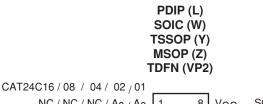


CAT24C01/02/04/08/16

1-Kb, 2-Kb, 4-Kb, 8-Kb and 16-Kb CMOS Serial EEPROM



FEATURES

- Supports Standard and Fast I²C Protocol
- 1.8 V to 5.5 V Supply Voltage Range
- 16-Byte Page Write Buffer
- Hardware Write Protection for entire memory
- Schmitt Triggers and Noise Suppression Filters on I²C Bus Inputs (SCL and SDA).
- Low power CMOS technology
- 1,000,000 program/erase cycles
- 100 year data retention
- Industrial temperature range
- RoHS-compliant 8-lead PDIP, SOIC, MSOP and TSSOP, 8-pad TDFN and 5-lead TSOT-23 packages.

For Ordering Information details, see page 16.

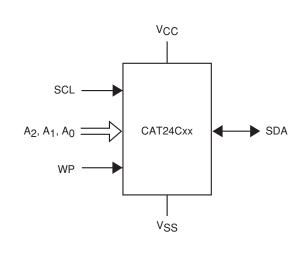
PIN CONFIGURATION

NC / NC / NC / A ₀ / A ₀	1	8	VCC	SCL	1	5	WP
NC / NC / A_1 / A_1 / A_1	2	7	WP	VSS	2		
$NC / A_2 / A_2 / A_2 / A_2$	3	6	SCL	100	2		
V _{SS}	4	5	SDA	SDA	3	4	VCC

For the location of Pin 1, please consult the corresponding package drawing.

PIN FUNCTIONS

A_0, A_1, A_2	Device Address Inputs
SDA	Serial Data Input/Output
SCL	Serial Clock Input
WP	Write Protect Input
V _{CC}	Power Supply
V _{SS}	Ground
NC	No Connect


DEVICE DESCRIPTION

The CAT24C01/02/04/08/16 are 1-Kb, 2-Kb, 4-Kb, 8-Kb and 16-Kb respectively CMOS Serial EEPROM devices organized internally as 8/16/32/64 and 128 pages respectively of 16 bytes each. All devices support both the Standard (100 kHz) as well as Fast (400 kHz) I^2 C protocol.

Data is written by providing a starting address, then loading 1 to 16 contiguous bytes into a Page Write Buffer, and then writing all data to non-volatile memory in one internal write cycle. Data is read by providing a starting address and then shifting out data serially while automatically incrementing the internal address count.

External address pins make it possible to address up to eight CAT24C01 or CAT24C02, four CAT24C04, two CAT24C08 and one CAT24C16 device on the same bus.

FUNCTIONAL SYMBOL

* Catalyst carries the I²C protocol under a license from the Philips Corporation.

© 2006 by Catalyst Semiconductor, Inc. Characteristics subject to change without notice TSOT-23 (TD)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Storage Temperature	-65°C to +150°C
Voltage on Any Pin with Respect to Ground ⁽²⁾	-0.5 V to +6.5 V

RELIABILITY CHARACTERISTICS⁽³⁾

Symbol	Parameter	Min	Units
N _{END} ⁽⁴⁾	Endurance	1,000,000	Program/ Erase Cycles
T _{DR}	Data Retention	100	Years

D.C. OPERATING CHARACTERISTICS

 V_{CC} = 1.8 V to 5.5 V, T_A = -40°C to 85°C, unless otherwise specified.

Symbol	Parameter Test Conditions		Min	Max	Units
I _{CCR}	Read Current	Read, f _{SCL} = 400 kHz		1	mA
I _{CCW}	Write Current	Write, f _{SCL} = 400 kHz		1	mA
I _{SB}	Standby Current	All I/O Pins at GND or V_{CC}		1	μA
ΙL	I/O Pin Leakage	Pin at GND or V_{CC}		1	μA
V _{IL}	Input Low Voltage		-0.5	V _{CC} x 0.3	V
V _{IH}	Input High Voltage		V _{CC} x 0.7	V _{CC} + 0.5	V
V _{OL1}	Output Low Voltage	$V_{CC} \ge 2.5 \text{ V}, \text{ I}_{OL} = 3.0 \text{ mA}$		0.4	V
V _{OL2}	Output Low Voltage	V_{CC} < 2.5 V, I_{OL} = 1.0 mA		0.2	V

