode (continued)

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
CoreI2C v6.0 23

Design Description
Table 1-10 • Status Register – Master Receiver Mode

Status
Code Status

APB Config.
Register Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

0x08 A START condition has
been transmitted.

Load SLA + R – 0 0 – SLA + R will be transmitted; ACK will be
received.

0x10 A repeated START
condition has been
transmitted.

Load SLA + R – 0 0 – SLA + R will be transmitted; ACK will be
received.

or load SLA + W – 0 0 – SLA + W will be transmitted; CoreI2C
will be switched to MST/TRX mode.

0x38 Arbitration lost. No action 0 0 0 – The bus will be released; CoreI2C will
enter slave mode.

or no action 1 0 0 – A start condition will be transmitted
when the bus becomes free.

0x40 SLA + R has been
transmitted; ACK has
been received.

No action 0 0 0 0 Data byte will be received; NACK will be
returned.

or no action 0 0 0 1 Data byte will be received; ACK will be
returned.

0x48 SLA + R has been
transmitted; NACK has
been received.

No action 1 0 0 – Repeated START condition will be
transmitted.

or no action 0 1 0 – STOP condition will be transmitted; sto
flag will be reset.

or no action 1 1 0 – STOP condition followed by a START
condition will be transmitted; sto flag
will be reset.

0x50 Data byte has been
received; ACK has
been returned.

Read data byte 0 0 0 0 Data byte will be received; NACK will be
returned.

or read data
byte

0 0 0 1 Data byte will be received; ACK will be
returned.

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
24 CoreI2C v6.0

Register Map and Descriptions
0x58 Data byte has been
received; NACK has
been returned.

Read data byte 1 0 0 – Repeated START condition will be
transmitted.

or read data
byte

0 1 0 – STOP condition will be transmitted; sto
flag will be reset.

or read data
byte

1 1 0 – STOP condition followed by a START
condition will be transmitted; sto flag
will be reset.

0xD0 SMB_EN = 1:

SMBus Master Reset
has been activated.

No Action – – 0 – Wait 35 ms for interrupt to be set; clear
interrupt and proceed to 0xF8 state.

Only valid when SMB_EN = 1.

0xD8 IPMI_EN = 1:

3 ms SCL low time has
been reached.

No action – – 0 – 3 ms SCL low time has been reached.

Only valid when IPMI_EN = 1.

Table 1-10 • Status Register – Master Receiver Mode (continued)

Status
Code Status

APB Config.
Register Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
CoreI2C v6.0 25

Design Description
Table 1-11 • Status Register – Slave Receiver Mode

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

0x60 Own SLA + W has
been received; ACK
has been returned.

No action – 0 0 0 Data byte will be received and NACK
will be returned.

or no action – 0 0 1 Data byte will be received and ACK will
be returned.

0x68 Arbitration lost in
SLA + R/W as master;
own SLA + W has
been received, ACK
returned.

No action – 0 0 0 Data byte will be received and NACK
will be returned.

or no action – 0 0 1 Data byte will be received and ACK will
be returned.

0x70 General call address
(00H) has been
received; ACK has
been returned.

No action – 0 0 0 Data byte will be received and NACK
will be returned.

or no action – 0 0 1 Data byte will be received and ACK will
be returned.

0x78 Arbitration lost in
SLA + R/W as master;
general call address
has been received,
ACK returned.

No action – 0 0 0 Data byte will be received and NACK
will be returned.

or no action – 0 0 1 Data byte will be received and ACK will
be returned.

0x80 Previously addressed
with own SLV
address; DATA has
been received; ACK
returned.

Read data byte – 0 0 0 Data byte will be received and NACK
will be returned.

or read data
byte

– 0 0 1 Data byte will be received and ACK will
be returned.

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
26 CoreI2C v6.0

Register Map and Descriptions
0x88 Previously addressed
with own SLA; DATA
byte has been
received; NACK
returned

Read data byte 0 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address.

or read data
byte

0 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized.

or read data
byte

1 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address; START condition will be
transmitted when the bus becomes
free.

or read data
byte

1 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes
free.

0x90 Previously addressed
with general call
address; DATA has
been received; ACK
returned.

Read data byte – 0 0 0 Data byte will be received and NACK
will be returned

or read data
byte

– 0 0 1 Data byte will be received and ACK will
be returned.

