
88NXX Preliminary CMOS IC

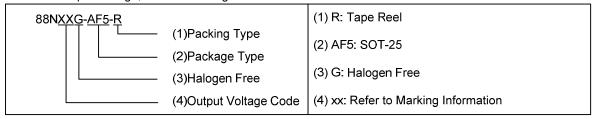
# BUILT-IN DELAY CIRCUIT HIGH-PRECISION VOLTAGE DETECTOR

### **■** DESCRIPTION

The UTC 88NXX is a high-precision voltage detector developed basing on CMOS technology. The detection voltage is fixed internally. A time delayed reset can be accomplished with an external capacitor. N-ch open-drain output form is available.

The UTC **88NXX** is generally used for power supply monitor of portable equipment such as notebook PCs, digital still cameras, PDAs, and mobile phones, constant voltage power monitor of cameras, video equipment and communication equipment, and power monitor or reset of CPUs and microcomputers.



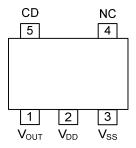

#### **■ FEATURES**

- \* Extremely Low Current Dissipation :  $1.2\mu A$  Typ. (Detection Voltage  $\geq 1.5$  V @  $V_{DD}$ =3.5 V)
- \* ±2.0 % Accuracy Detection Voltage
- \* Hysteresis Characteristics: 5% TYP
- \* Detection Voltage varies from 1.5V to 6.0V with 0.1V step
- \* Output Forms: N-ch open-drain output (when it is in Active-Low)

#### ■ ORDERING INFORMATION

| Ordering Number | Package | Packing   |  |  |  |  |
|-----------------|---------|-----------|--|--|--|--|
| 88NXXG-AF5-R    | SOT-25  | Tape Reel |  |  |  |  |
|                 |         |           |  |  |  |  |

Note: XX: Output Voltage, refer to Marking Information.



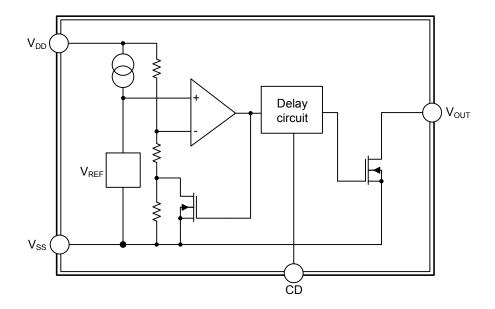

www.DataSheet4U.com

## MARKING INFORMATION

| PACKAGE | VOLTAGE CODE       | MARKING                        |  |  |  |
|---------|--------------------|--------------------------------|--|--|--|
| SOT-25  | 21:2.1V<br>29:2.9V | 3 2 1  MXXG  Voltage Code  4 5 |  |  |  |

# **■ PIN CONFIGURATION**




# **■** PIN DESCRIPTION

| PIN NO | PIN NAME  | DESCRIPTION                        |
|--------|-----------|------------------------------------|
| 1      | $V_{OUT}$ | Voltage Detection Output Pin       |
| 2      | $V_{DD}$  | Voltage Input Pin                  |
| 3      | $V_{SS}$  | GND Pin                            |
| 4      | NC        | No Connection (Note)               |
| 5      | CD        | Connection Pin For Delay Capacitor |

Note: The NC pin is electrically open and can be connected to  $V_{DD}$  or  $V_{SS}$ .

www.DataSheet4U.com

# ■ BLOCK DIAGRAM



www.DataSheet4U.com

## ABSOLUTE MAXIMUM RATING (Ta=25°C, unless otherwise specified)

| PARAMETER             | SYMBOL              | RATINGS                       | UNIT     |
|-----------------------|---------------------|-------------------------------|----------|
| Power Supply Voltage  | $V_{DD}$ - $V_{SS}$ | 12                            | V        |
| CD pin Input Voltage  | $V_{CD}$            | $V_{SS}$ -0.3 ~ $V_{DD}$ +0.3 | <b>V</b> |
| Output Voltage        | $V_{OUT}$           | $V_{SS}$ -0.3 ~ $V_{SS}$ +12  | V        |
| Output Current        | I <sub>OUT</sub>    | 50                            | mA       |
| Power Dissipation     | $P_{D}$             | 250                           | mW       |
| Operating Temperature | $T_OPR$             | -40 ~ +85                     | °C       |
| Storage Temperature   | T <sub>STG</sub>    | -40 ~ +125                    | °C       |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

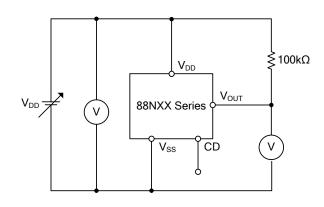
## ELECTRICAL CHARACTERISTICS (Ta=25°C unless otherwise specified)

