Phone: (516) 997-7474

Fax: (516) 997-7479

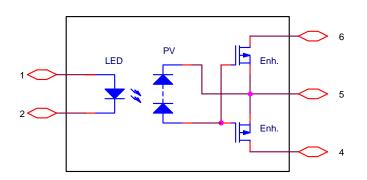
Website: www.dionics-usa.com

DIH-128 Power MOSFET SPST Photovoltaic AC-DC N/O Relay

Features:

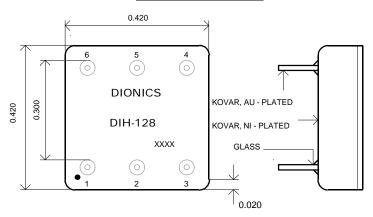
- ➤ Low Level Logic Compatibility
- ➤ Optical Isolation to 400VDC
- ➤ Low On Resistance, Low Offset Voltage
- Low Off-State Leakage Current.
- ➤ High Speed Switching Response.
- ➤ High Transient Immunity, No False Turn on
- ➤ Hermetically Sealed 6-Pin Mini DIP Foot Print
- Designed To Meet MIL-R-28750
- ➤ Y-Level MIL-Screening Available (**DIH-128Y**)

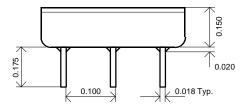
Applications:


- Replacement of Mechanical Relays
- ➤ Motor Control & Power Control
- ➤ Aircraft Flight Control Systems
- ➤ A.T.E. (Automatic Test Equipment)
- ➤ Load Control From Processor I/O Ports
- ➤ High-side DC Power Switching
- ➤ Power Supply Circuits
- Medical Electronics

Description:

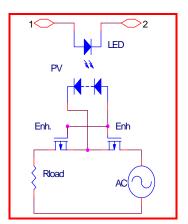
The DIH-128 is a State-of-the-Art Photovoltaic Solid State Relay designed for A.T.E. applications where speed, on-resistance and leakage current are critical. These photovoltaic relays incorporate an infrared LED input, a photovoltaic (PV) diode array including a unique turn-off circuit connected to the gates of a pair of high voltage MOSFETs as output. The photovoltaic diode array is a series-connected group of photosensitive diodes, which are electrically isolated from, but optically coupled to, the input LED. Input/Output isolation is rated at 400 VDC.


When activated, the LED emits infrared light toward the photovoltaic diode array, which then responds with a self-generated open circuit voltage, V_{oc} , proportional to the LED input current. This V_{oc} , which is floating and completely isolated from any power supply, is applied to the Gates of the MOSFETs. At the proper value of the input LED current, the generated V_{oc} is sufficient to turn on the MOSFETs and cause the relay to conduct. The MOSFET outputs provide thermal stability, immunity from false turn-on, and low offset voltage.

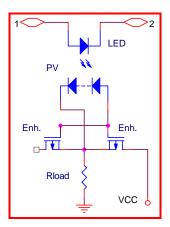

* DIH-128 Schematic

Pin Designation				
Pin number Function				
1	Input +			
2	Input -			
3	Case			
4	Output Drain			
5	Output Common Source			
6	Output Drain			

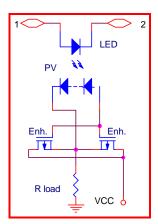
* Package Lay out:



DIH-128: Power MOSFET SPST Photovoltaic AC-DC Relay


Electrical Characteristics (@ 25 ° C unless otherwise specified):

Wiring Configuration:


AC-DC Wiring Config. (1)

DC Wiring Config. (2) Single MOSFET

DC Wiring Config. (3)
Parallel MOSFETs

Input Characteristics	Condition	Min.	Typ.	Max	Units
Turn-On Current	100 mA load	_	5	10	mA
Turn-Off Current		1.2	_	_	V
Forward Voltage Drop	Input Current = 10mA	_	2.2	2.7	V
	Input Current = 25mA	_	2.6	2.9	V
Reverse Voltage	Reverse Current = 10µA	10	_	_	V

Output Characteristics	AC-DC Wiring Config. (1)	DC Wiring Config. (2)	DC Wiring Config. (3)	Unit
Load Current (Continuous in Free Air)	600	600	1200	mA
On Resistance ($I_{in} = 15 \text{mA}$, $V_{op} = 30 \text{V}$)	1.0	0.5	0.25	Ohm
Typical Output Capacitance	80	160	320	pF
(Bias Voltage= 50V)				
Off-State Leakage @ 250V	10	10	20	μΑ
Output Offset Voltage (I _{in} = 15mA)	250	250	250	μV
Turn-On Time*	500	500	500	μs
Turn-Off Time*	70	70	70	μs
Load Voltage ($I_l = 10 \text{mA}$)	250	250	250	V

^{*} $I_{led} = 25 \text{ mA}$; f = 100 Hz; Pulse Width = 100 ms; $I_{load} = 600 \text{ mA}$

* <u>Environmental Conditions:</u>

Operating Temp.: -20 to 85 °C (Comm.)

(Y-Level Mil.) -55 to 125 ^{0}C

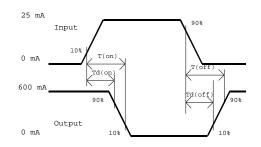
Storage Temp.: $-20 \text{ to } 85 \,^{0}\text{C (Comm.)}$

(Y-Level Mil.) -55 to 125 ^{0}C

Shock: (Y-Level Mil.) 50 G, MIL-STD-202

Method 202

Hermeticity: Gross Leak (Comm.)


10⁻⁵ atm cc/sec

(Y-Level Mil.) Fine Leak

5x10⁻⁸ atm cc/sec

Vibration: (Y-Level Mil.) 20G, 10 to 2000 Hz

Acceleration: (Y-Level Mil.) 100 G Weight: 1.5 Grams

General Characteristics: