

Preliminary User's Manual

78K0/KD1

8-Bit Single-Chip Microcontrollers

μ PD780121	μ PD780121(A)	μ PD780121(A1)
μ PD780122	μ PD780122(A)	μ PD780122(A1)
μ PD780123	μ PD780123(A)	μ PD780123(A1)
μ PD780124	μ PD780124(A)	μ PD780124(A1)
μ PD78F0124	μPD78F0124(A)	

Document No. U16315EJ1V0UD00 (1st edition)

Date Published July 2002 N CP(K)

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Ethernet is a trademark of Xerox Corp.

OSF/Motif is a trademark of Open Software Foundation, Inc.

TRON stands for The Realtime Operating system Nucleus.

ITRON is an abbreviation of Industrial TRON.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed: μ PD78F0124, 78F0124(A)

The customer must judge the need for a license: μ PD780121, 780122, 780123, 780124, 780121(A), 780122(A), 780123(A), 780124(A), 780121(A1), 780122(A1), 780124(A1)

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

• Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

• Filiale Italiana

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

• Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Branch Sweden

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

INTRODUCTION

Readers

This manual is intended for user engineers who wish to understand the functions of the 78K0/KD1 Series and design and develop application systems and programs for these devices.

The target products are as follows.

78K0/KD1 Series: μ PD780121, 780122, 780123, 780124, 78F0124, 780121(A), 780122(A), 780123(A), 780124(A), 78F0124(A), 780121(A1), 780122(A1), 780123(A1), 780124(A1)

Purpose

This manual is intended to give users an understanding of the functions described in the **Organization** below.

Organization

The 78K0/KD1 Series manual is separated into two parts: this manual and the instructions edition (common to the 78K/0 Series).

78K0/KD1 User's Manual (This Manual) 78K/0 Series User's Manual Instructions

- Pin functions
- Internal block functions
- Interrupts
- Other on-chip peripheral functions
- Electrical specifications (target values)
- CPU functions
- Instruction set
- Explanation of each instruction

How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.

- When using this manual as the manual for (A) products and (A1) products:
 - ightarrow Only the quality grade differs between standard products and (A) and (A1) products. Read the part number as follows.
 - μ PD780121 $\rightarrow \mu$ PD780121(A), 780121(A1)
 - μ PD780122 $\rightarrow \mu$ PD780122(A), 780122(A1)
 - μ PD780123 $\rightarrow \mu$ PD780123(A), 780123(A1)
 - μ PD780124 $\rightarrow \mu$ PD780124(A), 780124(A1)
 - μ PD78F0124 $\to \mu$ PD78F0124(A)
- To gain a general understanding of functions:
 - \rightarrow Read this manual in the order of the **CONTENTS**.
- How to interpret the register format:
 - → For a bit number enclosed in square, the bit name is defined as a reserved word in the assembler, and is already defined in the header file named sfrbit.h in the C compiler.
- To check the details of a register when you know the register name:
 - → Refer to APPENDIX C REGISTER INDEX.
- To know details of the 78K/0 Series instructions:
 - ightarrow Refer to the separate document 78K/0 Series Instructions User's Manual (U12326E).

Caution Examples in this manual employ the "standard" quality grade for general electronics. When using examples in this manual for the "special" quality grade, review the quality grade of each part and/or circuit actually used.

Conventions

Data significance: Higher digits on the left and lower digits on the right

Remark: Supplementary information

Numerical representations: Binary ... xxx or xxxB

 $\begin{array}{ll} \text{Decimal} & \cdots \times \times \times \\ \text{Hexadecimal} & \cdots \times \times \times + \end{array}$

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
78K0/KD1 User's Manual	This manual
78K/0 Series Instructions User's Manual	U12326E

Documents Related to Development Tools (Software) (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K Series System Simulator Ver. 2.30 or Later	Operation (Windows™ Based)	U15373E
	External Part User Open Interface Specifications	U15802E
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
RX78K0 Real-Time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-780148-NS-EM1 Emulation Board	To be prepared

Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Product & Packages -	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

CONTENTS

CHAPT	ER 1 (OUTLINE	25
1.1	Featu	res	25
1.2	2 Applications		26
1.3	Ordering Information		
1.4	Pin Co	onfiguration (Top View)	29
1.5	78K0/	Kxx Series Lineup	31
1.6		Diagram	
1.7	Outlin	ne of Functions	34
СНАРТ	ER 2 I	PIN FUNCTIONS	36
2.1	Pin Fu	unction List	36
2.2	Descr	ription of Pin Functions	39
	2.2.1	P00 to P03 (port 0)	39
	2.2.2	P10 to P17 (port 1)	39
	2.2.3	P20 to P27 (port 2)	40
	2.2.4	P30 to P33 (port 3)	40
	2.2.5	P60 to P63 (port 6)	40
	2.2.6	P70 to P77 (port 7)	40
	2.2.7	P120 (port 12)	
	2.2.8	P130 (port 13)	41
	2.2.9	P140 (port 14)	41
	2.2.10	AVREF	
	2.2.11	AVss	
	2.2.12		
	2.2.13		
	2.2.14	X1 and X2	
	2.2.15		
	2.2.16	. 55 (4.1.4 = 1.55	
	2.2.17	Vss and EVss	
	2.2.18	(, , , , , , , , , , , , , , , , ,	
		IC (mask ROM versions only)	
2.3	Pin I/C	O Circuits and Recommended Connection of Unused Pins	43
CHAPT	ER 3 (CPU ARCHITECTURE	46
3.1	Memo	ory Space	46
	3.1.1	Internal program memory space	
	3.1.2	Internal data memory space	
	3.1.3	Special function register (SFR) area	
	3.1.4	Data memory addressing	
3.2		ssor Registers	
	3.2.1	Control registers	
	3.2.2	General-purpose registers	
	3.2.3	Special Function Registers (SFRs)	
3.3		ction Address Addressing	
	331	Relative addressing	67

	3.3.2	Immediate addressing	68
	3.3.3	Table indirect addressing	69
	3.3.4	Register addressing	69
3.4	Opera	nd Address Addressing	70
	3.4.1	Implied addressing	70
	3.4.2	Register addressing	71
	3.4.3	Direct addressing	72
	3.4.4	Short direct addressing	73
	3.4.5	Special function register (SFR) addressing	74
	3.4.6	Register indirect addressing	75
	3.4.7	Based addressing	76
	3.4.8	Based indexed addressing	77
	3.4.9	Stack addressing	77
CHAPT	ER 4 I	PORT FUNCTIONS	78
4.1		unctions	
4.2	Port C	Configuration	80
	4.2.1	Port 0	81
	4.2.2	Port 1	84
	4.2.3	Port 2	90
	4.2.4	Port 3	91
	4.2.5	Port 6	93
	4.2.6	Port 7	
	4.2.7	Port 12	95
	4.2.8	Port 13	96
	4.2.9	Port 14	
4.3	•	ters Controlling Port Function	
4.4	Port F	unction Operations	
	4.4.1	Writing to I/O port	
	4.4.2	Reading from I/O port	
	4.4.3	Operations on I/O port	102
		CLOCK GENERATOR	
5.1		ions of Clock Generator	
5.2	•	guration of Clock Generator	
5.3	_	ters Controlling Clock Generator	
5.4	•	m Clock Oscillator	
	5.4.1	X1 oscillator	
	5.4.2	Subsystem clock oscillator	
	5.4.3	When subsystem clock is not used	
	5.4.4	Ring-OSC oscillator	
	5.4.5	Prescaler	
5.5		Generator Operation	
5.6		Required to Switch Between Ring-OSC Clock and X1 Input Clock	
5.7	7	ging System Clock and CPU Clock Settings	
E 0	5.7.1	Time required for switching between system clock and CPU clock	
5.8		Switching Flowchart and Register Setting	
	201	-awnramid HOH milio-vav ciock IO & LIDDU CIOCK	1:2/2

	5.8.2 Switching from X1 input clock to Ring-OSC clock	125
	5.8.3 Switching from X1 input clock to subsystem clock	126
	5.8.4 Switching from subsystem clock to X1 input clock	127
	5.8.5 Register settings	128
CHAPT	ER 6 16-BIT TIMER/EVENT COUNTER 00	129
6.1	Functions of 16-Bit Timer/Event Counter 00	129
6.2	Configuration of 16-Bit Timer/Event Counter 00	
6.3	Registers Controlling 16-Bit Timer/Event Counter 00	
6.4	Operation of 16-Bit Timer/Event Counter 00	139
	6.4.1 Interval timer operation	139
	6.4.2 PPG output operations	141
	6.4.3 Pulse width measurement operations	143
	6.4.4 External event counter operation	150
	6.4.5 Square-wave output operation	152
	6.4.6 One-shot pulse output operation	
6.5	Cautions for 16-Bit Timer/Event Counter 00	158
CHAPT	ER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51	
7.1	Functions of 8-Bit Timer/Event Counters 50 and 51	162
7.2	Configuration of 8-Bit Timer/Event Counters 50 and 51	
7.3	Registers Controlling 8-Bit Timer/Event Counters 50 and 51	
7.4	Operations of 8-Bit Timer/Event Counters 50 and 51	
	7.4.1 Operation as interval timer	171
	7.4.2 Operation as external event counter	
	7.4.3 Square-wave output operation	174
	7.4.4 PWM output operation	
7.5	Cautions for 8-Bit Timer/Event Counters 50 and 51	178
CHAPT	ER 8 8-BIT TIMERS H0 AND H1	
8.1	Functions of 8-Bit Timers H0 and H1	179
8.2	Configuration of 8-Bit Timers H0 and H1	
8.3	Registers Controlling 8-Bit Timers H0 and H1	
8.4	Operation of 8-Bit Timers H0 and H1	
	8.4.1 Operation as interval timer	186
	8.4.2 Operation as PWM pulse generator	
	8.4.3 Carrier generator mode operation (8-bit timer H1 only)	195
CHAPT		
9.1	Functions of Watch Timer	
9.2	Configuration of Watch Timer	
9.3	Register Controlling Watch Timer	
9.4	Watch Timer Operations	
	9.4.1 Watch timer operation	
	9.4.2 Interval timer operation	207
СНАРТ	ER 10 WATCHDOG TIMER	209
10 1	1 Functions of Watchdog Timer	200

10.2	Configuration of Watchdog Timer	211
10.3	Registers Controlling Watchdog Timer	212
10.4	Operation of Watchdog Timer	214
	10.4.1 Watchdog timer operation when "Ring-OSC cannot be stopped" is selected by mask option	214
	10.4.2 Watchdog timer operation when "Ring-OSC can be stopped by software" is	
	selected by mask option	215
	10.4.3 Watchdog timer operation in STOP mode (when "Ring-OSC can be stopped by software" is	
	selected by mask option)	216
	10.4.4 Watchdog timer operation in HALT mode (when "Ring-OSC can be stopped by software" is	
	selected by mask option)	218
CHAPTI	ER 11 CLOCK OUTPUT CONTROLLER	219
	Functions of Clock Output Controller	
	Configuration of Clock Output Controller	
	Registers Controlling Clock Output Controller	
	Clock Output Controller Operations	
	ER 12 A/D CONVERTER	
	Functions of A/D Converter	
	Configuration of A/D Converter	
	Registers Controlling A/D Converter	
12.4	A/D Converter Operations	232
	12.4.1 Basic operations of A/D converter	232
	12.4.2 Input voltage and conversion results	
	12.4.3 A/D converter operation mode	
	How to Read A/D Converter Characteristics Table	
12.6	Cautions for A/D Converter	240
CHAPTI	ER 13 SERIAL INTERFACE UARTO	245
13.1	Functions of Serial Interface UART0	245
13.2	Configuration of Serial Interface UART0	246
13.3	Registers Controlling Serial Interface UART0	249
13.4	Operation of Serial Interface UART0	253
	13.4.1 Operation stop mode	253
	13.4.2 Asynchronous serial interface (UART) mode	254
	13.4.3 Dedicated baud rate generator	262
CHAPTI	ER 14 SERIAL INTERFACE UART6	268
	Functions of Serial Interface UART6	
	Configuration of Serial Interface UART6	
	Registers Controlling Serial Interface UART6	
	Operation of Serial Interface UART6	
	14.4.1 Operation stop mode	
	14.4.2 Asynchronous serial interface (UART) mode	
	14.4.3 Dedicated baud rate generator	
∩н∧рті	ER 15 SERIAL INTERFACE CSI10	211
	Eurotions of Sarial Interface CSIII	311 211