Table 1-11 • Status Register – Slave Receiver Mode (continued)

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
CoreI2C v6.0 27

Design Description
0x98 Previously addressed
with general call
address; DATA has
been received; NACK
returned.

Read data byte 0 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address.

or read data
byte

0 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized.

or read data
byte

1 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address; START condition will be
transmitted when the bus becomes
free.

or read data
byte

1 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes
free.

0xA0 A STOP condition or
repeated START
condition has been
received.

No action 0 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address.

or no action 0 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized.

or no action 1 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address; START condition will be
transmitted when the bus becomes
free.

or no action 1 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes
free.

Table 1-11 • Status Register – Slave Receiver Mode (continued)

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
28 CoreI2C v6.0

Register Map and Descriptions
0xD8 SMB_EN = 1:

25 ms SCL low time
has been reached;
device must be reset.

no action – – 0 – Slave must proceed to reset state by
clearing the interrupt within 10 ms,
according to SMBus Specification 2.0.

Only valid when SMB_EN = 1.

0xD8 IPMI_EN = 1:

3 ms SCL low time has
been reached.

no action – – 0 – 3 ms SCL low time has been reached.

Only valid when IPMI_EN = 1.

Table 1-11 • Status Register – Slave Receiver Mode (continued)

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
CoreI2C v6.0 29

Design Description
Table 1-12 • Status Register – Slave Transmitter Mode

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

0xA8 Own SLA + R has been
received; ACK has been
returned

Load data byte – 0 0 0 Last data byte will be transmitted;
ACK will be received.

or load data byte – 0 0 1 Data byte will be transmitted; ACK
will be received.

0xB0 Arbitration lost in
SLA + R/W as master;
own SLA + R has been
received; ACK has been
returned.

Load data byte – 0 0 0 Last data byte will be transmitted;
ACK will be received.

or load data byte – 0 0 1 Data byte will be transmitted; ACK
will be received.

0xB8 Data byte has been
transmitted; ACK has
been received.

Load data byte – 0 0 0 Last data byte will be transmitted;
ACK will be received.

or load data byte – 0 0 1 Data byte will be transmitted; ACK
will be received.

0xC0 Data byte has been
transmitted; NACK has
been received.

No action 0 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address.

or no action 0 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address will be recognized.

or no action 1 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address; START
condition will be transmitted when
the bus becomes free.

or no action 1 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address will be recognized; START
condition will be transmitted when
the bus becomes free.

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
30 CoreI2C v6.0

Register Map and Descriptions
0xC8 Last data byte has
transmitted; ACK has
received.

No action 0 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address.

or no action 0 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address will be recognized.

or no action 1 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address; START
condition will be transmitted when
the bus becomes free.

or no action 1 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address will be recognized; START
condition will be transmitted when
the bus becomes free.

0xA0 A STOP condition or
repeated START
condition has been
received.

No action 0 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address.

or no action 0 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address will be recognized.

or no action 1 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address; START
condition will be transmitted when
the bus becomes free.

or no action 1 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address will be recognized; START
condition will be transmitted when
the bus becomes free.

Table 1-12 • Status Register – Slave Transmitter Mode (continued)

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
CoreI2C v6.0 31

Design Description
0xD8 SMB_EN = 1:

25 ms SCL low time has
been reached; device
must be reset.

no action – – 0 – Slave must proceed to reset state by
clearing the interrupt within 10 ms,
according to SMBus Specification
2.0.

Only valid when SMB_EN = 1.

0xD8 IPMI_EN = 1:

3 ms SCL low time has
been reached.

no action – – 0 – 3 ms SCL low time has been
reached.

Only valid when IPMI_EN = 1.

Table 1-13 • Status Register – Miscellaneous States

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

0x38 Arbitration lost No action 0 0 0 – Bus will be released.

or no action 1 0 0 – A start condition will be transmitted
when the bus becomes free.

0xF8 No relevant state
information
available; si = 0

No Action No Action Idle

0x00 Bus error during
MST or selected
slave modes.

No action 0 1 0 – Only the internal hardware is affected in
the MST or addressed SLV modes. In all
cases, the bus is released and the state
switched in non-addressed slave mode.
Stop Flag is reset.

