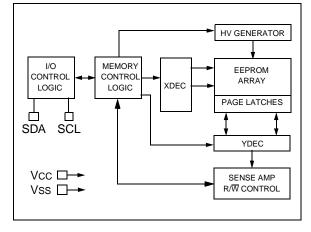


24C01SC/02SC

1K/2K 5.0V I²CTM Serial EEPROMs for Smart Cards


FEATURES

- ISO Standard 7816 pad locations
- Low power CMOS technology
- 1 mA active current typical
- 10 µA standby current typical at 5.5V
- Organized as a single block of 128 bytes (128 x 8) or 256 bytes (256 x 8)
- 2-wire serial interface bus, I²C[™] compatible
- 100 kHz and 400 kHz compatibility
- Self-timed write cycle (including auto-erase)
- Page-write buffer for up to 8 bytes
- 2 ms typical write cycle time for page-write
- ESD protection > 4 kV
- 1,000,000 E/W cycles guaranteed
- Data retention > 200 years
- · Available for extended temperature ranges
- Commercial (C): 0°C to +70°C


DESCRIPTION

The Microchip Technology Inc. 24C01SC and 24C02SC are 1K-bit and 2K-bit Electrically Erasable PROMs with bondpad positions optimized for smart card applications. The devices are organized as a single block of 128 x 8-bit or 256 x 8-bit memory with a two-wire serial interface. The 24C01SC and 24C02SC also have page-write capability for up to 8 bytes of data.

DIE LAYOUT

BLOCK DIAGRAM

I²C is a trademark of Philips Corporation.

1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

Vcc	7.0V
All inputs and outputs w.r.t. VSS	0.6V to Vcc +1.0V
Storage temperature	65°C to +150°C
Ambient temp. with power applied	65°C to +125°C
ESD protection on all pads	Š4 kV

*Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: PAD FUNCTION TABLE

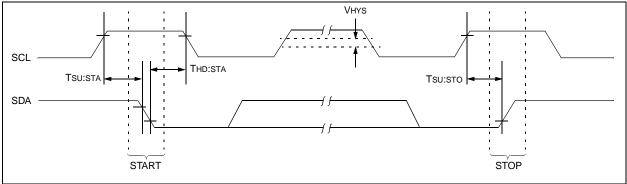

Name	Function
Vss	Ground
SDA	Serial Address/Data I/O
SCL	Serial Clock
Vcc	+4.5V to 5.5V Power Supply
DC	Don't connect

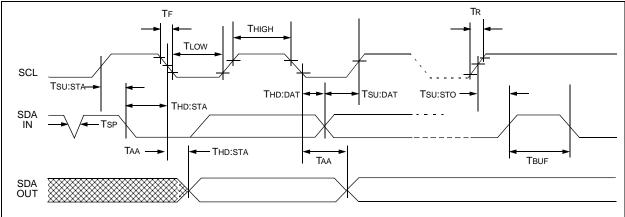
TABLE 1-2: DC CHARACTERISTICS

	VCC = +4.5V to +5.5V		Commercial (C): Tamb		C): Tamb = $0^{\circ}C$ to $+70^{\circ}C$
Parameter	Symbol	Min.	Max.	Units	Conditions
SCL and SDA pads: High level input voltage	Vін	.7 Vcc	_		
Low level input voltage	VIL	_	.3 Vcc	V	
Hysteresis of Schmidt trigger inputs	VHYS	.05 Vcc	—	V	(Note)
Low level output voltage	Vol	_	.40	V	IOL = 3.0 mA, VCC = 4.5V
Input leakage current (SCL)	Iц	-10	10	μA	VIN = .1V to 5.5V
Output leakage current (SDA)	Ilo	-10	10	μA	VOUT = .1V to 5.5V
Pin capacitance (all inputs/outputs)	Cin, Cout	—	10	pF	Vcc = 5.0V (Note 1) Tamb = 25°C, FcLK = 1 MHz
Operating current	Icc Write	_	3	mA	Vcc = 5.5V
	Icc Read	_	1	mA	Vcc = 5.5V, SCL = 400 KHz
Standby current	Iccs		100	μA	VCC = 5.5V, SDA = SCL = VCC

Note: This parameter is periodically sampled and not 100% tested.