15.2	Configuration of Serial Interface CSI10	311
15.3	Registers Controlling Serial Interface CSI10	313
15.4	Operation of Serial Interface CSI10	315
	15.4.1 Operation stop mode	315
	15.4.2 3-wire serial I/O mode	316
CHAPTE	ER 16 INTERRUPT FUNCTIONS	324
	Interrupt Function Types	
	Interrupt Sources and Configuration	
	Registers Controlling Interrupt Functions	
	Interrupt Servicing Operations	
	16.4.1 Maskable interrupt request acknowledgement	
	16.4.2 Software interrupt request acknowledgement	
	16.4.3 Multiple interrupt servicing	
	16.4.4 Interrupt request hold	
CHAPTE	ER 17 KEY INTERRUPT FUNCTION	341
	Functions of Key Interrupt	
	Configuration of Key Interrupt	
	Register Controlling Key Interrupt	
CHAPTE	ER 18 STANDBY FUNCTION	343
	Standby Function and Configuration	
	18.1.1 Standby function	
	18.1.2 Registers controlling standby function	
18 2	Standby Function Operation	
.0.2	18.2.1 HALT mode	
	18.2.2 STOP mode	
СНАРТЕ	ER 19 RESET FUNCTION	354
	Register for Confirming Reset Source	
CHAPTE	ER 20 CLOCK MONITOR	360
	Functions of Clock Monitor	
	Configuration of Clock Monitor	
	Register Controlling Clock Monitor	
	Operation of Clock Monitor	
CHAPTE	ER 21 POWER-ON-CLEAR CIRCUIT	366
	Functions of Power-on-Clear Circuit	
	Configuration of Power-on-Clear Circuit	
	Operation of Power-on-Clear Circuit	
	Cautions for Power-on-Clear Circuit	
CHAPTE	ER 22 LOW-VOLTAGE DETECTOR	370
	Functions of Low-Voltage Detector	
	Configuration of Low-Voltage Detector	
	Pagistars Controlling Law-Voltage Detector	

22.4 Operation of Low-Voltage Detector	374
22.5 Cautions for Low-Voltage Detector	378
CHAPTER 23 REGULATOR	382
23.1 Outline	382
CHAPTER 24 MASK OPTIONS	383
CHAPTER 25 μPD78F0124	384
25.1 Internal Memory Size Switching Register	385
25.2 Flash Memory Programming	386
25.2.1 Selection of communication mode	386
25.2.2 Flash memory programming function	387
25.2.3 Connecting Flashpro III/Flashpro IV	388
25.2.4 Connection on adapter for flash memory writing	390
CHAPTER 26 INSTRUCTION SET	395
26.1 Conventions Used in Operation List	395
26.1.1 Operand identifiers and specification methods	395
26.1.2 Description of operation column	396
26.1.3 Description of flag operation column	396
26.2 Operation List	397
26.3 Instructions Listed by Addressing Type	405
CHAPTER 27 ELECTRICAL SPECIFICATIONS (TARGET VALUES)	408
CHAPTER 28 PACKAGE DRAWING	426
CHAPTER 29 CAUTIONS FOR WAIT	427
29.1 Cautions for Wait	427
29.2 Peripheral Hardware That Generates Wait	428
29.3 Example of Wait Occurrence	429
APPENDIX A DEVELOPMENT TOOLS	430
A.1 Software Package	432
A.2 Language Processing Software	433
A.3 Flash Memory Writing Tools	434
A.4 Debugging Tools	435
A.4.1 Hardware	435
A.4.2 Software	436
APPENDIX B EMBEDDED SOFTWARE	437
APPENDIX C REGISTER INDEX	438
C.1 Register Index (In Alphabetical Order with Respect to Register Names)	438
C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)	441

LIST OF FIGURES (1/7)

Figure N	No. Title	Page
2-1	Pin I/O Circuit List	44
3-1	Memory Map (μPD780121)	47
3-2	Memory Map (μPD780122)	48
3-3	Memory Map (μPD780123)	49
3-4	Memory Map (μPD780124)	50
3-5	Memory Map (μPD78F0124)	51
3-6	Data Memory Addressing (µPD780121)	54
3-7	Data Memory Addressing (µPD780122)	55
3-8	Data Memory Addressing (μPD780123)	56
3-9	Data Memory Addressing (μPD780124)	57
3-10	Data Memory Addressing (μPD78F0124)	58
3-11	Format of Program Counter	
3-12	Format of Program Status Word	59
3-13	Format of Stack Pointer	
3-14	Data to Be Saved to Stack Memory	61
3-15	Data to Be Restored from Stack Memory	
3-16	Configuration of General-Purpose Registers	62
4-1	Port Types	78
4-2	Block Diagram of P00 and P03	81
4-3	Block Diagram of P01	82
4-4	Block Diagram of P02	83
4-5	Block Diagram of P10	84
4-6	Block Diagram of P11 and P14	85
4-7	Block Diagram of P12	86
4-8	Block Diagram of P13	
4-9	Block Diagram of P15	88
4-10	Block Diagram of P16 and P17	
4-11	Block Diagram of P20 to P27	
4-12	Block Diagram of P30 to P32	
4-13	Block Diagram of P33	
4-14	Block Diagram of P60 to P63	
4-15	Block Diagram of P70 to P77	
4-16	Block Diagram of P120	
4-17	Block Diagram of P130	
4-18	Block Diagram of P140	
4-19	Format of Port Mode Register	
4-20	Format of Pull-up Resistor Option Register	
4-21	Format of Input Switch Control Register (ISC)	101
5-1	Block Diagram of Clock Generator	104
5-2	Subsystem Clock Feedback Resistor	105
5-3	Format of Processor Clock Control Register (PCC)	106

LIST OF FIGURES (2/7)