Table 1-12 • Status Register – Slave Transmitter Mode (continued)

Status
Code Status

Data Register
Action

Control Register
Bits

Next Action Taken by I2C Channelsta sto si aa

Notes:

1. SLA = slave address

2. SLV = slave

3. REC = receiver

4. TRX = transmitter

5. SLA + W = Master sends slave address, then writes data to slave.

6. SLA + R = Master sends slave address, then reads data from slave.
32 CoreI2C v6.0

Register Map and Descriptions
Data Register
The Data Register (Table 1-14) contains a byte of serial data to be transmitted or a byte that has
just been received. The APB controller can read from and write to this 8-bit, directly addressable
register while it is not in the process of shifting a byte (i.e., after an interrupt has been generated).

The bit description in Table 1-15 is listed in both data context and addressing context. Data context
is the 8-bit data format from MSB to LSB. Addressing context is based on a Master sending an
address call to a Slave on the bus, along with a direction bit (i.e., Master transmit data or receive
data from a Slave).

Table 1-14 • Data Register

PADDR[4:0] Register Name Type Width
Reset
Value Description

0x08 DATA R/W 8 0x00 Data Register; read/write data to/from the serial
IF.

Table 1-15 • Data Register Bit Fields

Bits Name Type Data Context Description Addressing Context Description

7 sd7 R/W Serial data bit 7 (MSB) Serial address bit 6 (MSB)

6 sd6 R/W Serial data bit 6 Serial address bit 5

5 sd5 R/W Serial data bit 5 Serial address bit 4

4 sd4 R/W Serial data bit 4 Serial address bit 3

3 sd3 R/W Serial data bit 3 Serial address bit 2

2 sd2 R/W Serial data bit 2 Serial address bit 1

1 sd1 R/W Serial data bit 1 Serial address bit 0 (LSB)

0 sd0 R/W Serial data bit 0 (LSB) Direction bit: 0 = write; 1 = read
CoreI2C v6.0 33

Design Description
SLAVE0 Address Register
The SLAVE0 Address Register (ADDR0, Table 1-16 and Table 1-17) is a read/write directly accessible
register.

If the parameter FIXED_SLAVE0_ADDR_EN is enabled, the register is read-only.

Table 1-16 • Slave0 Address Register

PADDR [4:0] Register Name Type Width
Reset
Value Description

0x0C ADDR0 R/W 8 0x00 Slave0 Address Register; contains the
programmable Slave0 address of all channels.

Note: The Slave0 Address Register is a single
register that is used in all channels.

Table 1-17 • Slave0 Address Register Bit Fields

Bits Name Type Description

7 adr6 R/W Own SLAVE0 address bit 6

6 adr5 R/W Own SLAVE0 address bit 5

5 adr4 R/W Own SLAVE0 address bit 4

4 adr3 R/W Own SLAVE0 address bit 3

3 adr2 R/W Own SLAVE0 address bit 2

2 adr1 R/W Own SLAVE0 address bit 1

1 adr0 R/W Own SLAVE0 address bit 0

0 gc R/W General Call Address Acknowledge. If the gc bit is set, the general call address
is recognized; otherwise it is ignored.
34 CoreI2C v6.0

Register Map and Descriptions
Optional SMBus/IPMI Register
The SMBus Register contains specific SMBus related functionality and is Read- or Write-able as
defined in Table 1-19 on page 1-35. Configuration register for SMBus timeout reset condition and
for the optional SMBus signals SMBALERT_N and SMBSUS_N. If IPMI mode is selected, then this
register reduces to one enables/disables 3 ms IPMI SCL Low timeout.

Table 1-18 • SMBus/IPMI Register

PADDR[4:0]
Register
Name Type Width Reset Value Description

0x10 SMB R/W 8 0b01X1X000 SMBus or IPMI Register

SMBus Context: Configuration register for SMBus
timeouts and reset condition and for the optional
SMBus signals SMBALERT_N and SMBSUS_N.

IPMI Context: Enable/Disable IPMI SCL low timeout

Table 1-19 • SMBus/IPMI Register Bit Fields

Bits Name Type
SMBus Context
(SMB_EN = 1)

IPMI Context
(IPMI_EN = 1)

7 SMBus_Reset W Writing a one to this bit will force the clock line low
until 35 ms has been exceeded, thus resetting the entire
bus as per the SMBus Specification Version 2.0.