FIGURE 1-1: BUS TIMING START/STOP

TABLE 1-3: AC CHARACTERISTICS


Parameter	Symbol	Min.	Max.	Units	Remarks
Clock frequency	FCLK	—	400	kHz	
Clock high time	Thigh	600	—	ns	
Clock low time	TLOW	1300	—	ns	
SDA and SCL rise time	TR	—	300	ns	(Note 1)
SDA and SCL fall time	TF	—	300	ns	(Note 1)
START condition hold time	THD:STA	600	_	ns	After this period the first clock pulse is generated
START condition setup time	TSU:STA	600	_	ns	Only relevant for repeated START condition
Data input hold time	THD:DAT	0	—	ns	(Note 2)
Data input setup time	TSU:DAT	100	—	ns	
STOP condition setup time	TSU:STO	600	—	ns	
Output valid from clock	ΤΑΑ	—	900	ns	(Note 2)
Bus free time	TBUF	1300	_	ns	Time the bus must be free before a new transmission can start
Output fall time from Viн minimum to Vi∟ maximum	TOF	20 +0.1 CB	250	ns	(Note 1), CB ð 100 pF
Input filter spike suppression (SDA and SCL pins)	TSP		50	ns	(Note 3)
Write cycle time	Twr	_	10	ms	Byte or Page mode
Endurance		1M		cycles	25°C, Vcc = 5V, Block Mode (Note 4)

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

- 3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.
- 4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our website.

FIGURE 1-2: BUS TIMING DATA

2.0 FUNCTIONAL DESCRIPTION

The 24C01SC/02SC supports a bi-directional two-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, and a device receiving data as receiver. The bus has to be controlled by a master device which generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions, while the 24C01SC/02SC works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

3.0 BUS CHARACTERISTICS

The following bus protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition.

Accordingly, the following bus conditions have been defined (Figure 3-1).

3.1 Bus not Busy (A)

Both data and clock lines remain HIGH.

3.2 Start Data Transfer (B)

A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition.

3.3 Stop Data Transfer (C)

A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition.

3.4 Data Valid (D)

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal.

The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.


Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the master device and is theoretically unlimited, although only the last 16 will be stored when doing a write operation. When an overwrite does occur, it will replace data in a first in first out fashion.

3.5 Acknowledge

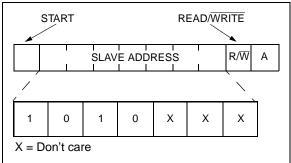
Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit.

Note:	The 24C01SC/02SC does not generate		
	any acknowledge bits if an internal pro-		
	gramming cycle is in progress.		

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

FIGURE 3-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

3.6 Slave Address


After generating a START condition, the bus master transmits the slave address consisting of a 4-bit device code (1010) for the 24C01SC/02SC, followed by three don't care bits.

The eighth bit of slave address determines if the master device wants to read or write to the 24C01SC/02SC (Figure 3-2).

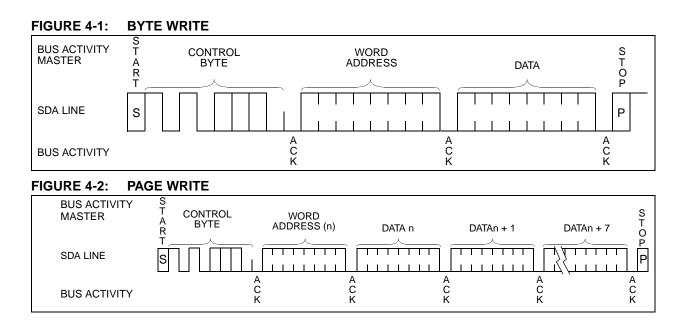
The 24C01SC/02SC monitors the bus for its corresponding slave address all the time. It generates an acknowledge bit if the slave address was true, and it is not in a programming mode.

Operation	Control Code	Chip Select	R/W
Read	1010	XXX	1
Write	1010	XXX	0

FIGURE 3-2: CONTROL BYTE ALLOCATION

4.0 WRITE OPERATION

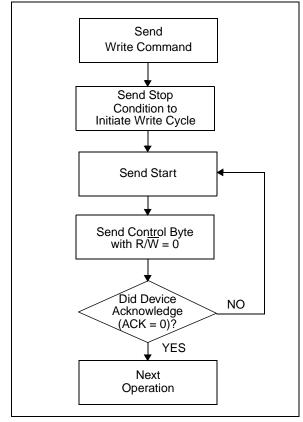
4.1 <u>Byte Write</u>


Following the start signal from the master, the device code (4 bits), the don't care bits (3 bits), and the R/\overline{W} bit, which is a logic low, is placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer of the 24C01SC/02SC. After receiving another acknowledge signal from the 24C01SC/02SC, the master device will transmit the data word to be written into the addressed memory location. The 24C01SC/02SC acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time the 24C01SC/02SC will not generate acknowledge signals (Figure 4-1).

4.2 Page Write

The write control byte, word address, and the first data byte are transmitted to the 24C01SC/02SC in the same way as in a byte write. But instead of generating a stop condition, the master transmits up to eight data bytes to the 24C01SC/02SC, which are temporarily stored in the on-chip page buffer and will be written into the memory after the master has transmitted a stop condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order five bits of the word address remains constant. If the master should transmit more than eight words prior to generating the stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the stop condition is received an internal write cycle will begin (Figure 4-2).

Page write operations are limited to writing Note: bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and end at addresses that are integer multiples of [page size - 1]. If a page write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.