Detection Voltage: 2.1V

| PARAMETER                                          | SYMBOL                                                | TEST<br>CIRCUIT | TEST CONDITIONS                                                        | MIN                        | TYP                        | MAX                        | UNIT     |
|----------------------------------------------------|-------------------------------------------------------|-----------------|------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------|
| Detection Voltage (Note 1)                         | -V <sub>DET</sub>                                     | 1               |                                                                        | -V <sub>DET(S)</sub> ×0.98 | -V <sub>DET(S)</sub>       | -V <sub>DET(S)</sub> ×1.02 | V        |
| Hysteresis Width                                   | V <sub>HYS</sub>                                      | 1               |                                                                        | -V <sub>DET</sub> ×0.03    | -V <sub>DET</sub><br>×0.05 | -V <sub>DET</sub><br>×0.08 | ٧        |
| Current Consumption                                | I <sub>SS</sub>                                       | 2               | V <sub>DD</sub> =3.5 V                                                 |                            | 1.2                        | 5                          | μΑ       |
| Operating Voltage                                  | $V_{DD}$                                              | 1               |                                                                        | 0.95                       |                            | 10.0                       | <b>V</b> |
| Output Current                                     | l <sub>out</sub>                                      | 3               | Output transistor<br>Nch, V <sub>DS</sub> =0.5V, V <sub>DD</sub> =1.2V | 0.59                       | 1.36                       |                            | mA       |
| Leakage Current                                    | I <sub>LEAK</sub>                                     | 3               | Output transistor<br>Nch, V <sub>DS</sub> =10V, V <sub>DD</sub> =10V   |                            |                            | 0.1                        | μΑ       |
| Detection Voltage Temperature Coefficient (Note 2) | $\frac{\Delta - V_{DET}}{\Delta Ta \times - V_{DET}}$ | 1               | Ta=-40°C ~ +85°C                                                       |                            | ±100                       | ±350                       | ppm/°C   |
| Delay Time                                         | $t_D$                                                 | 4               | V <sub>DD</sub> =3.5V, C <sub>D</sub> =4.7 nF                          | 20                         | 30                         | 34                         | ms       |

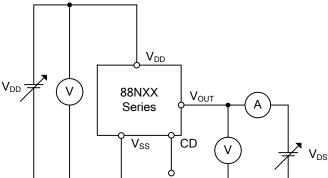
**Detection Voltage: 2.9V** 

| PARAMETER                                          | SYMBOL                                                | TEST<br>CIRCUIT | TEST CONDITIONS                                                        | MIN                           | TYP                        | MAX                        | UNIT   |
|----------------------------------------------------|-------------------------------------------------------|-----------------|------------------------------------------------------------------------|-------------------------------|----------------------------|----------------------------|--------|
| Detection Voltage (Note 1)                         | -V <sub>DET</sub>                                     | 1               |                                                                        | -V <sub>DET(S)</sub><br>×0.98 | -V <sub>DET(S)</sub>       | -V <sub>DET(S)</sub> ×1.02 | V      |
| Hysteresis Width                                   | V <sub>HYS</sub>                                      | 1               |                                                                        | -V <sub>DET</sub> ×0.03       | -V <sub>DET</sub><br>×0.05 | -V <sub>DET</sub><br>×0.08 | V      |
| Current Consumption                                | I <sub>SS</sub>                                       | 2               | V <sub>DD</sub> =4.5 V                                                 |                               | 1.3                        | 5                          | μA     |
| Operating Voltage                                  | $V_{DD}$                                              | 1               |                                                                        | 0.95                          |                            | 10.0                       | V      |
| Output Current                                     | l <sub>out</sub>                                      | 3               | Output transistor<br>Nch, V <sub>DS</sub> =0.5V, V <sub>DD</sub> =2.4V | 2.88                          | 4.98                       |                            | mA     |
| Leakage Current                                    | I <sub>LEAK</sub>                                     | 3               | Output transistor<br>Nch, V <sub>DS</sub> =10V, V <sub>DD</sub> =10V   |                               |                            | 0.1                        | μA     |
| Detection Voltage Temperature Coefficient (Note 2) | $\frac{\Delta - V_{DET}}{\Delta Ta \times - V_{DET}}$ | 1               | Ta=-40°C ~ +85°C                                                       |                               | ±100                       | ±350                       | ppm/°C |
| Delay Time                                         | $t_{D}$                                               | 4               | $V_{DD}$ =4.5V, $C_{D}$ =4.7 nF                                        | 20                            | 27                         | 34                         | ms     |


Note: 1.  $^{-V_{DET}}$ : Actual detection voltage  $^{-V_{DET(S)}}$ : Specified detection voltage

www.DataShee2.4 The temperature change ratio in the detection voltage [mV/°C] is calculated by using the following equation:

$$\frac{\Delta - V_{DET}}{\Delta Ta} [mV/^{\circ}C]^{(1)} = -V_{DET} (Typ.)[V]^{(2)} \times \frac{\Delta - V_{DET}}{\Delta Ta \times - V_{DET}} [ppm/^{\circ}C]^{(3)} \div 1000$$


- (1) Temperature change ratio of the detection voltage
- (2) Specified detection voltage
- (3) Detection voltage temperature coefficient

#### ■ TEST CIRCUITS



V<sub>DD</sub>
88NXX Series V<sub>OUT</sub>
0
V<sub>SS</sub>
CD

Figure 1



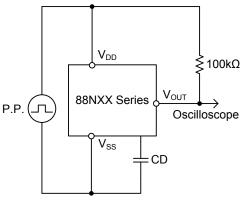



Figure 2

Figure 3

Figure 4

www.Dat

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.