64K x 16 Static RAM #### **Features** - 2.7V-3.6V operation - · CMOS for optimum speed/power - Low active power (70 ns) - 198 mW (max.) (55 mA) - · Low standby power (70 ns, LL version) - 54 μW (max.) (15 μA) - · Automatic power-down when deselected - Power down either with CE or BHE and BLE HIGH - Independent control of Upper and Lower Bytes - · Available in 44-pin TSOP II (forward) ### **Functional Description** The CY62127V is a high-performance CMOS Static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption by 99% when deselected. The device enters power-down mode when \overline{CE} is HIGH or when \overline{CE} is LOW and both BLE and BHE are HIGH. Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified on the address pins (A₀ through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A_0 through A_{15}). Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O_1 to I/O_8 . If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this datasheet for a complete description of read and write modes. The input/output pins (I/O1 through I/O16) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW). The CY62127V is available in standard 44-pin TSOP Type II (forward pinout) and mini-BGA packages. ### Pin Configurations (continued) ### **Selection Guide** | | | | 62127V-55 | 62127V-70 | Units | |------------------------------|-------|-----|-----------|-----------|-------| | Maximum Access Time | 55 | 70 | ns | | | | Maximum Operating Current | | | 55 | 55 | mA | | Maximum CMOS Standby Current | Com'l | Std | 0.3 | 0.3 | mA | | | | L | 50 | 50 | μА | | | | LL | 15 | 15 | μА | | | Ind'l | LL | 30 | 30 | μА | Shaded areas contain preliminary information. ### **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied –55°C to +125°C Supply Voltage on V_{CC} to Relative GND^[1] –0.5V to +4.6V DC Voltage Applied to Outputs in High Z State [1]-0.5V to V_{CC} + 0.5V DC Input Voltage^[1].....-0.5V to V_{CC} + 0.5V ### Notes: - 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the "Instant On" case temperature. | Current into Outputs (LOW)20 | mΑ | |------------------------------|-----| | Static Discharge Voltage |)1V | | Latch-Up Current >200 | mΑ | ### **Operating Range** | Range | Ambient
Temperature ^[2] | V _{CC} | |------------|---------------------------------------|-----------------| | Commercial | 0°C to +70°C | 2.7V-3.6V | | Industrial | −40°C to +85°C | 2.7V-3.6V | ### **Electrical Characteristics** Over the Operating Range | | | | | 6 | 62127V-55, 70 | | | |---|--|---|--|---|--|---|---| | Description | Test Conditions | | | | Typ. ^[3] | Max. | Unit | | Output HIGH Voltage | $V_{CC} = Min., I_{OH} = -1.0$ |) mA | | 2.2 | | | ٧ | | Output LOW Voltage | V _{CC} = Min., I _{OL} = 2.1 i | mA | | | | 0.4 | ٧ | | Input HIGH Voltage | | | | 2.0 | | V _{CC} +
0.3 | V | | Input LOW Voltage ^[1] | | | | -0.3 | | 0.4 | ٧ | | Input Load Current | $GND \leq V_I \leq V_CC$ | | | -1 | | +1 | μΑ | | Output Leakage Current | $\begin{aligned} &\text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ &\text{Output Disabled} \end{aligned}$ | | | -1 | | +1 | μА | | V _{CC} Operating
Supply Current | $V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$ | | | | | 55 | mA | | Automatic CE
Power-Down Current
—TTL Inputs | $\label{eq:local_local_local_local} \begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$ | | | | | 2 | mA | | Automatic CE | Max. V _{CC} , | | Std | | | 0.3 | mA | | | | | L | | | 50 | μΑ | | | or $V_{IN} \le 0.3V$, f=0 | Com'l | LL | | 0.5 | 15 | μΑ | | | | Ind | LL | | 0.5 | 30 | μΑ | | | Output HIGH Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage Input Load Current Output Leakage Current V _{CC} Operating Supply Current Automatic CE Power-Down Current —TTL Inputs | Output HIGH Voltage $V_{CC} = Min., I_{OH} = -1.0$ Output LOW Voltage $V_{CC} = Min., I_{OL} = 2.1$ Input HIGH Voltage Input LOW Voltage Input Load Current $GND \le V_I \le V_{CC}$ Output Leakage Current $GND \le V_I \le V_{CC}$, Output Disabled V_{CC} Operating V_{CC} Output Disabled V_{CC} Operating $V_{CC} = Max., I_{OUT} = 0 mA, $ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{ c c c c } \hline \textbf{Description} & \textbf{Test Conditions} & \textbf{Min.