PIN IMPEDANCE CHARACTERISTICS

 V_{CC} = 1.8 V to 5.5 V, T_A = -40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions	Мах	Units
C _{IN} ⁽³⁾	SDA I/O Pin Capacitance	$V_{IN} = 0 V$	8	pF
C _{IN} ⁽³⁾	Input Capacitance (other pins)	$V_{IN} = 0 V$	6	pF
I _{WP} ⁽⁵⁾	WP Input Current	$V_{IN} < V_{IH}, V_{CC} = 5.5 V$	200	
		$V_{IN} < V_{IH,} V_{CC} = 3.3 V$	150	
		$V_{IN} < V_{IH}, V_{CC} = 1.8 V$	100	μΑ
		$V_{IN} > V_{IH}$	1	1

- (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.
- (2) The DC input voltage on any pin should not be lower than -0.5 V or higher than V_{CC} + 0.5 V. During transitions, the voltage on any pin may undershoot to no less than -1.5 V or overshoot to no more than V_{CC} + 1.5 V, for periods of less than 20 ns.
- (3) These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods.
- (4) Page Mode, $V_{CC} = 5 V$, $25^{\circ}C$
- (5) When not driven, the WP pin is pulled down to GND internally. For improved noise immunity, the internal pull-down is relatively strong; therefore the external driver must be able to supply the pull-down current when attempting to drive the input HIGH. To conserve power, as the input level exceeds the trip point of the CMOS input buffer ($\sim 0.5 \times V_{CC}$), the strong pull-down reverts to a weak current source.

A.C. CHARACTERISTICS⁽¹⁾

 V_{CC} = 1.8 V to 5.5 V, T_A = -40°C to 85°C.

		Star	ndard	Fa		
Symbol	Parameter	Min	Max	Min	Max	Units
F_{SCL}	Clock Frequency		100		400	kHz
t _{HD:STA}	START Condition Hold Time	4		0.6		μs
t _{LOW}	Low Period of SCL Clock	4.7		1.3		μs
t _{HIGH}	High Period of SCL Clock	4		0.6		μs
t _{SU:STA}	START Condition Setup Time	4.7		0.6		μs
t _{HD:DAT}	Data In Hold Time	0		0		μs
t _{SU:DAT}	Data In Setup Time	250		100		ns
t _R	SDA and SCL Rise Time		1000		300	ns
t _F ⁽²⁾	SDA and SCL Fall Time		300		300	ns
t _{SU:STO}	STOP Condition Setup Time	4		0.6		μs
t _{BUF}	Bus Free Time Between STOP and START	4.7		1.3		μs
t _{AA}	SCL Low to Data Out Valid		3.5		0.9	μs
t _{DH}	Data Out Hold Time	100		100		ns
T _i ⁽²⁾	Noise Pulse Filtered at SCL and SDA Inputs		100		100	ns
t _{SU:WP}	WP Setup Time	0		0		μs
t _{HD:WP}	WP Hold Time	2.5		2.5		μS
t _{WR}	Write Cycle Time		5		5	ms
t _{PU} ^(2, 3)	Power-up to Ready Mode		1		1	ms

Note:

(1) Test conditions according to "A.C. Test Conditions" table.

(2) Tested initially and after a design or process change that affects this parameter.

(3) t_{PU} is the delay between the time V_{CC} is stable and the device is ready to accept commands.

A.C. TEST CONDITIONS

Input Levels	$0.2 \times V_{CC}$ to $0.8 \times V_{CC}$
Input Rise and Fall Times	≤ 50 ns
Input Reference Levels	$0.3 \times V_{CC}, 0.7 \times V_{CC}$
Output Reference Levels	$0.5 \times V_{CC}$
Output Load	Current Source: $I_{OL} = 3 \text{ mA} (V_{CC} \ge 2.5 \text{ V}); I_{OL} = 1 \text{ mA} (V_{CC} < 2.5 \text{ V}); C_{L} = 100 \text{ pF}$

POWER-ON RESET (POR)

Each CAT24Cxx* incorporates Power-On Reset (POR) circuitry which protects the internal logic against powering up in the wrong state.

