
J.Stockinger

 APPLICATION NOTE
USING ST6 ANALOG INPUTS

FOR MULTIPLE KEY DECODING

AN431 / 09,92

INTRODUCTION

The ST6 on-chip Analog to Digital Converter (ADC) is a useful peripheral integrated
into the silicon of the ST6 family members. The flexibility of the I/O port structure allows
the multiplexing of up to 13/8 Analog Inputs into the converter in a 28/20 pin device
for the ST6210/15 2k ROM and ST6220/25 4k ROM families, enabling full freedom in
circuit layout. Many other members of the ST6 family also offer the Analog to Digital
converter.
One of the more novel and practical applications of this converter, is to decode a
number of keys. The technique is to connect the keys by resistive voltage dividers to
the converter inputs. An example of key detection using 10 keys is illustrated in this
note.
Using the Analog to Digital converter in this fashion does not require a static current
and avoids false key detection.

BASIC CIRCUIT

The basic circuit of the key decoder consists of a pull-up resistor connected to the
ST6 Analog to Digital converter input with the first key directly switching to ground.
The following keys are then connected in sequence to the ADC input through serial
resistors. The number of keys which may be detected depends on the tolerance of
the resistors used. It can be seen that if more than one key is pressed at the same
time, the key detected will be the next key in the chain closest to the ADC input. This
also allows the keys in the keyboard to be prioritized.

1/14

Figure 1. Analog Keyboard resistor key matrix

Figure 2. Multiple key press

PRINCIPLE OF OPERATION

The combination of the pull-up resistor, the serial resistors and the pressed key form
a resistive voltage divider, generating a different voltage at the ADC input for each key
pressed. The serial resistors are selected in order to give an equal distribution of
voltage between VDD and VSS for each switch combination to give the best noise
margin between keys.
When a key is pressed, the voltage at the ADC input is given by the activated voltage
divider. This analog voltage is converted by the ADC and the digital value is used to
determine which switch is closed. Two successive conversions may be made to avoid
the influence of key bounce.



ANALOG KEYBOARD

2/14

Key Nr Valid Code
Range

Distance to
next key

1 0 24

2 18-1A 22

3 30-33 22

4 49-4E 21

5 63-68 20

6 7C-81 22

7 97-9B 21

8 B0-B4 22

9 CA-CD 24

10 E5-E6 25

Table 1. Key code ranges

Resistor Value (Ω) -2% (Ω) +2% (Ω)

Rp 10000 9800 10200

R1 1100 1078 1122

R2 1300 1274 1326

R3 1800 1764 1836

R4 2400 2352 2448

R5 3300 3234 3366

R6 5100 4998 5202

R7 8200 8036 8364

R8 16000 15680 16320

R9 51000 49980 52020

Table 2. Used resistors and Tolerance

If the topkey is pressed, thevoltage meas-
ured isalwayszero. For nkeys, the resistor
values should be selected such that the
voltage for the second key from top is
VDD/n, for the 3rd - 2xVDD/n, for the 4th -
3xVDD/n and for the nth - (n-1)xVDD/n.
Resistor values from the tolerance set
used must be selected to meet this re-
quirement.
The recommended resistor values for a
10-key keyboard with 2% resistors from
the E24 series, used with a 10kΩ pull-up
resistor, are shown in table 2. If more
current can be allowed, then a 1kΩ resis-
tor can be used in which case the serial
resistor values should be divided by 10.



ANALOG KEYBOARD

3/14

PRACTICAL LIMITATIONS

Theoretically, for an ideal power supply, ADC and resistors, 255 keys could be
detected. Practically however, it is necessary to take into account potential errors
coming from:
- the power supply - the key resistivity - the resistor tolerance - the ADC error
The power supply tolerance can normally be neglected providing noise is not present
at a frequency within or above the frequency range of the RC delay of the resistive
divider, as the ADC reference is normally provided by the power supply of the ST6.
For ST6 family members with external ADC reference voltage inputs, AVDD and AVSS
may be used instead of VDD and VSS.
The sensitivity of the key can normally be neglected, as the resistance of the divider
is high in comparison to it. If the key resistivity is significant, it should be added to the
“serial” pull-down resistance of the different dividers. The key resistivity variation must
also be added to the tolerance of the serial pull-down resistor (see resistor tolerance
following).
The resistor tolerance affects the tolerance of the dividers. Two situations must be
taken into account:
a) minimum value of pull-up combined with maximum values of pull-down = maximum
voltage of the divider at the ADC input.
b) maximum value of the pull-up combined with the minimum values of pull-down =
minimum voltage at the ADC input. These two cases give the maximum voltage
variation of each divider (see Table 3). The voltage variation ranges of two dividers
must not overlap otherwise the key cannot be decoded, even with an ideal converter.