24C01SC/02SC

5.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write command (R/W = 0). If the device is still busy with the write cycle, then NO ACK will be returned. If the cycle is complete, then the device will return the ACK, and the master can then proceed with the next read or write command. See Figure 5-1 for flow diagram.

FIGURE 5-1: ACKNOWLEDGE POLLING FLOW

6.0 READ OPERATION

Read operations are initiated in the same way as write operations with the exception that the R/\overline{W} bit of the slave address is set to one. There are three basic types of read operations: current address read, random read, and sequential read.

6.1 Current Address Read

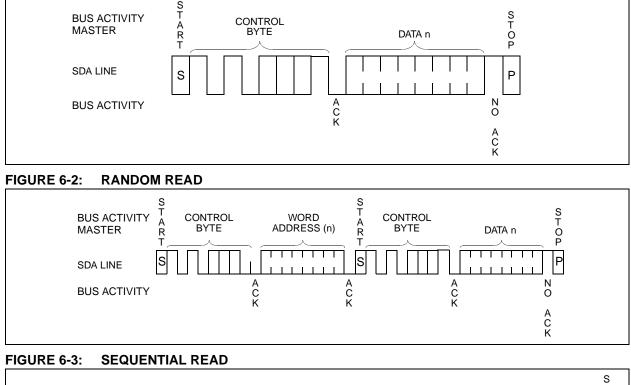
The 24C01SC/02SC contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with R/W bit set to one, the 24C01SC/02SC issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a stop condition and the 24C01SC/02SC discontinues transmission (Figure 6-1).

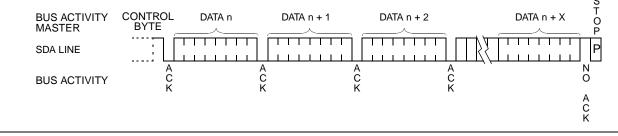
6.2 Random Read

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the 24C01SC/02SC as part of a write operation. After the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then, the master issues the control byte again but with the R/W bit set to a one. The 24C01SC/02SC will then issue an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a stop condition and the 24C01SC/02SC discontinues transmission (Figure 6-2).

6.3 Sequential Read

Sequential reads are initiated in the same way as a random read except that after the 24C01SC/02SC transmits the first data byte, the master issues an acknowledge as opposed to a stop condition in a random read. This directs the 24C01SC/02SC to transmit the next sequentially addressed 8-bit word (Figure 6-3).


To provide sequential reads the 24C01SC/02SC contains an internal address pointer which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.


6.4 Noise Protection

The 24C01SC/02SC employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below 1.5 volts at nominal conditions.

The SCL and SDA inputs have Schmitt trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

7.0 PAD DESCRIPTIONS

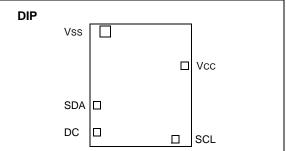
7.1 SDA Serial Address/Data Input/Output

This is a bi-directional pad used to transfer addresses and data into and data out of the device. It is an open drain terminal, therefore the SDA bus requires a pull-up resistor to Vcc (typical 10K³/₄ for 100 kHz, 2 K³/₄ for 400 kHz).

For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

7.2 SCL Serial Clock

This input is used to synchronize the data transfer from and to the device.


7.3 DC Don't Connect

This pad is used for test purposes and should not be bonded out. It is pulled down to Vss through an internal resistor.

8.0 DIE CHARACTERISTICS

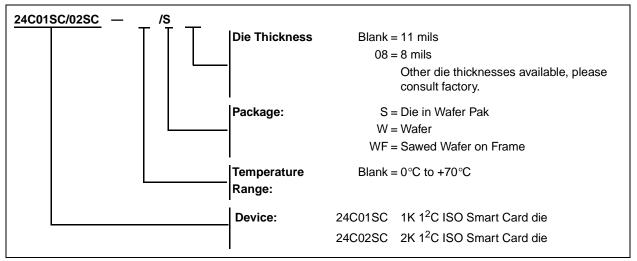
Figure 8-1 shows the die layout of the 24C01SC/02SC, including bondpad positions. Table 8-1 shows the actual coordinates of the bondpad midpoints with respect to the center of the die.

FIGURE 8-1: DIE LAYOUT

TABLE 8-1:BONDPAD COORDINATES

Pad Name	Pad Midpoint, X dir.	Pad Midpoint, Y dir.
Vss	-495.000	749.130
SDA	-605.875	-271.875
SCL	479.875	-746.625
Vcc	605.875	-261.375

Note 1: Dimensions are in microns.


2: Center of die is at the 0,0 point.

24C01SC/02SC

NOTES:

24C01SC/02SC Product Identification System

To order or to obtain information (e.g., on pricing or delivery), please use the listed part numbers, and refer to the factory or the listed sales offices.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

4. Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

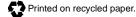
Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02