Usage: When the channel is used as a host controller
(master), the user can decide to reset the bus by holding
the clock line low 35ms. Slaves must react to this event
and reset themselves.

Not used.

6 SMBSUS_NO R/W R/W SMBSUS_NO control bit; used in master/host mode
to force other devices into power down / suspend mode.
Active low.

SMBSUS_NO and SMBSUS_NI are separate signals (not
Wired-AND). If the CoreI2C is part of a host-controller,
SMBSUS_NO could be used as an output; if CoreI2C is a
slave to a host-controller that has implemented
SMBSUS_N, then only SMBSUS_NI’s status would be
relevant.

Not used.

5 SMBSUS_NI R Read-only status of SMBSUS_NI signal.

SMBSUS_NO and SMBSUS_NI are separate signals (not
Wired-AND). If the CoreI2C is part of a host-controller,
SMBSUS_NO could be used as an output; if CoreI2C is a
slave to a host-controller that has implemented
SMBSUS_N, then only SMBSUS_NI’s Status would be
relevant.

Not used.

4 SMBALERT_NO R/W Read/Write SMBALERT_NO control bit; used in
slave/device mode to force communication with the
master/host. Wired-AND.

Not used.

3 SMBALERT_NI R Read-only Status of SMBALERT_NI signal. Wired-AND. Not used.
CoreI2C v6.0 35

Design Description
2 SMB_IPMI_EN R/W 0: SMBus timeouts and status logic disabled, i.e.,
standard I2C bus operation;

1: SMBus timeouts and status logic enabled.

0: IPMI timeout
and status logic
disabled, i.e.,
standard I2C bus
operation;

1: IPMI timeout
and status logic
enabled.

1 SMBSUS_IE R/W 0: SMBSUS Interrupt signal (SMBS) disabled.

1: SMBSUS Interrupt signal (SMBS) enabled.

Not Used.

0 SMBALERT_IE R/W 0: SMBSUS Interrupt signal (SMBA) disabled.

1: SMBSUS Interrupt signal (SMBA) enabled.

Not Used.

Table 1-19 • SMBus/IPMI Register Bit Fields

Bits Name Type
SMBus Context
(SMB_EN = 1)

IPMI Context
(IPMI_EN = 1)
36 CoreI2C v6.0

Register Map and Descriptions
Optional SLAVE1 Address Register
The SLAVE1 Address Register (ADDR1, Table 1-20 and Table 1-21) is an 8-bit read/write directly
accessible register with two separate contexts depending on parameter configuration.

Note: If the parameter FIXED_SLAVE1_ADDR_EN is enabled, the register is read-only.

Table 1-20 • Slave1 Address Register

PADDR[4:0] Register Name Type Width
Reset
Value Description

0x1C ADDR1 R/W 8 0x00 Slave1 Address Register; contains the programmable
Slave1 address of all channels. When this Slave1
address is enabled yet fixed, the register will have a
R/W bit to enable/disable Slave1 comparisons.

Note: The Slave1 Address Register is a single register
that is used in all channels.

Table 1-21 • Slave1 Address Register Bit Fields

Bits Name Type

Enabled, APB accessible SLAVE1 Context
(ADD_SLAVE1_ADDRESS_EN = 1 AND

FIXED_SLAVE1_ADDR_EN = 0)

Enabled, Fixed SLAVE1 Context
(ADD_SLAVE1_ADDRESS_EN = 1 AND

FIXED_SLAVE1_ADDR_EN = 1)

7 adr6 R/W Own SLAVE1 address bit 6 Not Used.

6 adr5 R/W Own SLAVE1 address bit 5 Not Used.

5 adr4 R/W Own SLAVE1 address bit 4 Not Used.

4 adr3 R/W Own SLAVE1 address bit 3 Not Used.

3 adr2 R/W Own SLAVE1 address bit 2 Not Used.

2 adr1 R/W Own SLAVE1 address bit 1 Not Used.

1 adr0 R/W Own SLAVE1 address bit 0 Not Used.

0 GC_or_EnAdr R/W

General Call Address Acknowledge. If the
gc bit is set, the general call address is
recognized; otherwise it is ignored.

