
8-pin FLASH

PIC® Microcontrollers

Outperform the Competition

Tips ‘n Tricks

Table of Contents

Tips ‘n Tricks
Tips ‘n Tricks With Hardware

TIP #1 Dual Speed RC Oscillator 2

TIP #2 Input/Output Multiplexing.............................. 3

TIP #3 Read Three States From One Pin 4

TIP #4 Reading DIP Switches.................................. 5

TIP #5 Scanning Many Keys With One Input........... 6

TIP #6 Scanning Many Keys and

Wake-up From Sleep 8

TIP #7 8x8 Keyboard with 1 Input...........................10

TIP #8 One Pin Power/Data.................................... 11

TIP #9 Decode Keys and ID Settings12

TIP #10 Generating High Voltages13

TIP #11 VDD Self Starting Circuit.............................14

TIP #12 Using PIC® MCU A/D For Smart

Current Limiter...15

TIP #13 Reading A Sensor With Higher

Accuracy..16

TIP #13 Reading A Sensor With Higher

Accuracy – RC Timing Method..................17

TIP #13 Reading A Sensor With Higher

Accuracy – Charge Balancing Method20

TIP #13 Reading A Sensor With Higher

Accuracy – A/D Method.............................22

TIP #14 Delta Sigma Converter24
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=á

Tips ‘n Tricks
Tips 'n Tricks With Software

TIP #15 Delay Techniques28

TIP #16 Optimizing Destinations.............................30

TIP #17 Conditional Bit Set/Clear31

TIP #18 Swap File Register with W33

TIP #19 Bit Shifting Using Carry Bit34
apQMMQM_Jé~ÖÉ=áá =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIPS 'N TRICKS WITH HARDWARE

Microchip continues to provide innovative
products that are smaller, faster, easier to use and
more reliable. The 8-pin FLASH PICmicro®
microcontrollers (MCU) are used in an wide range
of everyday products, from toothbrushes, hair
dryers and rice cookers to industrial, automotive
and medical products.

The PIC12F629/675 MCUs merge all the
advantages of the PICmicro MCU architecture and
the flexibility of FLASH program memory into an
8-pin package. They provide the features and
intelligence not previously available due to cost
and board space limitations. Features include a
14-bit instruction set, small footprint package, a
wide operating voltage of 2.0 to 5.5 volts, an
internal programmable 4 MHz oscillator, on-board
EEPROM data memory, on-chip voltage reference
and up to 4 channels of 10-bit A/D. The flexibility of
FLASH and an excellent development tool suite,
including a low-cost In-Circuit Debugger, In-Circuit
Serial Programming™ and MPLAB® ICE 2000
emulation, make these devices ideal for just about
any embedded control application.

The following series of Tips'n Tricks can be
applied to a variety of applications to help make
the most of the 8-pin dynamics.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=N

Tips ‘n Tricks
TIP #1 Dual Speed RC Oscillator

1. After reset I/O pin is High-Z

2. Output '1' on I/O pin

3. R1, R2 and C determine OSC frequency

4. Also works with additional capacitors

Frequency of PIC® MCU in external RC oscillator
mode depends on resistance and capacitance on
OSC1 pin. Resistance is changed by the output
voltage on GP0. GP0 output '1' puts R2 in parallel
with R1 reduces OSC1 resistance and increases
OSC1 frequency. GP0 as an input increases the
OSC1 resistance by minimizing current flow
through R2, and decreases frequency and power
consumption.

Summary:

GP0 = Input: Slow speed for low current

GP0 = Output high: High speed for fast processing

PIC12F6XX

OSC1

GP0

+5V

R2
R1

C

apQMMQM_Jé~ÖÉ=O =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #2 Input/Output Multiplexing

Individual diodes and some combination of diodes
can be enabled by driving I/Os high and low or
switching to inputs (Z). The number of diodes (D)
that can be controlled depends on the number of
I/Os (GP) used.

The equation is: D = GP x (GP - 1).