Figure No	D. Title	Page
5-4	Format of Ring-OSC Mode Register (RCM)	107
5-5	Format of Main Clock Mode Register (MCM)	
5-6	Format of Main OSC Control Register (MOC)	
5-0 5-7	Format of Oscillation Stabilization Time Counter Status Register (OSTC)	
5-7 5-8	Format of Oscillation Stabilization Time Select Register (OSTS)	
5-9	External Circuit of X1 Oscillator	
5-10	External Circuit of Subsystem Clock Oscillator	
5-11	Examples of Incorrect Resonator Connection	
5-12	Timing Diagram of CPU Default Start Using Ring-OSC	
5-13	Status Transition Diagram	
5-14	Switching from Ring-OSC Clock to X1 Input Clock (Flowchart)	
5-15	Switching from X1 Input Clock to Ring-OSC Clock (Flowchart)	
5-16	Switching from X1 Input Clock to Subsystem Clock (Flowchart)	
5-17	Switching from Subsystem Clock to X1 Input Clock (Flowchart)	
0 17	emoning nem case jetem crook to At Input crook (Frenchary	
6-1	Block Diagram of 16-Bit Timer/Event Counter 00	130
6-2	Format of 16-Bit Timer Mode Control Register 00 (TMC00)	
6-3	Format of Capture/Compare Control Register 00 (CRC00)	
6-4	Format of 16-Bit Timer Output Control Register 00 (TOC00)	
6-5	Format of Prescaler Mode Register 00 (PRM00)	
6-6	Format of Port Mode Register 0 (PM0)	
6-7	Control Register Settings for Interval Timer Operation	
6-8	Interval Timer Configuration Diagram	
6-9	Timing of Interval Timer Operation	
6-10	Control Register Settings for PPG Output Operation	
6-11	Configuration of PPG Output	
6-12	PPG Output Operation Timing	
6-13	Control Register Settings for Pulse Width Measurement with Free-Running Counter	
	and One Capture Register	143
6-14	Configuration Diagram for Pulse Width Measurement with Free-Running Counter	
6-15	Timing of Pulse Width Measurement Operation with Free-Running Counter	
	and One Capture Register (with Both Edges Specified)	144
6-16	Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter	
6-17	CR010 Capture Operation with Rising Edge Specified	
6-18	Timing of Pulse Width Measurement Operation with Free-Running Counter	
	(with Both Edges Specified)	146
6-19	Control Register Settings for Pulse Width Measurement with Free-Running Counter and	
	Two Capture Registers	147
6-20	Timing of Pulse Width Measurement Operation with Free-Running Counter	
	and Two Capture Registers (with Rising Edge Specified)	148
6-21	Control Register Settings for Pulse Width Measurement by Means of Restart	
6-22	Timing of Pulse Width Measurement Operation by Means of Restart (with Rising Edge Specified)	
6-23	Control Register Settings in External Event Counter Mode	
6-24	Configuration Diagram of External Event Counter	

LIST OF FIGURES (3/7)

Figure N	o. Title	Page
6-25	External Event Counter Operation Timing (with Rising Edge Specified)	151
6-26	Control Register Settings in Square-Wave Output Mode	
6-27	Square-Wave Output Operation Timing	
6-28	Control Register Settings for One-Shot Pulse Output with Software Trigger	
6-29	Timing of One-Shot Pulse Output Operation with Software Trigger	
6-30	Control Register Settings for One-Shot Pulse Output with External Trigger	
6-31	Timing of One-Shot Pulse Output Operation with External Trigger (with Rising Edge Specified)	
6-32	Start Timing of 16-Bit Timer Counter 00 (TM00)	
6-33	Timings After Change of Compare Register During Timer Count Operation	
6-34	Capture Register Data Retention Timing	
6-35	Operation Timing of OVF00 Flag	
7-1	Block Diagram of 8-Bit Timer/Event Counter 50	162
7-2	Block Diagram of 8-Bit Timer/Event Counter 51	163
7-3	Format of Timer Clock Selection Register 50 (TCL50)	165
7-4	Format of Timer Clock Selection Register 51 (TCL51)	166
7-5	Format of 8-Bit Timer Mode Control Register 50 (TMC50)	167
7-6	Format of 8-Bit Timer Mode Control Register 51 (TMC51)	168
7-7	Format of Port Mode Register 1 (PM1)	170
7-8	Format of Port Mode Register 3 (PM3)	170
7-9	Interval Timer Operation Timing	171
7-10	External Event Counter Operation Timing (with Rising Edge Specified)	173
7-11	Square-Wave Output Operation Timing	175
7-12	PWM Output Operation Timing	177
7-13	Timing of Operation with CR5n Changed	178
7-14	8-Bit Timer Counter 5n Start Timing	178
8-1	Block Diagram of 8-Bit Timer H0	
8-2	Block Diagram of 8-Bit Timer H1	
8-3	Format of 8-Bit Timer H Mode Register 0 (TMHMD0)	
8-4	Format of 8-Bit Timer H Mode Register 1 (TMHMD1)	
8-5	Format of 8-Bit Timer H Carrier Control Register 1 (TMCYC1)	
8-6	Register Setting in Interval Timer Mode	
8-7	Timing of Interval Timer Operation	
8-8	Register Setting in PWM Pulse Generator Mode	
8-9	Operation Timing in PWM Pulse Generator Mode	
8-10	Example of Connection Between 8-Bit Timer H1 and 8-Bit Timer/Event Counter 51	
8-11	Transfer Timing	196
8-12	Register Setting in Carrier Generator Mode	197
8-13	Carrier Generator Mode Operation Timing	199
9-1	Watch Timer Block Diagram	
9-2	Format of Watch Timer Operation Mode Register (WTM)	
9-3	Operation Timing of Watch Timer/Interval Timer	208

LIST OF FIGURES (4/7)

Figure No	o. Title	Page
10-1	Block Diagram of Watchdog Timer	211
10-1	Format of Watchdog Timer Mode Register (WDTM)	
10-2	Format of Watchdog Timer Enable Register (WDTE)	
10-4	Operation in STOP Mode (CPU Clock and WDT Operation Clock: X1 Input Clock)	
10-5	Operation in STOP Mode (CPU Clock: X1 Input Clock, WDT Operation Clock: Ring-OSC Clock	
10-6	Operation in STOP Mode (CPU Clock: Ring-OSC Clock, WDT Operation Clock: X1 Input Clock Operation in STOP Mode (CPU Clock: Ring-OSC Clock, WDT Operation Clock: X1 Input Clock	•
10-7	Operation in STOP Mode (CPU Clock and WDT Operation Clock: Ring-OSC Clock)	-
10-8	Operation in HALT Mode	
10 0	Operation in the time of time of the time of time of the time of the time of time of time of time of the time of t	
11-1	Block Diagram of Clock Output Controller	219
11-2	Format of Clock Output Selection Register (CKS)	221
11-3	Format of Port Mode Register 14 (PM14)	222
11-4	Remote Control Output Application Example	223
12-1	Block Diagram of A/D Converter	224
12-2	Block Diagram of Power-Fail Detection Function	225
12-3	Format of A/D Conversion Register (ADCR)	226
12-4	Format of A/D Converter Mode Register (ADM)	228
12-5	Timing Chart When Boost Reference Voltage Generator Is Used	229
12-6	Format of Analog Input Channel Specification Register (ADS)	230
12-7	Format of Power-Fail Comparison Mode Register (PFM)	231
12-8	Format of Power-Fail Comparison Threshold Register (PFT)	231
12-9	Basic Operation of A/D Converter	233
12-10	Relationship Between Analog Input Voltage and A/D Conversion Result	234
12-11	A/D Conversion Operation	235
12-12	Power-Fail Detection (When PFEN = 1 and PFCM = 0)	236
12-13	Overall Error	238
12-14	Quantization Error	238
12-15	Zero-Scale Error	239
12-16	Full-Scale Error	239
12-17	Integral Linearity Error	239
12-18	Differential Linearity Error	239
12-19	Circuit Configuration of Series Resistor String	240
12-20	Storing Conversion Result in ADCR and Timing of Data Read from ADCR	241
12-21	Analog Input Pin Connection	242
12-22	Timing of A/D Conversion End Interrupt Request Generation	243
12-23	Timing of A/D Converter Sampling and A/D Conversion Start Delay	244
13-1	Block Diagram of Serial Interface UART0	247
13-2	Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0)	
13-3	Format of Asynchronous Serial Interface Reception Error Status Register 0 (ASIS0)	
13-4	Format of Baud Rate Generator Control Register 0 (BRGC0)	
13-5	Format of Normal UART Transmit/Receive Data	
13-6	Example of Normal LIART Transmit/Receive Data Format	257