} \\ \hline \textbf{Output HIGH Voltage} & \textbf{V}_{CC} = \text{Min., I}_{OH} = -1.0 \text{ mA} & 2.2 \\ \hline \textbf{Output LOW Voltage} & \textbf{V}_{CC} = \text{Min., I}_{OL} = 2.1 \text{ mA} \\ \hline \textbf{Input HIGH Voltage} & 2.0 \\ \hline \textbf{Input LOW Voltage}^{[1]} & -0.3 \\ \hline \textbf{Input Load Current} & \textbf{GND} \leq \textbf{V}_{I} \leq \textbf{V}_{CC} & -1 \\ \hline \textbf{Output Leakage Current} & \textbf{GND} \leq \textbf{V}_{I} \leq \textbf{V}_{CC}, \\ \hline \textbf{Output Disabled} & -1 \\ \hline \textbf{V}_{CC} \text{ Operating Supply Current} & \textbf{V}_{CC} = \text{Max., I}_{OUT} = 0 \text{ mA, f}_{f} = f_{MAX} = 1/t_{RC} \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \hline{\textbf{CE}} \geq \textbf{V}_{IH} & \textbf{V}_{IN} \leq \textbf{V}_{IL}, f = f_{MAX} \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \hline{\textbf{CE}} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \hline \textbf{V}_{IN} \leq \textbf{V}_{IL}, f = f_{MAX} \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \hline \textbf{CE}} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \hline \textbf{Output Disabled} & \textbf{Std} \\ \hline \textbf{L} & \textbf{Com'I} & \textbf{LL} \\ \hline \textbf{Com'I} & \textbf{LL} \\ \hline \end{tabular}$ | $\begin{array}{ c c c c c } \hline \textbf{Description} & \textbf{Test Conditions} & \textbf{Min.} & \textbf{Typ.}^{[3]} \\ \hline \textbf{Output HIGH Voltage} & \textbf{V}_{CC} = \text{Min., I}_{OH} = -1.0 \text{ mA} & 2.2 \\ \hline \textbf{Output LOW Voltage} & \textbf{V}_{CC} = \text{Min., I}_{OL} = 2.1 \text{ mA} \\ \hline \textbf{Input HIGH Voltage} & 2.0 \\ \hline \textbf{Input LOW Voltage}^{[1]} & -0.3 \\ \hline \textbf{Input Load Current} & \textbf{GND} \leq \textbf{V}_{I} \leq \textbf{V}_{CC} & -1 \\ \hline \textbf{Output Leakage Current} & \textbf{GND} \leq \textbf{V}_{I} \leq \textbf{V}_{CC}, \\ \hline \textbf{Output Disabled} & -1 \\ \hline \textbf{V}_{CC} & \textbf{Operating} & \textbf{V}_{CC} = \textbf{Max., I}_{OUT} = 0 \text{ mA, f} = f_{MAX} = 1/t_{RC} \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \overline{\textbf{CE}} \geq \textbf{V}_{IH} & \textbf{V}_{IN} \geq \textbf{V}_{IH} \text{ or V}_{IN} \leq \textbf{V}_{IL}, f = f_{MAX} \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \overline{\textbf{CE}} \geq \textbf{V}_{IH} & \textbf{V}_{IN} \leq \textbf{V}_{IL}, f = f_{MAX} \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \overline{\textbf{CE}} \geq \textbf{V}_{IH} & \textbf{V}_{IN} \leq \textbf{V}_{IL}, f = f_{MAX} \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \overline{\textbf{CE}} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \hline \textbf{CE} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \hline \textbf{V}_{IN} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \hline \textbf{V}_{IN} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \hline \textbf{Or V}_{IN} \leq 0.3 \textbf{V}, f = 0 & \hline \textbf{Com'I} & LL & 0.5 \\ \hline \end{tabular}$ | $ \begin{array}{ c c c c c c c } \hline \textbf{Description} & \textbf{Test Conditions} & \textbf{Min.} & \textbf{Typ.}^{[3]} & \textbf{Max.