1: Enable the Fixed SLAVE1 Address
comparisons.

0: Disable SLAVE1 Address
comparisons.
CoreI2C v6.0 37

2 – Tool Flows

CoreI2C is licensed in two ways. Depending on your license tool flow, functionality may be limited.

Obfuscated
Complete RTL code is provided for the core, allowing the core to be instantiated with SmartDesign.
Simulation, Synthesis, and Layout can be performed within Libero® Integrated Design Environment
(IDE). The RTL code for the core is obfuscated1 and some of the testbench source files are not
provided; they are precompiled into the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

SmartDesign
CoreI2C (Figure 2-1) is preinstalled in the SmartDesign IP Deployment design environment.

The core can be configured using the configuration GUI within SmartDesign, as shown in Figure 2-2
on page 2-40. Callouts to associated parameters are shown in red.

For information on using SmartDesign to instantiate and generate cores, refer to the Using
DirectCore in Libero® IDE User's Guide.

1. Obfuscated means the RTL source files have had formatting and comments removed, and all instance and net names
have been replaced with random character sequences.

Figure 2-1 • CoreI2C Full I/O View
CoreI2C v6.0 39

http://www.actel.com/documents/directcore_in_libero_tutorial_ug.pdf
http://www.actel.com/documents/directcore_in_libero_tutorial_ug.pdf

Tool Flows
Figure 2-2 • CoreI2C SmartDesign Configuration with Callouts to Associated Parameters

I2C_NUM

OPERATING_MODE

SMB_EN

IPMI_EN

FREQUENCY

FIXED_BAUD_RATE FIXED_BAUD_RATE_VALUE

BCLK_ENABLED

FIXED_SLAVE0_ADDR_EN

FIXED_SLAVE0_ADDR_VALUE

ADD_SLAVE1_ADDR_EN

FIXED_SLAVE1_ADDR_EN

FIXED_SLAVE1_ADDR_VALUE

GLITCHREG_NUM
40 CoreI2C v6.0

Simulation Flows
Simulation Flows
The User Testbench for CoreI2C is included in all releases.

To run simulations, select the User Testbench flow within SmartDesign and click Save & Generate
on the Generate pane. The User Testbench is selected through the Core Testbench Configuration
GUI.

When SmartDesign generates the Libero IDE project, it will install the user testbench files.

To run the user testbench, set the design root to the CoreI2C instantiation in the Libero IDE design
hierarchy pane and click the Simulation icon in the Libero IDE Design Flow window. This will invoke
ModelSim® and automatically run the simulation.

User Testbench
As shown in Figure 2-3, two instantiations of the CoreI2C macro are connected to an I2C bus. The
second coreI2C instance is configured in multi-channel mode and uses the 13th channel. The top-
level test bench (tb_user_corei2c) includes the open drain (WIRED-AND) connections. The testbench
utilizes simple APB read/write function calls to initialize each module and send example transmit
bytes from instance0 to instance1 across the I2C serial bus. After each transmission, APB read
checks are performed to verify valid byte transfers.

Note: The user testbench does not import the user’s own configuration parameters; only a single
suite of predefined parameters are tested, some of which my be altered directly in the
tb_user_corei2c.v or tb_user_corei2c.vhd file..

Synthesis in Libero IDE:
Having set the design route appropriately, click the Synthesis icon in Libero IDE. The Synthesis
window appears, displaying the Synplicity® project. Set Synplicity to use the Verilog 2001 standard
if Verilog is being used. To run Synthesis, select the Run icon.

Place-and-Route in Libero IDE
Having set the design route appropriately and run Synthesis, click the Layout icon in the Libero IDE
to invoke Designer. CoreI2C requires no special place-and-route settings.

Figure 2-3 • CoreI2C User Testbench

CoreI2C CoreI2C

Open
Drain

Open
Drain

Open
Drain

Open
Drain

APB Read/Write
Function Calls

VDD VDD

APB Read/Write
Function Calls

User Testbench:
tb_user_corei2c

SCL

SDA
CoreI2C v6.0 41

3 – Example Application and Hints

This chapter provides various hints to ease the process of implementation and integration of
CoreI2C into your own design.

Software Driver
Drivers for CoreI2C are available via the Firmware Catalog tool provided with Libero IDE. For more
information about the Firmware Catalog, refer to the Actel web site:
www.actel.com/products/software/firmwarecat/default.aspx.