LIST OF FIGURES (5/7)

Figure N	o. Title	Page
13-7	Normal Transmission Completion Interrupt Request Timing	259
13-8	Reception Completion Interrupt Request Timing	
13-9	Noise Filter Circuit	
13-10	Configuration of Baud Rate Generator	
13-11	Permissible Baud Rate Range During Reception	
14-1	LIN Transmission Operation	269
14-2	LIN Reception Operation	270
14-3	Port Configuration for LIN Reception Operation	271
14-4	Block Diagram of Serial Interface UART6	273
14-5	Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6)	275
14-6	Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6)	277
14-7	Format of Asynchronous Serial Interface Transmission Status Register 6 (ASIF6)	278
14-8	Format of Clock Selection Register 6 (CKSR6)	279
14-9	Format of Baud Rate Generator Control Register 6 (BRGC6)	280
14-10	Format of Asynchronous Serial Interface Control Register 6 (ASICL6)	281
14-11	Format of Normal UART Transmit/Receive Data	290
14-12	Example of Normal UART Transmit/Receive Data Format	291
14-13	Normal Transmission Completion Interrupt Request Timing	293
14-14	Processing Flow of Continuous Transmission	295
14-15	Timing of Starting Continuous Transmission	296
14-16	Timing of Ending Continuous Transmission	297
14-17	Reception Completion Interrupt Request Timing	298
14-18	Reception Error Interrupt	299
14-19	Noise Filter Circuit	300
14-20	SBF Transmission	300
14-21	SBF Reception	301
14-22	Configuration of Baud Rate Generator	303
14-23	Permissible Baud Rate Range During Reception	308
14-24	Transfer Rate During Continuous Transmission	310
15-1	Block Diagram of Serial Interface CSI10	312
15-2	Format of Serial Operation Mode Register 10 (CSIM10)	313
15-3	Format of Serial Clock Selection Register 10 (CSIC10)	314
15-4	Timing in 3-Wire Serial I/O Mode	319
15-5	Timing of Clock/Data Phase	321
15-6	Output Operation of First Bit	322
15-7	Output Value of SO10 Pin (Last Bit)	323
16-1	Basic Configuration of Interrupt Function	
16-2	Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L)	
16-3	Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L)	
16-4	Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L)	331

LIST OF FIGURES (6/7)

Figure N	o. Title	Page
16-5	Format of External Interrupt Rising Edge Enable Register (EGP)	
100	and External Interrupt Falling Edge Enable Register (EGN)	332
16-6	Format of Program Status Word	
16-7	Interrupt Request Acknowledgement Processing Algorithm	
16-8	Interrupt Request Acknowledgement Timing (Minimum Time)	
16-9	Interrupt Request Acknowledgement Timing (Maximum Time)	
16-10	Examples of Multiple Interrupt Servicing	
16-11	Interrupt Request Hold	
17-1	Block Diagram of Key Interrupt	3/11
17-2	Format of Key Return Mode Register (KRM)	
10.1	0 T	044
18-1	Operation Timing When STOP Mode Is Released	
18-2	Format of Oscillation Stabilization Time Counter Status Register (OSTC)	
18-3	Format of Oscillation Stabilization Time Select Register (OSTS)	
18-4	HALT Mode Release by Interrupt Request Generation	
18-5	HALT Mode Release by RESET Input	
18-6 18-7	STOP Mode Release by Interrupt Request Generation	
19-1	Block Diagram of Reset Function	355
19-2	Timing of Reset by RESET Input	356
19-3	Timing of Reset Due to Watchdog Timer Overflow	356
19-4	Timing of Reset in STOP Mode by RESET Input	356
19-5	Format of Reset Control Flag Register (RESF)	359
20-1	Block Diagram of Clock Monitor	360
20-2	Format of Clock Monitor Mode Register (CLM)	361
20-3	Timing of Clock Monitor	363
21-1	Block Diagram of Power-on-Clear Circuit	367
21-2	Timing of Internal Reset Signal Generation in Power-on-Clear Circuit	
21-3	Example of Software Processing After Release of Reset	
22-1	Block Diagram of Low-Voltage Detector	370
22-2	Format of Low-Voltage Detection Register (LVIM)	
22-3	Format of Low-Voltage Detection Level Selection Register (LVIS)	
22-4	Timing of Low-Voltage Detector Internal Reset Signal Generation	
22-5	Timing of Low-Voltage Detector Interrupt Signal Generation	
22-6	Example of Software Processing After Release of Reset	
22-7	Example of Software Processing of LVI Interrupt	
23-1	Block Diagram of Regulator Periphery	222
20"1	Blook Blagfall of Hogalator Foliphory	

LIST OF FIGURES (7/7)

Figure No	. Title	Page
25-1	Format of Internal Memory Size Switching Register (IMS)	385
25-2	Communication Mode Selection Format	387
25-3	Connection of Flashpro IV in 3-Wire Serial I/O Mode	388
25-4	Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode (Using Handshake)	388
25-5	Connection of Flashpro IV in UART (UART0) Mode	389
25-6	Connection of Flashpro III/Flashpro IV in UART (UART0) Mode (Using Handshake)	389
25-7	Connection of Flashpro IV in UART (UART6) Mode	389
25-8	Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode	390
25-9	Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode (Using Handshake)	391
25-10	Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode	392
25-11	Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode (Using Handshake)	393
25-12	Example of Wiring Adapter for Flash Memory Writing in UART (UART6) Mode	394
A-1	Development Tool Configuration	431

LIST OF TABLES (1/3)