Example – Six LEDs on three I/O pins

GPx LEDs

0 1 2

0 0 0

0 1 Z

1 0 Z

Z 0 1

Z 1 0

0 Z 1

1 Z 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 2 3 4 5 6

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 1 0

1 0 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

0 1 1 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

PIC12F6XX

1 2 5

43

6

GP0

GP1

GP2
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=P

Tips ‘n Tricks
TIP #3 Read Three States From One Pin

To check state Z:

• Drive output pin high

• Set to Input

• Read 1

• Drive output pin low

• Set to Input

• Read 0

To check state 0:

• Read 0 on pin

To check state 1:

• Read 1 on pin

Jumper has three possible states: not connected,
link 1 and link 0. The capacitor will charge and
discharge depending on the I/O output voltage
allowing the "not connected" state. Software
should check the "not connected" state first by
driving I/O high, reading 1 and driving I/O low and
reading 0. The "Link 1" and "Link 0" states are read
directly.

State Link0 Link1

0 closed open

1 open closed

 NC open open

PIC
I/O

5V

0V

Link 0

Link 1
apQMMQM_Jé~ÖÉ=Q =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #4 Reading DIP Switches

The input of a timer
can be used to test
which switch(s) is
closed. The input of
Timer 1 is held high
with a pull-up
resistor.
Sequentially, each
switch I/O is set to
input and Timer 1 is
checked for an
increment indicating
the switch is closed.

Each bit in the DP register represents its
corresponding switch position. By setting Timer 1
to FFFFh and enabling its interrupt, an increment
will cause a rollover and generate an interrupt.
This will simplify the software by eliminating the bit
test on the TMR1L register.

Sequentially set each GPIO to an input and test for
TMR1 increment (or 0 if standard I/O pin is used).

PIC12F6XX

GP0

GP1

GP2

GP3

GP5/T1CKI

10K

VDD

GP4Data I/O

movlw b'11111111'
movwf TRISIO

movwf DIP
movlw b'00000111'
movwf T1CON
movlw b'11111110'
movwf Mask
clrf GPIO

LOOP
clrf TMR1L
movf Mask,W
movwf TRISIO
btfsc TMR1L,0
andwf DIP,F
bsf STATUS,C
rlf Mask,F
btfsc Mask,4
goto Loop
retlw 0
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=R

Tips ‘n Tricks
TIP #5 Scanning Many Keys With

One Input

The time required to charge a capacitor depends
on resistance between VDD and capacitor. When a
button is pressed, VDD is supplied to a different
point in the resistor ladder. The resistance
between VDD and the capacitor is reduced, which
reduces the charge time of the capacitor. A timer
is used with a comparator or changing digital input
to measure the capacitor charge time. The charge
time is used to determine which button is pressed.

Software sequence:

1. Configure GP2 to output a low voltage to
discharge capacitor through I/O resistor.

2. Configure GP2 as one comparator input and
CVREF as the other.

3. Use a timer to measure when the comparator
trips. If the time measured is greater than the
maximum allowed time, then repeat; otherwise
determine which button is pressed.
apQMMQM_Jé~ÖÉ=S =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #5 Scanning Many Keys With

One Input (Cont.)

When a key is pressed, the voltage divider network
changes the RC ramp rate.

See AN512 Implementing Ohmmeter/

Temperature Sensor for code ideas.

PIC12F6XX

GP0

GP1

GP2

GP4

GP5

GP3

16

Resistors

220 Ohm

R

R

R

R

=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=T

Tips ‘n Tricks
TIP #6 Scanning Many Keys and

Wake-up From Sleep

An additional I/O can be added to wake the part
when a button is pressed. Prior to sleep, configure
GP1 as an input with interrupt-on-change enabled
and GP2 to output high. The pull-down resistor
holds GP1 low until a button is pressed. GP1 is
then pulled high via GP2 and VDD generating an
interrupt. After wake-up, GP2 is configured to
output low to discharge the capacitor through the
220 Ohm resistor. GP1 is set to output high and
GP2 is set to an input to measure the capacitor
charge time.

