

Replacement of Mechanical Relays

Motor Control & Power Control

A.T.E (Automatic Test Equipment)

Load Control From Processor I/O Ports

Aircraft Flight Control Systems

Power Supply Circuits

Medical Electronics

Tactical Aircraft

DIH-134-SM Power MOSFET Dual N/O SPST Photovoltaic DC Relay

Applications:

 \geq

 \triangleright

 \triangleright

Features:

- Package Contains Two N/O DC Relays
- Fast Switching Speeds
- Optically Isolated to 400V DC.
- Immune to False Triggering
- Hermetic Gull-Wing Surface Mount Package
- > Y-Level MIL-Screening Available (**DIH-134-SMY**)
- Designed to Meet MIL-R28750 and 28V DC System Surge and Spike Requirement of MIL STD-704.
- > Operation Temp. -40° C to 85° C @ 200mA Load (Above 85° C Derate Load $5mA / {}^{\circ}C$)

Description:

The DIH-134-SM is a State-of-the-Art Photovoltaic Solid State Relay designed for 28V DC Aircraft power applications where speed, current overload protection and immunity to transient voltages are critical.

The DIH-134-SM contains current limiting networks and thermally sensitive integrated circuits that disable the output, if the output MOSFETs approach an unsafe operating temperature. Because the thermally sensitive integrated circuits have built-in hysteresis, the output MOSFETs are automatically restarted when a safe temperature is reached. This auto restart feature eliminates the need for system restart signals. If the overload condition continues to exist, the cycle is repeated; if the overload condition is removed, the relay returns to normal operation.

The gull-wing surface mount package contains two independent N/O relays, with separate LED inputs and optically isolated power MOSFET outputs. Each relay, A or B, is capable of carrying 350mA DC continuous current and 500mA DC peak current. Each LED optically couples to a Photovoltaic (PV) IC chip which responds by generating a voltage. This voltage is internally connected to the Gate and Source terminals of the output MOSFETs, thus controlling their current. The DIH-134-SM is also available screened to military specifications, as required.

Package Layout:

DIH-134-SM Equivalent Circuit:

DIH-134-SM: Power MOSFET Dual SPST Photovoltaic DC Relay

Electrical Characteristics: (Per Relay @ 25⁰C unless otherwise specified)

- ✤ Relay A: Normally Open (N/O)
- Relay B: Normally Open (N/O)

* I	nput Characteristics				
Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{in}	Input Current	5.0	15.0	24.0	mA
Vin	Input Voltage Drop	1.3		1.5	V
V _{rev.}	Reverse Voltage	—		10.0	V
Von	On State Voltage	3.5			V
V _{off}	Off State Voltage	—	—	1.5	V

 Pin Designations 				
Relay	Pin Number	Inputs	Pin Number	Outputs
Relay	1	A +	14	Drain A +
A	3	A –	12	Source A –
Relay	5	B +	10	Drain B +
В	7	В –	8	Source B –
	2,4,6	NC	9,11,13	NC

✤ Output Characteristics					
Symbol	Parameter	Тур.	Max.	Unit	Conditions
I _{load}	Load Current		350 / 500	mA	Continuous / Peak
Ron	On Resistance		2	W	I_{in} =18 (mA); I_{load} = 100mA
	@ $T_a = 85 \ ^{0}C$		3	W	$I_{in}=18$ (mA); $I_{load}=100$ mA
I _{leak}	Leakage Current		10	A	V _{op} =90 (V)
R _{iso}	Input/Output Resistance	10 ⁸		W	
V _{op}	Operating Voltage	28	60	VDC	Limited by Power Dissipation
BV	Breakdown Voltage		95	VDC	At 100 μA
Ton	Turn-On Time	150	300	110	V_{in} = 4.5V, P.W* = 100ms; V_{op} = 30V
T _{off}	Turn-Off Time	20	40	110	V_{in} = 4.5V, P.W =100ms; V_{op} = 30V
Viso	Input-Output Isolation		400	V	DC
Р	Maximum Power Dissipation		400	mW	In Free Air

PW*: Pulse Width.

* <u>Timing Diagram</u>

* <u>Environmental Ratings:</u>

- Storage Temperature: -55° C to $+125^{\circ}$ C
- Constant Acceleration: 5000G
- Hermeticity: + Gross 1×10^{-5} atm cc/sec + Fine 5 x 10^{-8} atm cc/s **

** When screened to MIL-Specs.