A CAT24Cxx device will power up into Standby mode after V_{CC} exceeds the POR trigger level and will power down into Reset mode when V_{CC} drops below the POR trigger level. This bi-directional POR feature protects the device against 'brown-out' failure following a temporary loss of power.

* For common features, the CAT24C01/02/04/08/16 will be refered to as CAT24Cxx

PIN DESCRIPTION

SCL: The Serial Clock input pin accepts the Serial Clock generated by the Master.

SDA: The Serial Data I/O pin receives input data and transmits data stored in EEPROM. In transmit mode, this pin is open drain. Data is acquired on the positive edge, and is delivered on the negative edge of SCL.

A0, A1 and A2: The Address inputs set the device address when cascading multiple devices. When not driven, these pins are pulled LOW internally.

WP: The Write Protect input pin inhibits all write operations, when pulled HIGH. When not driven, this pin is pulled LOW internally.

FUNCTIONAL DESCRIPTION

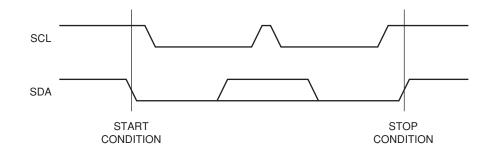
The CAT24Cxx supports the Inter-Integrated Circuit (I²C) Bus data transmission protocol, which defines a device that sends data to the bus as a transmitter and a device receiving data as a receiver. Data flow is controlled by a Master device, which generates the serial clock and all START and STOP conditions. The CAT24Cxx acts as a Slave device. Master and Slave alternate as either transmitter or receiver.

I²C BUS PROTOCOL

The I^2C bus consists of two 'wires', SCL and SDA. The two wires are connected to the V_{CC} supply via pull-up resistors. Master and Slave devices connect to the 2-wire bus via their respective SCL and SDA pins. The transmitting device pulls down the SDA line to 'transmit' a '0' and releases it to 'transmit' a '1'.

Data transfer may be initiated only when the bus is not busy (see A.C. Characteristics).

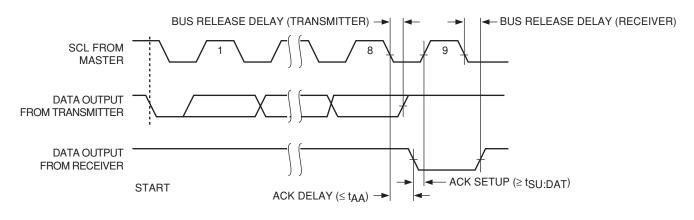
During data transfer, the SDA line must remain stable while the SCL line is HIGH. An SDA transition while SCL is HIGH will be interpreted as a START or STOP condition (Figure 1). The START condition precedes all commands. It consists of a HIGH to LOW transition on SDA while SCL is HIGH. The START acts as a 'wake-up' call to all receivers. Absent a START, a Slave will not respond to commands. The STOP condition completes all commands. It consists of a LOW to HIGH transition on SDA while SCL is HIGH.

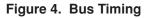

Device Addressing

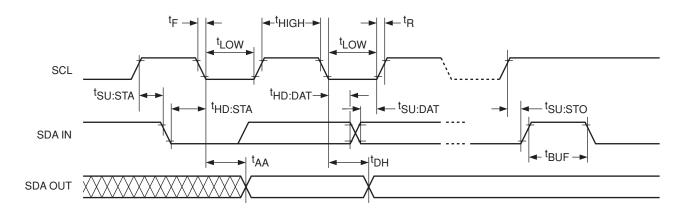
The Master initiates data transfer by creating a START condition on the bus. The Master then broadcasts an 8-bit serial Slave address. For normal Read/Write operations, the first 4 bits of the Slave address are fixed at 1010 (Ah). The next 3 bits are used as programmable address bits when cascading multiple devices and/or as internal address bits. The last bit of the slave address, R/\overline{W} , specifies whether a Read (1) or Write (0) operation is to be performed. The 3 address space extension bits are assigned as illustrated in Figure 2. A₂, A₁ and A₀ must match the state of the external address bits.