• GP1 pin connected to key common

• Enable wake-up on port change

• Set GP1 as input and GP2 high prior to sleep

• If key is pressed the PIC® MCU wakes up, GP2
must be set low to discharge capacitor

• Set GP1 high upon wake-up to scan keystroke
apQMMQM_Jé~ÖÉ=U =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #6 Scanning Many Keys and

Wake-up From Sleep (Cont.)

VDD

PIC12F6XX

GP0

GP1

GP2

GP4

GP5

GP3

16

Resistors

220 Ohm

R

R

R

R

100R
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=V

Tips ‘n Tricks
TIP #7 4x4 Keyboard with 1 Input

By carefully selecting the resistor values, each
button generates a unique voltage. This voltage is
measured by the A/D to determine which button is
pressed. Higher precision resistors should be
used to maximize voltage uniqueness. The A/D
will read near 0 when no buttons are pressed.

VDD

PIC12F6XX

GP0
apQMMQM_Jé~ÖÉ=NM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #8 One Pin Power/Data

A single I/O can be used for both a single-direction
communication and the power source for another
microcontroller. The I/O line is held high by the
pull-up resistor connected to VDD. The sender
uses a pull-down transistor to pull the data line low
or disables the transistor to allow the pull-up to
raise it to send data to the receiver. VDD is supplied
to the sender through the data line. The capacitor
stabilizes the sender's VDD and a diode prevents
the capacitor from discharging through the I/O line
while it is low. Note that the VDD of the sender is a
diode-drop lower than the receiver.

Receiver

VDD - 0.7V
VDDVDD

GP0 GP0

Sender
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=NN

Tips ‘n Tricks
TIP #9 Decode Keys and ID Settings

Buttons and jumpers can share I/O's by using
another I/O to select which one is read. Both
buttons and jumpers are tied to a shared pull-down
resistor. Therefore, they will read as '0' unless a
button is pressed or a jumper is connected. Each
input (GP3/2/1/0) shares a jumper and a button.
To read the jumper settings, set GP4 to output
high and each connected jumper will read as '1' on
its assigned I/O or '0' if it’s not connected. With
GP4 output low, a pressed button will be read as
'1' on its assigned I/O and '0' otherwise.

• When GP4 = 1 and no keys are pressed, read
ID setting

• When GP4 = 0, read the switch buttons

VDD

GP0

GP1

GP2

GP3

GP4
apQMMQM_Jé~ÖÉ=NO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #10 Generating High Voltages

Voltages greater than VDD can be generated using
a toggling I/O. PIC® MCUs CLKOUT/OSC2 pin
toggles at one quarter the frequency of OSC1
when in external RC oscillator mode. When OSC2
is low, the VDD diode is forward biased and
conducts current, thereby charging Cpump. After
OSC2 is high, the other diode is forward biased,
moving the charge to Cfilter. The result is a charge
equal to twice the VDD minus two diode drops. This
can be used with a PWM, a toggling I/O or other
toggling pin.

PIC12F6XX

w/RC

CLKOUT

Cpump

VDD

Cfilter

CLKOUT

VOUT max = 2 * VDD - 2 * Vdiode
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=NP

Tips ‘n Tricks
TIP #11 VDD Self Starting Circuit

Building on the previous topic, the same charge
pump can be used by the MCU to supply its own
VDD. Before the switch is pressed, VBAT has power
and the VDD points are connected together but
unpowered. When the button is pressed, power is
supplied to VDD and the MCUs CLKOUT (in
external RC oscillator mode) begins toggle. The
voltage generated by the charge pump turns on
the FET allowing VDD to remain powered. To
power down the MCU, execute a SLEEP
instruction. This allows the MCU to switch off its
power source via software.

Advantages:

• PIC® MCU leakage current nearly 0

• Low cost (uses n-channel FET)

• Reliable

• No additional I/O pins required
•

PIC12F6XX

VDD

CLKOUT

VDD

VDD

VDD

VBAT
apQMMQM_Jé~ÖÉ=NQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #12 Using PIC® MCU A/D For Smart

Current Limiter

• Detect current through low side sense resistor

• Optional peak filter capacitor

• Varying levels of overcurrent response can be
realized in software

By adding a resistor (Rsense) in series with a
motor, the A/D can be used to measure in-rush
current, provide current limiting, over-current
recovery or work as a smart circuit breaker. The
10K resistor limits the analog channel current and
does not violate the source impedance limit of the
A/D.