Active
Key R -2% (Ω) R +2% (Ω)

S0 0 0

S1 1078 1122

S2 2352 2448

S3 4116 4284

S4 6468 6732

S5 9702 10098

S6 14700 15300

S7 22736 23664

S8 38416 39984

S9 88396 92004

Table 3. Effective Divider Resistors Realistic converters require a margin be-
tween the range of variation. In the case
of a significant variation in the key resis-
tivity, the maximum resistivity of the key
has to be added to the value of the pull-
down resistor in case a). For case b) no
error needs to be added as the resistivity
cannot be less than 0 Ω.



ANALOG KEYBOARD

4/14

Active Key
V (Rxmin-Rpmax) V (Rxmax-Rpmin)

V hex. dec. V hex. dec.

S0 0.00 00 0 0.00 00 0

S1 0.48 18 24 0.51 1A 26

S2 0.94 30 48 1.00 33 51

S3 1.44 49 73 1.52 4E 78

S4 1.94 63 99 2.04 68 104

S5 2.44 7C 124 2.54 81 129

S6 2.95 97 151 3.05 9B 155

S7 3.45 B0 176 3.54 B4 180

S8 3.95 C9 201 4.02 CD 205

S9 4.48 E5 229 4.52 E6 230

Table 4. Voltage at the ADC-Input,Converter Results (5V supply)

The linearity of the ADC converter of the ST6 is normally specified for ±2 LSB, therefore
a minimum distance of 4 LSB is needed between the edges of the resistance tolerance
ranges. For the best results, a minimum of 8 LSB should be used (see Table 4).

Active Key R Error Range
(LSB)

Distance to next
Key Valid Key Range

S0 0 24 0-0

S1 2 22 18-1A

S2 3 22 30-33

S3 4 21 49-4E

S4 5 20 63-68

S5 5 22 7C-81

S6 5 21 97-9B

S7 4 22 B0-B4

S8 3 24 C9-CD

S9 2 25 E5-E6

Table 5. AD-Converter Results



ANALOG KEYBOARD

5/14

EXTENSION FOR WAKE UP

ST6 family members with the Analog in-
put capacity can also generate a wake-
up operation (from WAIT or STOP
modes) on the pressing of akey. This can
be achieved by a modification of the cir-
cuit shown in figure 1. The pull-up resis-
tor is not connected to VDD but to an
additional I/O port bit. During key polling,
this additional port bit is set to output
mode active high, thus effectively switch-
ing VDD to the pull-up resistor. The resis-
tance of the pull-up resistor must be high
enough to give no significant voltage
drop, or the resulting error must be cal-
culated and taken into account. The
other I/O bit is used as the Analog input
to the ADC as in the original circuit.
During the wait for the key press, the first
I/O pin, used to pull the pull-up resistor
high to VDD while polling, is switched into
a high impedance state (e.g. open drain
output mode). The second I/O pin, used
as the ADC input while polling, is
switched to the interrupt input with pull-
up mode. The internal pull-up is in the
range of 100k, in comparison to the 1k -
10k of the external resistor used during
polling. If any key is now pressed an
interrupt will be generated if the voltage
at thesecond I/O pin is below the Schmitt
trigger low level threshold. The serial
resistors in the keyboard chain must not
be too high in this case, therefore the
maximum number of keys is reduced in
comparison to the normal mode.

Figure 3. Keyboard wake-up circuit

Figure 4. Keyboard reading

Figure 5. Interrupt configuration



ANALOG KEYBOARD

6/14

;**

;* *

;* SGS-THOMSON GRAFING *

;* *

;* APPLICATION NOTE 431 - ST6 *

;* *

;* Use of ADC inputs for multiple key decoding *

;* *

;* With the inbuilt A/D converter of any ST6 it is easy to *

;* implement a small routine which enables ONE port pin, con- *

;* figured as an ADC input, to decode up to ten different switches*

;* All that is necessary is to set one port pin as an ADC input *

;* Then the program runs in an endless loop until one of the *

;* connected keys is pushed. *

;* The value from the ADC data register is then used to decide *

;* how the program will continue,on reaction to the key-push. *

;* *

;**

;***REGISTERS***

ddrpb .def 0c5h ;port B data direction register

orpb .def 0cdh ;port B option register

drpb .def 0c1h ;port B data register

adr .def 0d0h ;A/D data register

adcr .def 0d1h ;A/D control register

a .def 0ffh ;accumulator

;***CONSTANTS***

inpall .equ 000h ;used for setting all pins input

peg1_2 .equ 00ch ;border to distinguish between switch1 and switch2
peg2_3 .equ 025h ;border to distinguish between switch2 and switch3
peg3_4 .equ 03eh ;border to distinguish between switch3 and switch4
peg4_5 .equ 058h ;border to distinguish between switch4 and switch5
peg5_6 .equ 072h ;border to distinguish between switch5 and switch6
peg6_7 .equ 08ch ;border to distinguish between switch6 and switch7
peg7_8 .equ 0a5h ;border to distinguish between switch7 and switch8
peg8_9 .equ 0beh ;border to distinguish between switch8 and switch9