Usage with Cortex-M1
CoreI2C may be used with Cortex-M1, Actel’s soft IP version of the popular ARM7TDMI-S™
microprocessor that has been optimized for the M1 Fusion flash-based FPGA devices. To create a
design using Cortex-M1, internal flash memory, and CoreI2C, you should use the SmartDesign
Intellectual Property Deployment Platform (IDP) software. Refer to the SmartDesign User’s Guide
on how to create your Cortex-M1–based design.

Hints on I/O Pad Requirements
The I2C, SMBus, and PMBus Specifications set minimum and maximum I/O buffer and pad
requirements based on type of implementation.

Figure 3-1 • Example System Using Cortex-M1 with CoreI2C in a Two Channel Configuration
CoreI2C v6.0 43

http://www.actel.com/documents/smartdesign_ug.pdf
http://www.actel.com/products/software/firmwarecat/default.aspx

Example Application and Hints
CoreI2C can be used for all these potential applications, as long as the I/O buffer/pads are
configured to comply with the specific I2C or SMBus requirements. Typically, for 100 Kbps
operation, standard default I/O buffer values are okay. For 400 kbps operation however, tighter
buffer constraints may be necessary to fully conform to a given I2C/SMBus/PMBus requirement.
Refer to electrical characteristics for each specification type to correctly program the I/O pads:

I2C Specifications at http://www.i2c-bus.org/

SMBus Specifications at http://smbus.org/specs/

PMBus Specifications at http://pmbus.org/specs.html

Hints on Configuring WIRED-AND Bidirectional Buffers in RTL
For an example on how to connect the WIRED-AND bidirectional SCL and SDA outputs in a design,
refer to the Verilog tb_user_corei2c.v and/or the VHDL tb_user_corei2c.vhd RTL user testbench.

Hints on Meeting SMBus/PMBus Timing Requirements
Refer to the "Serial Interface" section on page 1-14 for specific PCLK requirements necessary to
adhere to SMBus and PMBus specifications.
44 CoreI2C v6.0

http://www.i2c-bus.org/
http://smbus.org/specs/
http://pmbus.org/specs.html

4 – List of Document Changes

The following table lists critical changes that were made in the current version of the document.

Previous
Version Changes in Current Document Version (50200090-5) Page

50200090-4
(November
2009)

The "Core Version" was updated to v6.0 and the "Core Overview" section was
updated to include information about the multiple I2C channel configuration option.

5

The utilization tables were updated. 6

Signals and parameters in the "Design Description" section were updated in text and
figures for multiple I2C channel functionality.

11

Figure 1-4 • Data Read Cycle was updated. 14

The "Optional SMBus/IPMI Logic" section is new. 16

Table 1-4 • CoreI2C Internal Register Address Map was updated. 19

Table 1-6 • Control Register Bit Fields was updated for R/W properties. 20

Table 1-16 • Slave0 Address Register was updated for R/W properties. 34

Table 1-20 • Slave1 Address Register was updated for R/W properties. 37

The "Obfuscated" section was updated for SmartDesign. 39

Figure 2-1 • CoreI2C Full I/O View is new and Figure 2-2 • CoreI2C SmartDesign
Configuration with Callouts to Associated Parameters was updated.

39, 40

The "Simulation Flows" section was updated for SmartDesign. 41

The "User Testbench" section was updated for the multiple I2C channel configuration. 41

Removed Ordering Information Section N/A

Figure 3-1 • Example System Using Cortex-M1 with CoreI2C in a Two Channel
Configuration was updated

43

50200090-3 The "Core Version" was updated to v5.0. Text, figures, signal names,
parameters/generics, and register maps and descriptions have been revised
accordingly.

N/A

CoreMP7 references were removed and replaced with Cortex-M1. N/A

"Ordering Codes" have been included. 43

50200090-2 The CoreI2C Handbook and CoreSMBus Handbook have been condensed and
combined into the current document.

N/A

50200090-1 The “Supported Device Families” section was added. 5

The "APB Interface" section was updated to include the Cortex-M1 processor. 14

The “Use with Core8051s” section was updated to change Core8051 to Core8051s. 34

50200090-0 The data transfer rate and the SLAVE_EN_ONLY parameter for Master receiver mode
were updated in the "Key Features" section section.