W

PIC12F6XX

10K

AN0

Rsense

Load or Motor
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=NR

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy

1. RC timing method with reference resistor

2. Charge balancing method

3. A/D method

Sensors can be read directly with the A/D but in
some applications, factors such as temperature,
external component accuracy, sensor non-
linearity and/or decreasing battery voltage need to
be considered. In other applications, more than 10
bits of accuracy are needed and a slower sensor
read is acceptable. These next topics will cover
ways of dealing with these factors for getting the
most out of a PIC® MCU.
apQMMQM_Jé~ÖÉ=NS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy – RC Timing Method

RC Timing Method:

Simple RC step response
Vc(t) = VDD * (1 - e -t/(RC))
t = -RC ln(1 - Vth/VDD)
Vth/VDD is constant
R2 = (t2/t1) * R1

A reference resistor can be used to improve the
accuracy of an analog sensor reading. In this
diagram, the charge time of a resistor/capacitor
combination is measured using a timer and a port
input or comparator input switches from a '0' to '1'.
The R1 curve uses a reference resistor and the R2
curve uses the sensor. The charge time of the R1
curve is known and can be used to calibrate the
unknown sensor reading, R2. This reduces the
affects of temperature, component tolerance and
noise while reading the sensor.

Time

Vc(t)

Vth

t = 0 t = t1 t = t2

R1
R2
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=NT

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy – RC Timing Method

(Cont.)

Application Notes:
AN512 Implementing Ohmmeter/Temperature

Sensor

AN611 Resistance and Capacitance Meter Using

a PIC16C622

Here is the schematic and software flow for using
a reference resistor to improve the accuracy of an
analog sensor reading. The reference resistor
(Rref) and sensor (Rsen) are assigned an I/O and
share a common capacitor. GP0 is used to
discharge the capacitor and represents the
capacitor voltage.

Through software, a timer is used to measure
when GP0 switches from a '0' to a '1' for the sensor
and reference measurements. Any difference
measured between the reference measurement
and its calibrated measurement is used to adjust
the sensor reading, resulting in a more accurate
measurement.

The comparator and comparator reference on the
PIC12F629/675 can be used instead of a port pin
for a more accurate measurement. Polypropylene
capacitors are very stable and beneficial in this
type of application.
apQMMQM_Jé~ÖÉ=NU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy – RC Timing Method

(Cont.)

1. Set GP1 and GP2 to inputs, and GP0 to a low
output to discharge C

2. Set GP0 to an input and GP1 to a high output

3. Measure tRsen (GP0 changes to 1)

4. Repeat step 1

5. Set GP0 to an input and GP2 to a high output

6. Measure tRref (GP0 changes to 1)

7. Use film polypropylene capacitor

8. Rth = x Rref tRsen
tRref

Other alternatives: voltage comparator in the
PIC12F6XX to measure capacitor voltage on GP0.

PIC12F629

GP0

GP1

GP2

Rref

Rsen
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=NV

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy – Charge Balancing

Method

1. Sensor charges a capacitor

2. Reference resistor discharges the capacitor

3. Modulate reference resistor to maintain
constant average charge in the capacitor

4. Use comparator to determine modulation

To improve resolution beyond 10 or 12 bits, a
technique called "Charge Balancing" can be use.
The basic concept is for the MCU to maintain a
constant voltage on a capacitor by either allowing
the charge to build through a sensor or discharge
through a reference resistor. A timer is used to
sample the capacitor voltage on regular intervals
until a predetermined number of samples are
counted. By counting the number of times the
capacitor voltage is over an arbitrary threshold, the
sensor voltage is determined. The comparator and
comparator voltage reference (CVref) on the
PIC12F629/675 are ideal for this application.
apQMMQM_Jé~ÖÉ=OM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy – Charge Balancing

Method (Cont.)