Table No	. Title	Page
1-1	Flash Memory Versions Corresponding to Mask Options of Mask ROM Versions	28
2-1	Pin I/O Circuit Types	43
3-1	Set Values of Internal Memory Size Switching Register (IMS)	
3-2	Internal Memory Capacity	
3-3	Vector Table	
3-4	Internal High-Speed RAM Capacity	
3-5	Special Function Register List	64
4-1	Port Functions	79
4-2	Port Configuration	80
4-3	Pull-up Resistor of Port 6	93
4-4	Settings of Port Mode Register and Output Latch When Using Alternate Function	99
5-1	Configuration of Clock Generator	104
5-2	Relationship Between CPU Clock and Minimum Instruction Execution Time	
5-3	Relationship Between Operation Clocks in Each Operation Status	
5-4	Oscillation Control Flags and Clock Oscillation Status	
5-5	Time Required to Switch Between Ring-OSC Clock and X1 Input Clock	122
5-6	Maximum Time Required for CPU Clock Switchover	123
5-7	Clock and Register Setting	128
6-1	Configuration of 16-Bit Timer/Event Counter 00	130
6-2	TI000 Pin Valid Edge and CR000, CR010 Capture Trigger	
6-3	TI010 Pin Valid Edge and CR000 Capture Trigger	131
7-1	Configuration of 8-Bit Timer/Event Counters 50 and 51	164
8-1	Configuration of 8-Bit Timers H0 and H1	179
9-1	Watch Timer Interrupt Time	203
9-2	Interval Timer Interval Time	203
9-3	Watch Timer Configuration	204
9-4	Watch Timer Interrupt Time	206
9-5	Interval Timer Interval Time	207
10-1	Loop Detection Time of Watchdog Timer	209
10-2	Mask Option Setting and Watchdog Timer Operation Mode	210
10-3	Configuration of Watchdog Timer	211
11-1	Clock Output Controller Configuration	220
12-1	Configuration of A/D Converter	226
12-2	Settings of ADCS and ADCE	229

LIST OF TABLES (2/3)

Table No.	Title	Page
12-3	A/D Converter Sampling Time and A/D Conversion Start Delay Time (ADM Set Value)	244
	, , , , , , , , , , , , , , , , , , , ,	
13-1	Configuration of Serial Interface UART0	246
13-2	Cause of Reception Error	261
13-3	Set Data of Baud Rate Generator	265
13-4	Maximum/Minimum Permissible Baud Rate Error	267
14-1	Configuration of Serial Interface UART6	272
14-2	Write Processing and Writing to TXB6 During Execution of Continuous Transmission	294
14-3	Cause of Reception Error	299
14-4	Set Data of Baud Rate Generator	307
14-5	Maximum/Minimum Permissible Baud Rate Error	309
15-1	Configuration of Serial Interface CSI10	311
16-1	Interrupt Source List	325
16-2	Flags Corresponding to Interrupt Request Sources	328
16-3	Ports Corresponding to EGPn and EGNn	332
16-4	Time from Generation of Maskable Interrupt Request Until Servicing	
16-5	Interrupt Request Enabled for Multiple Interrupt Servicing During Interrupt Servicing	337
17-1	Assignment of Key Interrupt Detection Pins	
17-2	Configuration of Key Interrupt	341
18-1	Relationship Between HALT Mode, STOP Mode, and Clock	343
18-2	Operating Statuses in HALT Mode	347
18-3	Operation After HALT Mode Release	350
18-4	Operating Statuses in STOP Mode	351
18-5	Operation After STOP Mode Release	353
19-1	Hardware Statuses After Reset	357
19-2	RESF Status When Reset Request Is Generated	359
20-1	Configuration of Clock Monitor	360
20-2	Operation Status of Clock Monitor (When CLME = 1)	362
24-1	Flash Memory Versions Supporting Mask Options of Mask ROM Versions	383
25-1	Differences Between μ PD78F0124 and Mask ROM Versions	384
25-2	Internal Memory Size Switching Register Settings	385
25-3	Communication Mode List	386
25-4	Main Functions of Flash Memory Programming	387
26-1	Operand Identifiers and Specification Methods	395

LIST OF TABLES (3/3)

Table No.	. Title	Page
29-1	Registers That Generate Wait and Number of CPU Wait Clocks	428
29-2	Number of Wait Clocks and Number of Execution Clocks on Occurrence of Wait (A/D Converter)	429

CHAPTER 1 OUTLINE

1.1 Features

O ROM, RAM capacities

Item	1	Memory	Data Memory
Part Number	(ROM)		Internal High-Speed RAM
μPD780121	Mask ROM	8 KB	512 bytes
μPD780122		16 KB	
μPD780123		24 KB	1024 bytes
μPD780124		32 KB	
μPD78F0124	Flash memory	32 KB ^{Note}	1024 bytes ^{Note}

Note The internal flash memory and internal high-speed RAM capacities can be changed using the internal memory size switching register (IMS).

- O On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)
- O Short startup is possible via the CPU default start using the on-chip Ring-OSC
- O On-chip clock monitor function using on-chip Ring-OSC
- O On-chip watchdog timer (operable with Ring-OSC clock)
- O On-chip UART supporting LIN (Local Interconnect Network) bus
- O On-chip key interrupt function
- O On-chip clock output controller
- O On-chip regulator
- O Minimum instruction execution time can be changed from high speed (0.2 μ s: @ 10 MHz operation with X1 input clock) to ultra low-speed (122 μ s: @ 32.768 kHz operation with subsystem clock)
- O I/O ports: 39 (N-ch open drain: 4)
- O Timer: 7 channels
- O Serial interface: 2 channels
- (UART: 1 channel, CSI/UARTNote: 1 channel)
 O 10-bit resolution A/D converter: 8 channels
- O Supply voltage: $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$

Note Select either of the functions of these alternate-function pins.