5

Figure 1-5 • CoreI2C Block Diagram (single channel) was updated. 15

The first two paragraphs of the “I2C Serial Interface” section were updated. 16
CoreI2C v6.0 45

List of Document Changes
Figure 1-1 • CoreI2C I/O Signal Diagram was updated to remove the BCLK signal. 11

Figure 1-3 • Data Write Cycle was updated to change the signal PRDATA to PWDATA. 14

The second table note, which stated the clock rate frequency of 100 Kbps should not
be exceeded, was removed from Table 1-5 • Control Register.

20

Previous
Version Changes in Current Document Version (50200090-5) Page
46 CoreI2C v6.0

A – Product Support

Actel backs its products with various support services including Customer Service, a Customer
Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center
spends a great deal of time creating application notes and answers to FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include
diagrams, illustrations, and links to other resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 a.m. to 6:00 p.m., Pacific Time,
Monday through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by
email, fax, or phone. Also, if you have design problems, you can email your design files to receive
assistance. We constantly monitor the email account throughout the day. When sending your
request to us, please be sure to include your full name, company name, and your contact
information for efficient processing of your request.
CoreI2C v6.0 47

http://www.actel.com/support/search/default.aspx
http://www.actel.com

Product Support
The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name,
company name, phone number and your question, and then issues a case number. The Center then
forwards the information to a queue where the first available application engineer receives the
data and returns your call. The phone hours are from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday
through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via
email (tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/company/contact/default.aspx.
48 CoreI2C v6.0

mailto:tech@actel.com
http://www.actel.com/company/contact/default.aspx

Index
Index

A
Actel

electronic mail 47
telephone 48
web-based technical support 47
website 47

address comparator 16
APB interface 14
arbitration logic 15

B
buffers, bidirectional 44
buffers, WIRED-AND 44

C
channel pointer addressing 19
channels, I2C 12
configuration example 9
contacting Actel

customer service 47
electronic mail 47
telephone 48
web-based technical support 47

Control Register 20
CoreABC 9
CoreI2C

features 5
version 5

Cortex-M1 9
example use 43

customer service 47

D
Data Register 33
data transfer cycle 14

F
filters

input glitch 15
input spike 15

functional block description 15

I
I/O full view 39
I/O pad requirements 43
I/O signal descriptions 11
I2C channels 12
interfaces supported 5
IPMI logic 16

L
layout 41

M
modes, I2C operating 17
multiple channel configuration 5

O
obfuscated 39
operation details 17
Optional SLAVE1 Address Register 37
Optional SMBus/IPMI Register 35

P
performance 6
place-and-route 41
port signals 11
product support 48

customer service 47
electronic mail 47
technical support 47
telephone 48
website 47

R
read cycle 14
register map 19
RTL 39

S
SCL line 14
serial clock generator 16
serial interface 14
serial interface byte transfer 14
simulation flows 41
slave mode example 17
SLAVE0 Address Register 34
SmartDesign 39
SMBus

clock low reset example 18
temperature sensor slave 9

SMBus logic 16
SMBus reset 18
software driver 43
Status Register 21

Master Receiver Mode 24
Master Transmitter Mode 21
miscellaneous states 32
Slave Receiver Mode 26
Slave Transmitter Mode 30

synchronization logic 15
CoreI2C v6.0

Index
synthesis 41

T
technical support 47
timing requirements 44

U
utilization 6

V
Verilog parameters 12
VHDL generics 12

W
web-based technical support 47
write cycle 14
CoreI2C v6.0

Ac

20
Mo
94
Ph
Fa

Ac o
of
tel Corporation

61 Stierlin Court
untain View, CA

043-4655 USA
one 650.318.4200
x 650.318.4600

Actel Europe Ltd.

River Court,Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Buillding 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn

tel is the leader in low-power FPGAs and mixed-signal FPGAs and offers the most comprehensive portfoli
 system and power management solutions. Power Matters. Learn more at www.actel.com.

Actel, IGLOO, Actel Fusion, ProASIC, Libero, Pigeon Point and the associated logos are trademarks or registered
trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.
50200090-5/11.09

http://jp.actel.com
http://www.actel.com.cn
http://www.actel.com