1. GP1 average voltage = CVref

2. Time base as sampling rate

3. At the end of each time base period:

- If GP1 > CVref, then GP2 Output Low

- If GP1 < CVref, then GP2 Input mode

4. Accumulate the GP2 lows over many samples

5. Number of samples determines resolution

6. Number of GP2 lows determine effective duty
cycle of Rref

PIC12F6XX

Rsen

GP1

GP2

T1G

Rref

VDD

+

_

CVref

COUT
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=ON

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy – A/D Method

NTC (Negative Temperature Coefficient) sensors
have a non-linear response to temperature
changes. As the temperature drops, the amount
the resistance changes becomes less and less.
Such sensors have a limited useful range because
the resolution becomes smaller than the A/D
resolution as the temperature drops. By changing
the voltage divider of the Rsen, the temperature
range can be expanded.

To select the higher temperature range, GP1
outputs '1' and GP2 is set as an input. For the
lower range, GP2 outputs '1' and GP1 is
configured as an input. The lower range will
increase the amount the sensor voltage changes
as the temperature drops to allow a larger usable
sensor range.

Summary:

High range: GP1 output '1' and GP2 input

Low range: GP1 input and GP2 output '1'
apQMMQM_Jé~ÖÉ=OO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #13 Reading A Sensor With Higher

Accuracy – A/D Method (Cont.)

1. 10K and 100K resistors are used to set the
range

2. Vref for A/D = VDD

3. Rth calculation is independent of VDD

4. Count = Rsen/(Rsen+Rref) x 255

5. Don't forget to allow acquisition time for the
A/D

PIC12F675

AN0 (A/D Input)

GP1

GP2

100K

10K

Rsen
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=OP

Tips ‘n Tricks
TIP #14 Delta Sigma Converter

The charge on the capacitor on GP1 is maintained
about equal to the CVref by the MCU monitoring
COUT and switching GP2 from input mode or
output low appropriately. A timer is used to sample
the COUT bit on a periodic basis. Each time GP2
is driven low, a counter is incremented. This
counter value corresponds to the input voltage.

To minimize the affects of external component
tolerances, temperature, etc., the circuit can be
calibrated. Apply a known voltage to the input and
allow the microcontroller to count samples until the
expected result is calculated. By taking the same
number of samples for subsequent
measurements, they become calibrated
measurements.
apQMMQM_Jé~ÖÉ=OQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #14 Delta Sigma Converter (Cont.)

1. GP1 average voltage = CVref

2. Time base as sampling rate

3. At the end of each time base period:

- If GP1 > CVref, then GP2 Output Low

- If GP1 < CVref, then GP2 Output High

4. Accumulate the GP2 lows over many samples

5. Number of samples determines resolution

COUT

VIN

CVREF

PIC12F6XX

GP1

GP2

+

-

=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=OR

Tips ‘n Tricks
NOTES:
apQMMQM_Jé~ÖÉ=OS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIPS 'N TRICKS WITH SOFTWARE

To reduce costs, designers need to make the most
of the available program memory in MCUs.
Program memory is typically a large portion of the
MCU cost. Optimizing the code helps to avoid
buying more memory than needed. Here are some
ideas that can help reduce code size.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=OT

Tips ‘n Tricks
TIP #15 Delay Techniques

• Use GOTO "next instruction" instead of two
NOPs.

• Use CALL Rtrn as quad, 1 instruction NOP
(where "Rtrn" is the exit label from existing
subroutine).

MCUs are commonly used to interface with the
“outside world” by means of a data bus, LED’s,
buttons, latches, etc. Because the MCU runs at a
fixed frequency, it will often need delay routines to
meet setup/hold times of other devices, pause for
a handshake or decrease the data rate for a
shared bus.

Longer delays are well-suited for the DECFSZ and
INCFSZ instructions where a variable is
decremented or incremented until it reaches zero
when a conditional jump is executed. For shorter
delays of a few cycles, here a few ideas to
decrease code size.

NOP
NOP

GOTO $+1

CALL Rtrn ;1 instruction, 4 cycles

Rtrn RETURN

. . .

;2 instructions, 2 cycles

;1 instruction, 2 cycles
apQMMQM_Jé~ÖÉ=OU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #15 Delay Techniques (Cont.)