1.2 Applications

- O Automotive equipment
 - System control for body electricals (power windows, keyless entry reception, etc.)
 - Sub-microcontrollers for control
- O Home audio, car audio
- O AV equipment
- O PC peripheral equipment (keyboards, etc.)
- O Household electrical appliances
 - Outdoor air conditioner units
 - Microwave ovens, electric rice cookers
- O Industrial equipment
 - Pumps
 - Vending machines
 - FA

1.3 Ordering Information

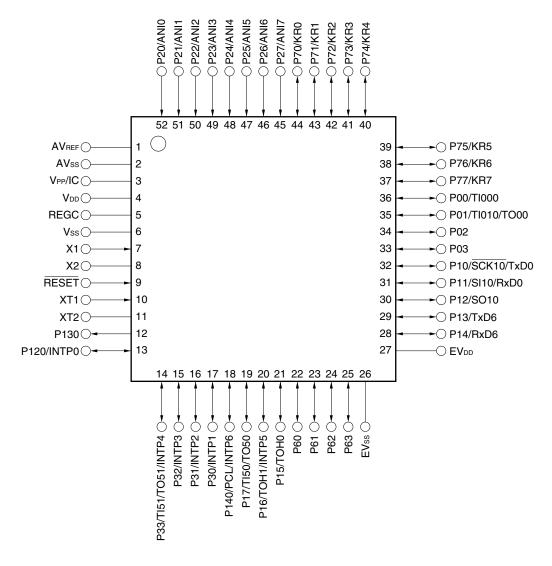
Part Number	Package	Quality Grade	
μ PD780121GB- \times \times -8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD780122GB- \times \times -8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD780123GB- \times \times -8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD780124GB- \times \times -8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD780121GB(A)- \times \times -8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD780122GB(A)-×××-8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD780123GB(A)-×××-8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD780124GB(A)- \times \times -8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD780121GB(A1)-×××-8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD780122GB(A1)-×××-8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD780123GB(A1)-×××-8ET	52-pin plastic LQFP (10×10)	Special	
μ PD780124GB(A1)-×××-8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD78F0124M1GB-8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD78F0124M2GB-8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD78F0124M3GB-8ET	52-pin plastic LQFP (10×10)	Standard	
μ PD78F0124M4GB-8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD78F0124M5GB-8ET	52-pin plastic LQFP (10 \times 10)	Standard	
μ PD78F0124M6GB-8ET	52-pin plastic LQFP (10×10)	Standard	
μ PD78F0124M1GB(A)-8ET	52-pin plastic LQFP (10×10)	Special	
μ PD78F0124M2GB(A)-8ET	52-pin plastic LQFP (10×10)	Special	
μ PD78F0124M3GB(A)-8ET	52-pin plastic LQFP (10×10)	Special	
μ PD78F0124M4GB(A)-8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD78F0124M5GB(A)-8ET	52-pin plastic LQFP (10 \times 10)	Special	
μ PD78F0124M6GB(A)-8ET	52-pin plastic LQFP (10 \times 10)	Special	

Remark ××× indicates ROM code suffix.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Mask ROM versions (μ PD780121, 780122, 780123, and 780124) include mask options. When ordering, it is possible to select "Power-on-clear (POC) circuit can be used/cannot be used", "Ring-OSC clock can be stopped/cannot be stopped by software" and "Pull-up resistor incorporated/not incorporated in 1-bit units (P60 to P63 pins)".

Flash memory versions corresponding to the mask options of the mask ROM versions are as follows.


Table 1-1. Flash Memory Versions Corresponding to Mask Options of Mask ROM Versions

Mask	Flash Memory Versions	
POC Circuit	Ring-OSC	(Part Number)
POC cannot be used	Cannot be stopped	μPD78F0124M1GB-8ET μPD78F0124M1GB(A)-8ET
	Can be stopped by software	μPD78F0124M2GB-8ET μPD78F0124M2GB(A)-8ET
POC used (V _{POC} = 2.85 V ±0.15 V)	Cannot be stopped	μPD78F0124M3GB-8ET μPD78F0124M3GB(A)-8ET
	Can be stopped by software	μPD78F0124M4GB-8ET μPD78F0124M4GB(A)-8ET
POC used (V _{POC} = 3.5 V ±0.2 V)	Cannot be stopped	μPD78F0124M5GB-8ET μPD78F0124M5GB(A)-8ET
	Can be stopped by software	μPD78F0124M6GB-8ET μPD78F0124M6GB(A)-8ET

1.4 Pin Configuration (Top View)

52-pin plastic LQFP (10 × 10)
 μPD780121GB-xxx-8ET, 780122GB-xxx-8ET, 780123GB-xxx-8ET, 780124GB-xxx-8ET,
 μPD780121GB(A)-xxx-8ET, 780122GB(A)-xxx-8ET, 780123GB(A)-xxx-8ET,
 μPD780124GB(A)-xxx-8ET, 780121GB(A1)-xxx-8ET, 780122GB(A1)-xxx-8ET,
 μPD780123GB(A1)-xxx-8ET, 780124GB(A1)-xxx-8ET, 78F0124M1GB-8ET,
 μPD78F0124M2GB-8ET, 78F0124M3GB-8ET, 78F0124M4GB-8ET, 78F0124M5GB-8ET,
 μPD78F0124M6GB-8ET, 78F0124M1GB(A)-8ET, 78F0124M2GB(A)-8ET, 78F0124M3GB(A)-8ET,

 μ PD78F0124M4GB(A)-8ET, 78F0124M5GB(A)-8ET, 78F0124M6GB(A)-8ET

Cautions 1. Connect the IC (Internally Connected) pin directly to Vss.

- 2. Connect the AVREF pin to VDD.
- 3. Connect the AVss pin to Vss.
- 4. When using the regulator, connect the REGC pin to Vss via 0.1 μ F capacitor. When the regulator is not used, connect the REGC pin directly to V_{DD}.

Remark Figures in parentheses apply to the μ PD78F0124.

Pin Identification

P140:

Port 14

ANI0 to ANI7: Analog input PCL: Programmable clock output AVREF: Analog reference voltage REGC: Regulator capacitance

AVss: Analog ground RESET: Reset

EVDD: Power supply for port RxD0, RxD6: Receive data

EVss: Ground for port SCK10: Serial clock input/output

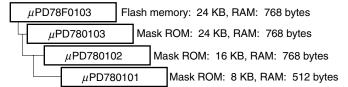
IC: Internally connected SI10: Serial data input INTP0 to INTP6: External interrupt input SO10: Serial data output

KR0 to KR7: Key return TI000, TI010, TI51: Timer input

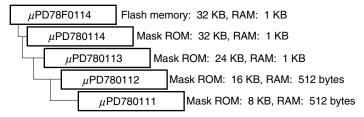
P00 to P03: Port 0 T000, T050, T051,

P10 to P17: Port 1 TOH0, TOH1: Timer output
P20 to P27: Port 2 TxD0, TxD6: Transmit data
P30 to P33: Port 3 VDD: Power supply

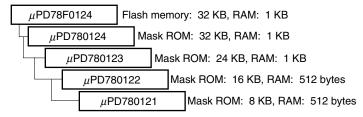
P60 to P63: Port 6 VPP: Programming power supply

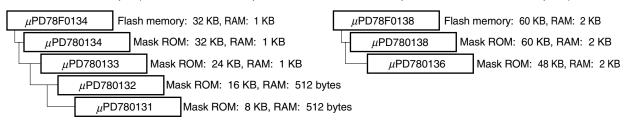

P70 to P77: Port 7 Vss: Ground

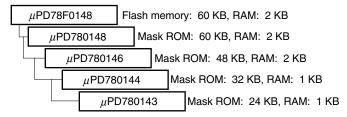
P120: Port 12 X1, X2: Crystal (X1 input clock)
P130: Port 13 XT1, XT2: Crystal (Subsystem clock)


1.5 78K0/Kxx Series Lineup

The lineup of products in the 78K0/Kxx Series (under development or in planning) is shown below.

