

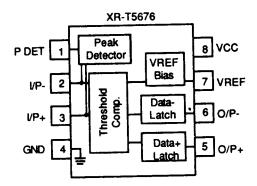
Low Power PCM Line Receiver

GENERAL DESCRIPTION

The XR-T5676 is a low power PCM line receiver IC intended to operated up to 2.048 MBPS and a maximum signal level attenuation of -10dB (cable loss) at half the bit rate. Because of it's small outline and low power consumption, this device is very well suited for mux/demux applications interfacing to several T1/CEPT lines.

FEATURES

Low Power (Typ 6mA)
Single +5.0V Supply
Up to 2.048 MBPS Operation
TTL Compatible Interface
Inputs: Balanced Transformer Single Coaxial
Capacitive Coupled Twisted Pair


APPLICATIONS

Mux/Demux Equipment T1 and CEPT Interfaces CPI's DMI's

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Storage Temperature +20V -65°C to +150°C

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-T5676IN	Ceramic	-40°C to +85°C
XR-T5676IP	Plastic	-40°C to +85°C

SYSTEM DESCRIPTION

The XR-T5676 PCM line receiver IC accepts the incoming PCM signals which have been attenuated and distorted by the cable through a balanced transformer or a single capacitive coupled terminal. A peak detector which follows the input generates a DC reference voltage for the positive and negative threshold comparator. This voltage in turn is mirrored around a reference voltage to establish the threshold voltage for the negative pulses.

PIN DESCRIPTION

Pin	Name	Description	5	O/P+	Data Positive Output. (active low)
1	PDET	Peak Detector Output. Connects to a timing capacitor for signal peak detection.	6	O/P	Data Negative Output. (active low)
2	I/P	Receiver Negative Input.	7	V _{REF}	Reference Voltage. Establishes reference voltage for transformer coupled applications.
3	I/P+	Receiver Positive Input.			oopioo appiioadono.
4	GND	Ground. Most negative supply voltage (0V)	8	V _{CC}	Positive Supply Voltage. (5.0V ± 5%)

DC ELECTRICAL CHARACTERISTICS

Test Conditions: $V_{CC} = 5V \pm 5\%$, $T_A = 25^{\circ}C$ unless otherwise specified.

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
Supply Voltage	4.75		5.25	V	
Supply Current		6	10	l mA	
Data Output Low		0.3	0.6	V	Pin 5 & 6 l _{Ot} = 1.6mA
Data Output High	3.0	3.6		v	Pin 5 & 6 l _{OH} = 400μA

AC ELECTRICAL CHARACTERISTICS

Test Conditions: $V_{CC} = 5V \pm 5\%$, $T_A = 25^{\circ}C$ unless otherwise specified.

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
Input Level		6	6.6	V _{p−p}	Pins 2 & 3
Loss Input Signal Alarm Level		0.6		V _{p−p}	Pins 2 & 3
Input Impedance		2.5		KΩ	@ 2.048 MBPS
Data Pulse Width	200	244	300	nS	Cable loss = 0dB

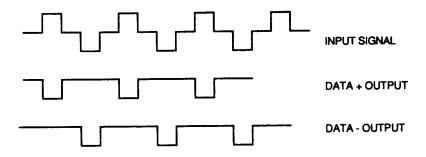


Figure 1. Reciever Output Timing Diagram with 1-1-1-1 Pattern

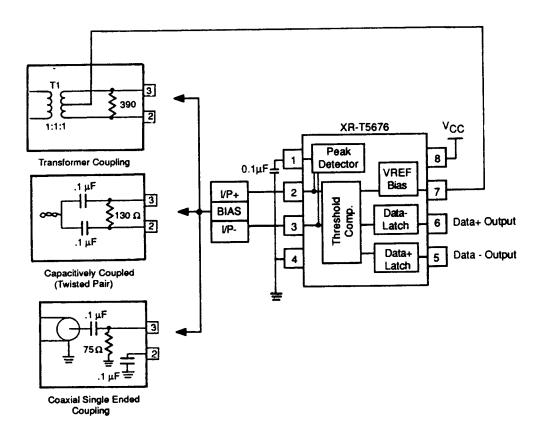


Figure 2. Typical Application Circuit