For a two cycle delay, it is common to use two
NOP instructions which uses two program
memory locations. The same result can be
achieved by using “goto $+1”. The “$” represents
the current program counter value in MPASM.
When this instruction is encountered, the MCU will
jump to the next memory location. This is what it
would have done if two NOP’s were used but since
the “goto” instruction uses two instruction cycles to
execute, a two cycle delay was created. This
created a two cycle delay using only one location
of program memory.

To create a four cycle delay, add a label to an
existing “RETURN” instruction in the code. In this
example, the label “Rtrn” was added to the
“RETURN” of subroutine that already existed
somewhere in the code. When executing “CALL
Rtrn”, the MCU delays two instruction cycles to
execute the “CALL” and two more to execute the
“RETURN”. Instead of using four “NOP”
instructions to create a four cycle delay, the same
result was achieved by adding a single “CALL”
instruction.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=OV

Tips ‘n Tricks
TIP #16 Optimizing Destinations

• Destination bit determines W for F for result

• Look at data movement and restructure

Careful use of the destination bits in instructions
can save program memory. Here, register A and
register B are summed and the result is put into the
A register. A destination option is available for
logic and arithmetic operations. In the first
example, the result of the ADDWF instruction is
placed in the working register. A MOVWF
instruction is used to move the result from the
working register to register A. In the second
example, the ADDWF instruction uses the
destination bit to place the result into the A register
saving an instruction.

Example: A + B → A

MOVF

ADDWF

MOVWF

MOVF

ADDWF

A,W

B,W

A

B,W

A,F

3 instructions 2 instructions
apQMMQM_Jé~ÖÉ=PM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #17 Conditional Bit Set/Clear

• To move single bit of data from REGA to REGB

• Precondition REGB bit

• Test REGA bit and fix REGB if necessary

One technique for moving one bit from the REGA
register to REGB is to perform bit tests. In the first
example, the bit in REGA is tested using a BTFSS
instruction. If the bit is clear, the BCF instruction is
executed and clears the REGB bit, and if the bit is
set, the instruction is skipped.The second bit test
determines if the bit is set, and if so, will execute
the BSF and set the REGB bit, otherwise the
instruction is skipped. This sequence requires four
instructions.

BTFSS

BCF

BTFSC

BSF

BCF

BTFSC

BSF

REGA,2

REGB,5

REGA,2

REGB,5

REGB,5

REGA,2

REGB,5

4 instructions 3 instructions
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=PN

Tips ‘n Tricks
TIP #17 Conditional Bit Set/Clear (Cont.)

A more efficient technique is to assume the bit in
REGA is clear, and clear the REGB bit, and test if
the REGA bit is clear. If so, the assumption was
correct and the BSF instruction is skipped,
otherwise the REGB bit is set. The sequence in the
second example uses three instructions because
one bit test was not needed.

One important point is that the second example
will create a two cycle glitch if REGB is a port
outputting a high. This is caused by the BCF and
BTFSC instructions that will be executed
regardless of the bit value in REGA.
apQMMQM_Jé~ÖÉ=PO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
TIP #18 Swap File Register with W

The following macro swaps the contents of W and
REG without using a second register.

Needs: 0 TEMP registers
3 Instructions
3 Tcy

An efficient way of swapping the contents of a
register with the working register is to use three
XORWF instructions. It requires no temporary
registers and three instructions. Here’s an
example:

W REG Instruction

10101100 01011100 XORWF REG,F

10101100 11110000 XORWF REG,W

01011100 11110000 XORWF REG,F

01011100 10101100 Result

SWAPWF MACRO REG

XORWF REG,F

XORWF REG,W

XORWF REG,F

ENDM
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=PP

Tips ‘n Tricks
TIP #19 Bit Shifting Using Carry Bit

Rotate a byte through carry without using RAM
variable for loop count:

• Easily adapted to serial interface transmit
routines.