Acknowledge

After processing the Slave address, the Slave responds with an acknowledge (ACK) by pulling down the SDA line during the 9th clock cycle (Figure 3). The Slave will also acknowledge the address byte and every data byte presented in Write mode. In Read mode the Slave shifts out a data byte, and then releases the SDA line during the 9th clock cycle. As long as the Master acknowledges the data, the Slave will continue transmitting. The Master terminates the session by not acknowledging the last data byte (NoACK) and by issuing a STOP condition. Bus timing is illustrated in Figure 4.


Figure 1. START/STOP Conditions




Figure 2. Slave Address Bits

1	0	1	0	A ₂	А ₁	A ₀	R/W	CAT24C01 and CAT24C02
1	0	1	0	A ₂	A ₁	ag	R/W	CAT24C04
1	0	1	0	A ₂	ag	ag	R/W	CAT24C08
1	0	1	0	a ₁₀	ag	ag	R/W	CAT24C16

Figure 3. Acknowledge Timing

WRITE OPERATIONS

Byte Write

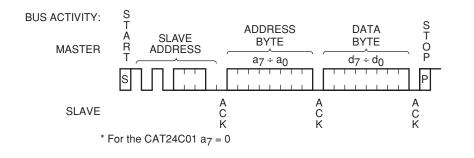
In Byte Write mode, the Master sends the START condition and the Slave address with the R/W bit set to zero to the Slave. After the Slave generates an acknowledge, the Master sends the byte address that is to be written into the address pointer of the CAT24Cxx. After receiving another acknowledge from the Slave, the Master transmits the data byte to be written into the addressed memory location. The CAT24Cxx device will acknowledge the data byte and the Master generates the STOP condition, at which time the device begins its internal Write cycle to nonvolatile memory (Figure 5). While this internal cycle is in progress (t_{WR}), the SDA output will be tri-stated and the CAT24Cxx will not respond to any request from the Master device (Figure 6).

Page Write

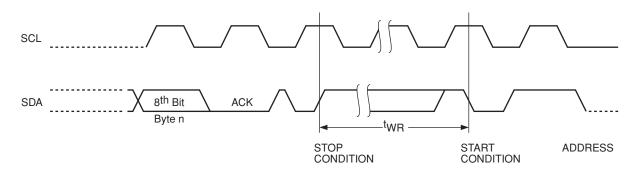
The CAT24Cxx writes up to 16 bytes of data in a single write cycle, using the Page Write operation (Figure 7). The Page Write operation is initiated in the same manner as the Byte Write operation, however instead of terminating after the data byte is transmitted, the Master is allowed to send up to fifteen additional bytes. After each byte has been transmitted the CAT24Cxx will respond with an acknowledge and internally increments the four low order address bits. The high order bits that define the page address remain unchanged. If the Master transmits more than sixteen bytes prior to sending the STOP condition, the address counter 'wraps around' to the beginning of page and previously transmitted data will be overwritten. Once all sixteen bytes are received and the STOP condition has been sent by the Master, the internal Write cycle begins. At this point all received data is written to the CAT24Cxx in a single write cycle.

Acknowledge Polling

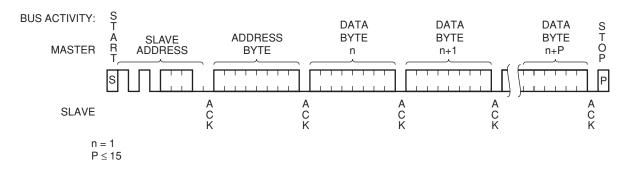
The acknowledge (ACK) polling routine can be used to take advantage of the typical write cycle time. Once the stop condition is issued to indicate the end of the host's write operation, the CAT24Cxx initiates the internal write cycle. The ACK polling can be initiated immediately. This involves issuing the start condition followed by the slave address for a write operation. If the CAT24Cxx is still busy with the write operation, NoACK will be returned. If the CAT24Cxx has completed the internal write operation, an ACK will be returned and the host can then proceed with the next read or write operation.


Hardware Write Protection

With the WP pin held HIGH, the entire memory is protected against Write operations. If the WP pin is left floating or is grounded, it has no impact on the operation of the CAT24Cxx. The state of the WP pin is strobed on the last falling edge of SCL immediately preceding the first data byte (Figure 8). If the WP pin is HIGH during the strobe interval, the CAT24Cxx will not acknowledge the data byte and the Write request will be rejected.