peg9_10 .equ 0d9h ;border to distinguish between switch9 and switch10

APPENDIX A: Key Input by Polling



ANALOG KEYBOARD

7/14

ldi ddrpb,inpall ;sets all port B pins low — all input

ldi orpb,01h ;option register:

;sets bit b0 high, the rest low

ldi drpb,01h ;direction register:

;sets bit b0 high, the rest low

;— pb0 becomes analog input

; pb1-7 become input with pull-up, but

; are not used here (only one pin may be

; analog input for A/D at the same time)

ldi adcr,30h ;A/D control register:

; 0011 0000 — -activate A/D converter

; -start conversion

; -disable A/D interrupt

loop: jrr 6,adcr,loop ;loop until the End Of Conversion bit is

;set (indicator that a conversion has

;been completed)

ld a,adr ;load acc with the result of the A/D

;conversion

;now the result is compared with the
;switches

sw1: cpi a,peg1_2 ;compare with peg1_2

jrnz sw2 ;A/D result was smaller than peg1_2

jp s1 ; — switch1 was pressed: jump to s1

sw2: cpi a,peg2_3 ;compare with peg2_3

jrnz sw3 ;A/D result was smaller than peg2_3

jp s2 ; — switch2 was pressed: jump to s2

sw3: cpi a,peg3_4 ;compare with peg3_4

jrnz sw4 ;A/D result was smaller than peg3_4

jp s3 ; — switch3 was pressed: jump to s3

sw4: cpi a,peg4_5 ;compare with peg4_5

jrnz sw5 ;A/D result was smaller than peg4_5

jp s4 ; — switch4 was pressed: jump to s4

sw5: cpi a,peg5_6 ;compare with peg5_6

jrnz sw6 ;A/D result was smaller than peg5_6

jp s5 ; — switch5 was pressed: jump to s5



ANALOG KEYBOARD

8/14

sw6: cpi a,peg6_7 ;compare with peg6_7

jrnz sw7 ;A/D result was smaller than peg6_7

jp s6 ; — switch6 was pressed: jump to s6

sw7: cpi a,peg7_8 ;compare with peg7_8

jrnz sw8 ;A/D result was smaller than peg7_8

jp s7 ; — switch7 was pressed: jump to s7

sw8: cpi a,peg8_9 ;compare with peg8_9

jrnz sw9 ;A/D result was smaller than peg8_9

jp s8 ; — switch8 was pressed: jump to s8

sw9: cpi a,peg9_10 ;compare with peg9_10

jrnz sw10 ;A/D result was smaller than peg9_10

jp s9 ; —> switch9 was pressed: jump to s9

sw10: jp s10 ;A/D result was greater than peg9_10

; — switch10 was pressed: 0

;

;*** the routines handling to the reaction to the individual key presses

;*** are to be included here.

s1:

s2:

s3:

s4:

s5:

s6:

s7:

s8:

s9:

s10:



ANALOG KEYBOARD

9/14

;**
;* *

;* SGS-THOMSON GRAFING *

;* *

;* APPLICATION NOTE 431 - ST6 *

;* *

;* Use of ADC inputs for multiple key decoding *

;* *

;* With the inbuilt A/D converter of any ST6 it is easy to *

;* implement a small routine with which you can recognize *

;* if one of nine connected keys is pushed by creating an *

;* interrupt. The program can then decide how it will react *

;* to the key pushed. *

;* *

;* *
;**

;***REGISTERS***

ddrpb .def 0c5h ;port B data direction register

orpb .def 0cdh ;port B option register

drpb .def 0c1h ;port B data register

ior .def 0c8h ;interrupt option register

adr .def 0d0h ;A/D data register

adcr .def 0d1h ;A/D control register

a .def 0ffh ;accumulator

;***CONSTANTS***

inpall .equ 000h ;used for setting all pins input

peg1_2 .equ 00ch ;border to distinguish between switch1 and switch2
peg2_3 .equ 025h ;border to distinguish between switch2 and switch3
peg3_4 .equ 03eh ;border to distinguish between switch3 and switch4
peg4_5 .equ 058h ;border to distinguish between switch4 and switch5
peg5_6 .equ 072h ;border to distinguish between switch5 and switch6
peg6_7 .equ 08ch ;border to distinguish between switch6 and switch7
peg7_8 .equ 0a5h ;border to distinguish between switch7 and switch8
peg8_9 .equ 0beh ;border to distinguish between switch8 and switch9