} \\ \hline \textbf{Output HIGH Voltage} & \textbf{V}_{CC} = \text{Min., I}_{OH} = -1.0 \text{ mA} & 2.2 \\ \hline \textbf{Output LOW Voltage} & \textbf{V}_{CC} = \text{Min., I}_{OL} = 2.1 \text{ mA} & 0.4 \\ \hline \textbf{Input HIGH Voltage} & 2.0 & \textbf{V}_{CC}^{C+} + 0.3 \\ \hline \textbf{Input LoW Voltage}^{[1]} & -0.3 & 0.4 \\ \hline \textbf{Input Load Current} & \textbf{GND} \leq \textbf{V}_{I} \leq \textbf{V}_{CC} & -1 & +1 \\ \hline \textbf{Output Leakage Current} & \textbf{GND} \leq \textbf{V}_{I} \leq \textbf{V}_{CC}, \\ \hline \textbf{Output Disabled} & -1 & +1 \\ \hline \textbf{V}_{CC} & \textbf{Operating} & \textbf{V}_{CC} = \textbf{Max.,} \\ \textbf{Supply Current} & \textbf{V}_{OUT} = 0 \text{ mA,} \\ \textbf{f} = \textbf{f}_{MAX} = 1/\textbf{f}_{RC} & 5 \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \hline{\textbf{CE}} \geq \textbf{V}_{IH} \\ \hline \textbf{V}_{IN} \geq \textbf{V}_{IL}, \textbf{f} = \textbf{f}_{MAX} & 2 \\ \hline \textbf{Automatic CE} & \textbf{Max. V}_{CC}, \hline{\textbf{CE}} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \hline \textbf{V}_{IN} \geq \textbf{V}_{IL}, \textbf{f} = \textbf{f}_{MAX} & 5 \\ \hline \textbf{CE} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \textbf{V}_{IN} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \textbf{V}_{IN} \geq \textbf{V}_{CC} - 0.3 \textbf{V}, \\ \textbf{or V}_{IN} \leq 0.3 \textbf{V}, \textbf{f} = 0 & \hline{\textbf{Com'I}} & \textbf{LL} & 0.5 & 15 \\ \hline \end{tabular}$ | ## Capacitance^[4] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 9 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 3.3V$ | 9 | pF | ### **AC Test Loads and Waveforms** #### Notes: Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions ($T_A = 25$ °C, $V_{CC} = 3.0V$). Parameters are guaranteed by design and characterization, and not 100% tested. Tested initially and after any design or process changes that may affect these parameters. ## Switching Characteristics^[5] Over the Operating Range | | | 6212 | 7V–55 | 62127V-70 | | | |-------------------|--|---|-------|-----------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | <u> </u> | 1 | | | ! | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | t _{AA} | Address to Data Valid | \$0000000000000000000000000000000000000 | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | t _{ACE} | CE LOW to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZOE} | $\overline{\text{OE}}$ LOW to Low Z ^[7] | 5 | | 5 | | ns | | t _{HZOE} | OE HIGH to High Z ^[6, 7] | | 20 | | 25 | ns | | t _{LZCE} | CE LOW to Low Z ^[7] | 10 | | 10 | | ns | | t _{HZCE} | CE HIGH to High Z ^[6, 7] | | 20 | | 25 | ns | | t _{PU} | CE LOW to Power-Up | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-Down | | 55 | | 70 | ns | | t _{DBE} | Byte Enable to Data Valid | | 55 | | 70 | ns | | t _{LZBE} | Byte Enable to LOW Z ^[7] | 5 | | 5 | | ns | | t _{HZBE} | Byte Disable to HIGH Z ^[6, 7] | | 20 | | 25 | ns | | WRITE CYCLI | E ^[8] | | | • | • | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE LOW to Write End | 45 | | 60 | | ns | | t _{AW} | Address Set-Up to Write End | 45 | | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 40 | | 50 | | ns | | t _{SD} | Data Set-Up to Write End | 25 | | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{LZWE} | WE HIGH to Low Z ^[7] | 5 | | 5 | | ns | | t _{HZWE} | WE LOW to High Z ^[6, 7] | | 25 | | 25 | ns | | t _{BW} | Byte Enable to End of Write | 45 | | 60 | | ns | Shaded areas contain preliminary information. #### Notes: ^{5.} Test conditions assume signal transition time of 5ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30pF load capacitance. t_{HZOE}, t_{HZVE}, and t_{HZBE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. At any given temperature and voltage condition, t_{HZOE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, t_{HZVE} is less than t_{LZOE}, and t_{HZBE} is less than t_{LZDE}, for any given device. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. Refer to truth table for further conditions from BHE and BLE. ## Data Retention Characteristics (Over the Operating Range for "L" and "LL" version only) | Parameter | Desci | Conditions ^[9] | Min. | Тур | Max. | Unit | | | |---------------------------------|--------------------------------------|---------------------------|------|---|-----------------|------|----|----| | V_{DR} | V _{CC} for Data Retention | | 2.0 | | 3.6 | V | | | | I _{CCDR} | Data Retention Current | | L | $V_{CC}=V_{DR}=3.0V$ | | 0.5 | 50 | μΑ | | | | Com'l | LL | $ \begin{vmatrix} V_{CC} = V_{DR} = 3.0V, \\ \overline{CE} \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or,} \\ V_{IN} \leq 0.3V \end{aligned} $ | | 0.5 | 15 | μΑ | | | | Ind'I | LL | $V_{IN} \leq 0.3V$ | | 0.5 | 30 | μΑ | | t _{CDR} ^[4] | Chip Deselect to Data Retention Time | | | | 0 | | | ns | | t _R | Operation Recovery Time | | | | t _{RC} | | | ns | ### **Data Retention Waveform** ## **Switching Waveforms** #### Notes: - No input may exceed V_{CC} + 0.3V. Device is continuously selected. OE, CE, BHE, BLE = V_{IL}. WE is HIGH for read cycle. ## Switching Waveforms (continued) # Read Cycle No. 2 ($\overline{\text{OE}}$ Controlled)[11, 12, 13] ## Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled)[13, 14] #### Notes: - 12. Address valid prior to or coincident with CE transition LOW. 13. Data I/O is high impedance if OE = V_{IH} or BHE and BLE = V_{IH}. 14. If CE, BHE, or BLE go HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. ## Switching Waveforms (continued) ## Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14] ## Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[13,\ 14]}$ #### Note: 15. During this period the I/Os are in the output state and input signals should not be applied. ## **Truth Table** | CE | OE | WE | BLE | BHE | I/O ₁ -I/O ₈ | I/O ₉ -I/O ₁₆ | Mode | Power | |----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------| | Н | Х | Х | Х | Х | High Z | High Z | Power Down | Standby (I _{SB}) | | L | L | Н | L | L | Data Out | Data Out | Read All Bits | Active (I _{CC}) | | L | L | Н | L | Н | Data Out | High Z | Read Lower Bits Only | Active (I _{CC}) | | L | L | Н | Н | L | High Z | Data Out | Read Upper Bits Only | Active (I _{CC}) | | L | Х | L | L | L | Data In | Data In | Write All Bits | Active (I _{CC}) | | L | Х | L | L | Н | Data In | High Z | Write Lower Bits Only | Active (I _{CC}) | | L | Х | L | Н | L | High Z | Data In | Write Upper Bits Only | Active (I _{CC}) | | L | Н | Н | L | L | High Z | High Z | Selected, Outputs Disabled | Active (I _{CC}) | | L | Х | Х | Н | Н | High Z | High Z | Power Down | Standby (I _{SB}) | ## **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|------------------|-----------------|--|--------------------| | 55 | CY62127V-55ZC | Z44 | 44-Lead TSOP II | Commercial | | | CY62127VL-55ZC | Z44 | 44-Lead TSOP II | | | | CY62127VLL-55ZC | Z44 | 44-Lead TSOP II | | | | CY62127VLL-55ZI | Z44 | 44-Lead TSOP II | Industrial | | 55 | CY62127V-70BAC | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Commercial | | | CY62127VL-70BAC | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | | | | CY62127VLL-70BAC | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | | | | CY62127VLL-70BAI | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Industrial | | 70 | CY62127V-70ZC | Z44 | 44-Lead TSOP II | Commercial | | | CY62127VL-70ZC | Z44 | 44-Lead TSOP II | | | | CY62127VLL-70ZC | Z44 | 44-Lead TSOP II | | | | CY62127VLL-70ZI | Z44 | 44-Lead TSOP II | Industrial | | 70 | CY62127V-70BAC | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Commercial | | | CY62127VL-70BAC | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | | | | CY62127VLL-70BAC | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | | | | CY62127VLL-70BAI | BA48 | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Industrial | Shaded areas contain preliminary information. Document #: 38-00686-A ### **Package Diagrams** 51-85096-C ### Package Diagrams (continued) #### 44-Pin TSOP II Z44 DIMENSION IN MM (INCH)