Delivery State

The CAT24Cxx is shipped erased, i.e., all bytes are FFh.


Figure 5. Byte Write Sequence

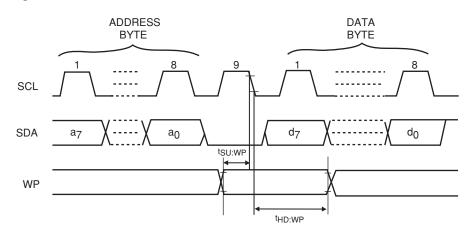


Figure 7. Page Write Sequence

Figure 8. WP Timing

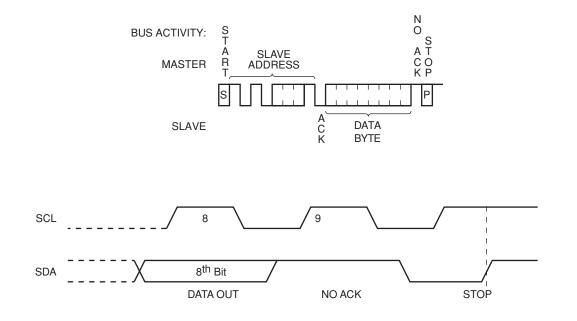
READ OPERATIONS

Immediate Read

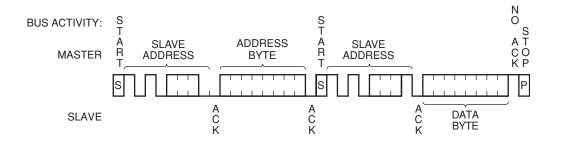
Upon receiving a Slave address with the R/W bit set to '1', the CAT24Cxx will interpret this as a request for data residing at the current byte address in memory. The CAT24Cxx will acknowledge the Slave address, will immediately shift out the data residing at the current address, and will then wait for the Master to respond. If the Master does not acknowledge the data (NoACK) and then follows up with a STOP condition (Figure 9), the CAT24Cxx returns to Standby mode.

Selective Read

Selective Read operations allow the Master device to select at random any memory location for a read operation. The Master device first performs a 'dummy' write operation by sending the START condition, slave address and byte address of the location it wishes to read. After the CAT24Cxx acknowledges the byte address, the Master device resends the START condition and the slave address, this time with the R/W bit set to one. The CAT24Cxx then responds with its acknowledge and sends the requested data byte. The Master device does not acknowledge the data (NoACK) but will generate a STOP condition (Figure 10).


Sequential Read

If during a Read session, the Master acknowledges the 1st data byte, then the CAT24Cxx will continue transmitting data residing at subsequent locations until the Master responds with a NoACK, followed by a STOP (Figure 11). In contrast to Page Write, during Sequential Read the address count will automatically increment to and then wrap-around at end of memory (rather than end of page). In the CAT24C01, the internal address count will not wrap around at the end of the 128 byte memory space.



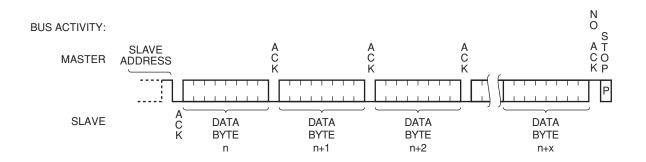
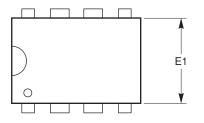
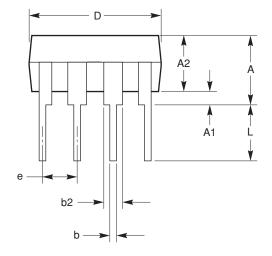
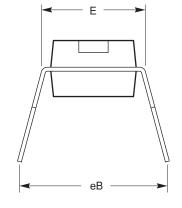

Figure 9. Immediate Read Sequence and Timing

Figure 10. Selective Read Sequence

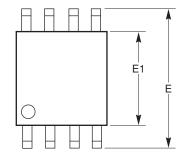


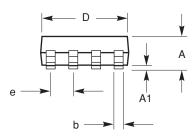


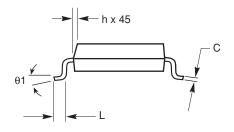


PACKAGE OUTLINE

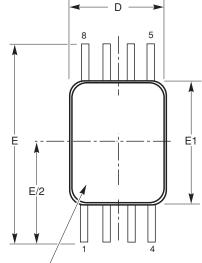
8-lead 300 MIL Wide Plastic DIP (L)


SEMICONDUCTOR, INC.