• Carry bit is cleared (except last cycle) and the
cycle repeats until the zero bit sets indicating
the end.

bsf
rlf
bcf
btfsc
bsf
bcf
rlf
movf
btfss
goto

LIST P=PIC12f629
INCLUDE P12f629.INC
buffer

STATUS,C
buffer,f
GPIO,Dout
STATUS,C
GPIO,Dout
STATUS,C
buffer,f
buffer,f
STATUS,Z
Send_Loop

equ 0x20

; Set 'end of loop' flag
; Place first bit into C
; precondition output
; Check data 0 or 1 ?

; Clear data in C
; Place next bit into C
; Force Z bit
; Exit?
apQMMQM_Jé~ÖÉ=PQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Tips ‘n Tricks
NOTES:
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=PR

Tips ‘n Tricks
NOTES:
apQMMQM_Jé~ÖÉ=PS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMQM_Jé~ÖÉ=PT

Information contained in this publication regarding device
applications and the like is intended through suggestion only and
may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. No represen-
tation or warranty is given and no liability is assumed by Microchip
Technology Incorporated with respect to the accuracy or use of
such information, or infringement of patents or other intellectual
property rights arising from such use or otherwise. Use of
Microchip’s products as critical components in life support systems
is not authorized except with express written approval by
Microchip. No licenses are conveyed, implicitly or otherwise, under
any intellectual property rights.

The graphics in this document are for illustration only. Microchip
reserves the right to modify the contents of its development
systems.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are regis-
tered trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and
The Embedded Control Solutions Company are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM,
fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC,
microPort, Migratable Memory, MPASM, MPLIB, MPLINK,
MPSIM, PICC, PICDEM, PICDEM.net, PICkit, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of
Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2003, Microchip Technology Incorporated. Printed in the U.S.A.,
All Rights Reserved.

 Printed on recycled paper.

apQMMQM_Jé~ÖÉ=PU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

Worldwide Sales and Service

AMERICAS

Corporate Office
Tel: 480-792-7200
Technical Support:
480-792-7627

Rocky Mountain
Tel: 480-792-7966

Atlanta
Tel: 770-640-0034

Boston
Tel: 978-692-3848

Chicago
Tel: 630-285-0071

Dallas
Tel: 972-818-7423

Detroit
Tel: 248-538-2250

Kokomo
Tel: 765-864-8360

Los Angeles
Tel: 949-263-1888

San Jose
Tel: 408-436-7950

Toronto
Tel: 905-673-0699

ASIA/PACIFIC

Australia
Tel: 61-2-9868-6733

China-Beijing
Tel:86-10-85282100

China-Chengdu
Tel: 86-28-86766200

China-Fuzhou
Tel: 86-591-7503506

China-Hong
Kong SAR
Tel: 852-2401-1200

China-Shanghai
Tel: 86-21-6275-5700

China-Shenzhen
Tel: 86-755-82901380

China-Qingdao
Tel: 86-532-5027355

India
Tel: 91-80-2290061

Japan
Tel: 81-45-471- 6166

Korea
Tel: 82-2-554-7200

Singapore
Tel: 65-6334-8870

Taiwan
Tel: 886-2-2717-7175

EUROPE

Austria
Tel: 43-7242-2244-399

Denmark
Tel: 45-4420-9895

France
Tel: 33-1-69-53-63-20

Germany
Tel: 49-89-627-144-0

Italy
Tel: 39-039-65791-1

United Kingdom
Tel: 44-118-921-5869

12/05/02

DS40040B

Microchip received QS-9000 quality system certification for
its worldwide headquarters, design and wafer fabrication
facilities in Chandler and Tempe, Arizona in July 1999 and
Mountain View, California in March 2002. The Company’s
quality system processes and procedures are QS-9000
compliant for its PICmicro® 8-bit MCUs, KEELOQ

® code
hopping devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In addition,
Microchip’s quality system for the design and manufacture
of development systems is ISO 9001 certified.

Microchip Technology Inc.
2355 W. Chandler Blvd. • Chandler, AZ 85224 U.S.A.

Phone: 480-792-7200 • Fax: 480-792-9210
www.microchip.com

© 2003, Microchip Technology Inc., 4/03 DS40040B

DS40040B