; en_kint (enable key-interrupt) sets the registers in a way that pushing

; any key will cause an interrupt. This subroutine must be called to

; re-enable the key interrupt (e.g. after handling the key service routine)

APPENDIX B: Key Input by Interrupt



ANALOG KEYBOARD

10/14

en_kint:

ldi ddrpb,inpall ;sets all port B pins low — all input

ldi orpb,02h ;option register:

; sets bit b1 high, the rest low

ldi drpb,01h ;data register:

; sets bit b0 high, the rest low

;— pb0 becomes input, no pull-up, no int

; pb1 becomes input with pull-up and int.

; pb2-7 become input with pull-up, but

; are not used here

ldi ior,10h ;interrupt option register:

;— set D4: enable all interrupts

; reset D5: falling edge on int.input(#2)

ret ;return to the calling address

;*** hd_kint (handle key interrupt) interrupt service routine

;*** evaluates the data resulting in pushing a key.

;*** Interrupt vector #2 (0ff4h and 0ff5h) must point (jump) to hd_kint.

hd_kint: ldi drpb,03h ;data register:

; 0000 0011

ldi ddrpb,01h ;data direction register:

; 0000 0001

; — pb0 becomes output

ldi orpb,03h ;option register:

; 0000 0011

; — pb0: push-pull output

; — pb1: ADC-input

; pb2-7 become input with pull-up, but

; are not used here

ldi adcr,30h ;A/D control register:

; 0011 0000 — -activate A/D converter

; -start conversion

; -disable A/D interrupt

loop: jrr 6,adcr,loop ;waits until the End Of Conversion

; bit is set (indicator that a conversion

; has been completed)

ld a,adr ;load acc with the result of the A/D

; conversion

;now the result is compared with the

; values which represent the different

; switches



ANALOG KEYBOARD

11/14

sw1: cpi a,peg1_2 ;compare with peg1_2

jrnz sw2 ;A/D result was smaller than peg1_2

jp s1 ; — switch1 was pressed: jump to s1

sw2: cpi a,peg2_3 ;compare with peg2_3

jrnz sw3 ;A/D result was smaller than peg2_3

jp s2 ; — switch2 was pressed: jump to s2

sw3: cpi a,peg3_4 ;compare with peg3_4

jrnz sw4 ;A/D result was smaller than peg3_4

jp s3 ; — switch3 was pressed: jump to s3

sw4: cpi a,peg4_5 ;compare with peg4_5

jrnz sw5 ;A/D result was smaller than peg4_5

jp s4 ; — switch4 was pressed: jump to s4

sw5: cpi a,peg5_6 ;compare with peg5_6

jrnz sw6 ;A/D result was smaller than peg5_6

jp s5 ; — switch5 was pressed: jump to s5

sw6: cpi a,peg6_7 ;compare with peg6_7

jrnz sw7 ;A/D result was smaller than peg6_7

jp s6 ; — switch6 was pressed: jump to s6

sw7: cpi a,peg7_8 ;compare with peg7_8

jrnz sw8 ;A/D result was smaller than peg7_8

jp s7 ; — switch7 was pressed: jump to s7

sw8: cpi a,peg8_9 ;compare with peg8_9

jrnz sw9 ;A/D result was smaller than peg8_9

jp s8 ; — switch8 was pressed: jump to s8

sw9: jp s9 ;A/D result was bigger than peg8_9

; — switch9 was pressed: jump to s9

;

;*** The routines handling the reaction to the individual key presses

;*** are to be included here



ANALOG KEYBOARD

12/14

s1:

s2:

s3:

s4:

s5:

s6:

s7:

s8:

s9:

;*** Each routine must end with the following lines in order to enable

;*** another interrupt when the next key is pressed.

call en_kint ; enable another interrupt

return: reti



ANALOG KEYBOARD

13/14

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsability for the consequences of use of such information nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights
of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice.

This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or

systems without the express written approval of SGS-THOMSON Microelectronics.

 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent.
Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard

Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-
THOMSON SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM
USE OF THE SOFTWARE.



ANALOG KEYBOARD

14/14