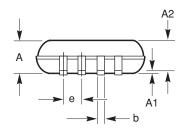

SYMBOL	MIN	NOM	MAX
A			4.57
A1	0.38		
A2	3.05		3.81
b	0.36	0.46	0.56
b2	1.14		1.77
D	9.02		10.16
E	7.62	7.87	8.25
E1	6.09	6.35	7.11
е		2.54 BSC	
eB	7.87		9.65
L	0.115	0.130	0.150

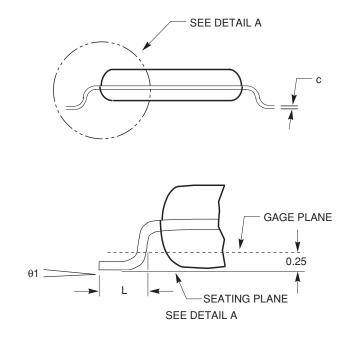

- All dimensions are in millimeters. Angels in degrees.
 Complies with JEDEC Standard MS001.
- (3) Dimensioning and tolerancing per ANSI Y14.5M-1982

8-lead 150 Mil Wide Soic (W)



SYMBOL	MIN	NOM	MAX
A1	0.10		0.25
A	1.35		1.75
b	0.33		0.51
С	0.19		0.25
D	4.80		5.00
E	5.80		6.20
E1	3.80		4.00
е		1.27 BSC	
h	0.25		0.50
L	0.40		1.27
θ1	0°		8°


For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.

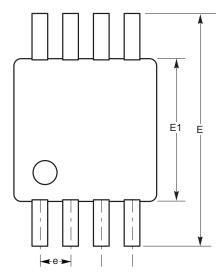

- All dimensions are in millimeters. Angels in degrees.
 Complies with JEDEC specification MS-012 dimensions.

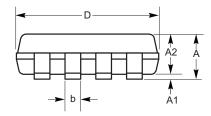
8-Lead TSSOP (Y)

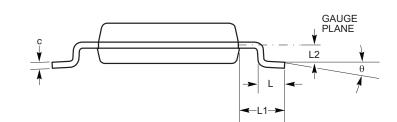
PIN #1 IDENT.

SYMBOL	MIN	NOM	MAX	
A			1.20	
A1	0.05		0.15	
A2	0.80	0.90	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	2.90	3.00	3.10	
E	6.30	6.4	6.50	
E1	4.30	4.40	4.50	
е	0.65 BSC			
L	0.50	0.60	0.75	
θ1	0.00		8.00	

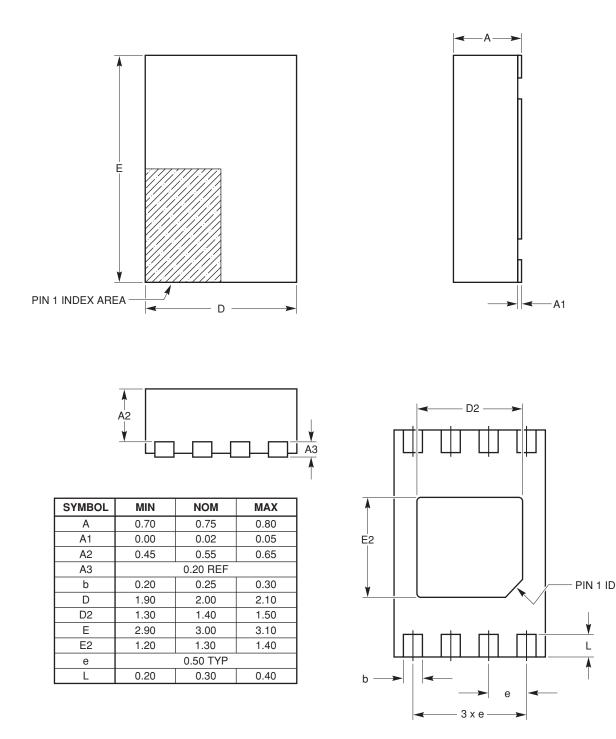
For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.


Notes:


(1) All dimensions are in millimeters. Angels in degrees.


⁽²⁾ Complies with JEDEC specification MO-153.

8-Lead MSOP (Z)

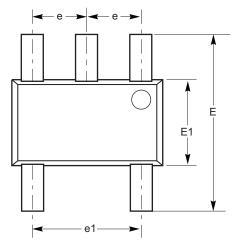


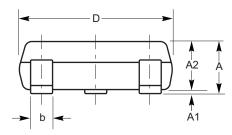
SYMBOL	MIN	NOM	MAX
А			1.1
A1	0.05	0.10	0.15
A2	0.75	0.85	0.95
b	0.28	0.33	0.38
с			
D	2.90	3.00	3.10
E	4.80	4.90	5.00
E1	2.90	3.00	3.10
е	0.65 BSC		
L	0.35	0.45	0.55
L1			
L2			
θ	0°		6°

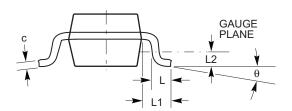
For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.

- (1) All dimensions are in millimeters. Angels in degrees.
- (2) Complies with JEDEC specification MS-187.
- (3) Stand off height/coplanarity are considered as special characteristics.

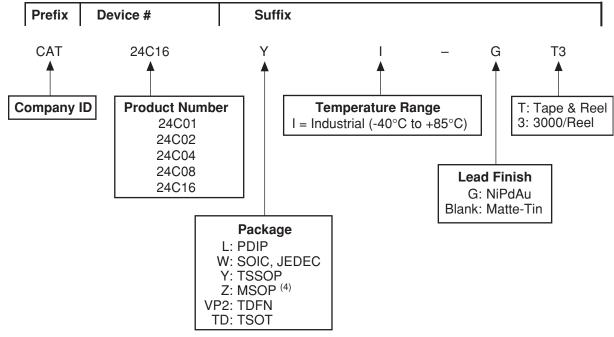
8-PAD TDFN 2X3 PACKAGE (VP2)


For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.


⁽¹⁾ All dimensions are in millimeters. Angels in degrees.


⁽²⁾ Complies with JEDEC specification MO-229.

5-Lead TSOT-23 (TD)



SYMBOL	MIN	NOM	MAX
А	_	—	1.0
A1	0.01	0.05	0.1
A2	0.80	0.87	0.9
b	0.30		0.45
С	0.12	0.15	0.20
D		2.90 BSC	
E		2.80 BSC	
E1		1.60 BSC	
е		0.95 BSC	
e1		1.90 BSC	
L	0.30	0.40	0.50
L1	0.60 REF		
L2		0.25 BSC	
θ	0°		8°

For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.

- (1) All dimensions are in millimeters. Angels in degrees.
- (2) Complies with JEDEC specification MO-193.

EXAMPLE OF ORDERING INFORMATION

- (1) All packages are RoHS-compliant (Lead-free, Halogen-free).
- (2) The standard lead finish is NiPdAu pre-plated (PPF) lead frames.
- (3) The device used in the above example is a CAT24C16YI-GT3 (TSSOP, Industrial Temperature, NiPdAu, Tape & Reel).
- (4) For availability, please contact your nearest Catalyst Semiconductor Sales Office.
- (5) For additional package and temperature options, please contact your nearest Catalyst Semiconductor Sales office.

REVISION HISTORY

Date	Revision	Comments
07/18/06	А	Combine 5 data sheets into one data sheet.
07/31/06	В	Update Package Marking
11/29/06	C	Update Features Update Pin Configuration Update Functional Symbol Added 8-Lead MSOP Package Outline Remove Package Marking Update Example of Ordering Information

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

AE² [™], Beyond Memory [™], DPP [™], EZDim [™], MiniPot[™] and Quad-Mode [™]

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 2975 Stender Way Santa Clara, CA 95054 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #: 1115 Revison: C Issue date: 11/29/06