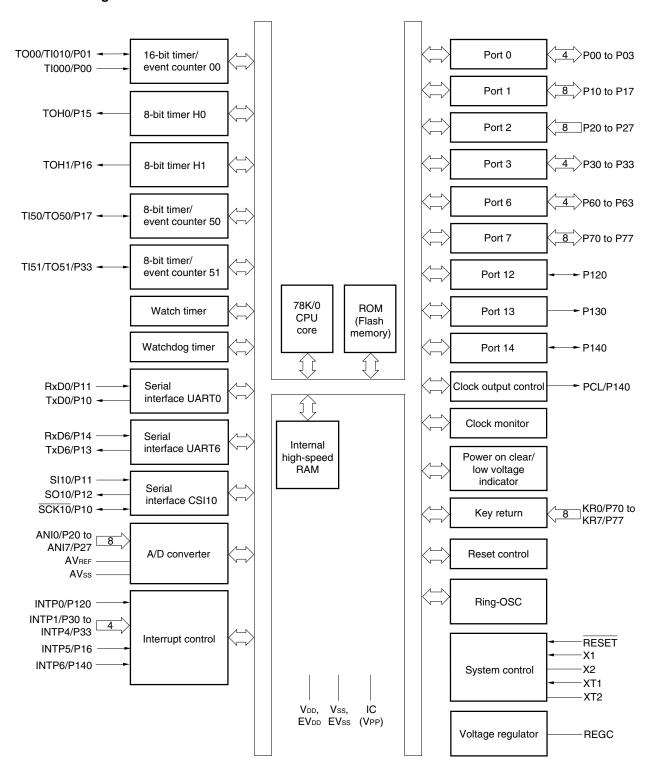

78K0/KB1 Series: 30-pin (7.62 mm 0.65 mm pitch)


78K0/KC1 Series: 44-pin (10 × 10 mm 0.8 mm pitch)


78K0/KD1 Series: 52-pin (10 × 10 mm 0.65 mm pitch)

78K0/KE1 Series: 64-pin (10×10 mm 0.5 mm pitch, 12×12 mm 0.65 mm pitch, 14×14 mm 0.8 mm pitch)

78K0/KF1 Series: 80-pin (12×12 mm 0.5 mm pitch, 14×14 mm 0.65 mm pitch)



The function list in the 78K0/Kxx Series (under development or in planning) is shown below.

Item	Part Number		78K0/KB1			78K0/KC1		78K0/KD1		78K0/KE1				78K0/KF1				
Package		30 pins				44 pin:	s		52 pins	;	64 pins					80 pins		
Internal memory	Mask ROM	8 K	16 K 24 K	-	8 K 16 K	24 K 32 K		8 K 16 K	24 K 32 K	-	8 K 16 K	24 K 32 K	-	48 K 60 K	-	24 K 32 K	48 K 60 K	-
(bytes)	Flash memory	_		24 K		-	32 K		-	32 K	-		32 K	_	60 K		_	60 K
	RAM	512	70	68	512	-	1 K	512	1	K	512	1	K	2	K	1 K	2	K
Power sup	oply voltage	V _{DD} = 2.7 to 5.5 V					•											
Minimum i		0.24 μs	(when	0 MHz, 8.38 MI 5 MHz, \	Hz, Vdd	= 3.3 t	o 5.5 V)	0.2 μ s (when 10 MHz, $V_{DD} = 4.0$ to 5.5 V)										
Clock	X1 input				ı				2 to	10 MHz	Z							
	Sub		_								32.768	3 kHz						
	Ring-OSC				ı			T	240 kF	lz (TYF	P.)					1		
Port	CMOS I/O		17			19			26				38				54	
	CMOS input		4								8							
	CMOS output				ı					1								
	N-ch open-drain I/O		-								4							
Timer	16 bits (TM0)				ı	1 c	h						2	ch		1 ch	2	ch
	8 bits (TM5)	1 ch 2 ch																
	8 bits (TMH)								2	2 ch								
	For watch	_ 1 ch																
	WDT								1	ch						1	1	
Serial	3-wire CSI ^{Note}					1 c	h						2	ch		1 ch	2	ch
interface	Automatic transmit/receive 3-wire CSI							-									1 ch	
	UART ^{Note}	_ 1 ch																
	UART supporting LIN-bus			1 ch														
10-bit A/D	converter		4 ch								8 0	h						
Interrupt	External		6			7			8				9				9	
	Internal	11	1	2			15	5			16			19		17	2	20
Key return	input		-			4 ch							8 ch					
Reset	RESET pin								Pro	vided								
	POC					2.85	V ±0.15	V/3.5 V	±0.20	V (sele	ectable	by ma	sk opt	on)				
	LVI	3.1 V/3.3 V ±0.15 V/3.5 V/3.7 V/3.9 V/4.1 V/4.3 V ±0.2 V (selectable by software)																
	Clock monitor	Provided																
WDT					Provided													
Multiplier/divider					-					16 bits	× 16	bits, 32	bits ÷	16 bits	ı			
ROM corre	ection						-							Prov	rided		_	
Standby for Operating			Star	ndard pr	oducts,	specia	al (A) pro		-40 to									
temperatu	re elect either of tl			cial (A1)			o funci	ion ni		+110°	C (mas	sk ROI	M versi	on only	′)			

Note Select either of the functions of these alternate-function pins.

1.6 Block Diagram

Remark Items in parentheses are available in the μ PD78F0124.

1.7 Outline of Functions

(1/2)

	Item	μPD780121	μPD780122	μPD780123	μPD780124	μPD78F0124				
Internal	Mask ROM	8 K	16 K	24 K	32 K	_				
memory (bytes)	Flash memory		-	_		32 K ^{Note 1}				
	High-speed RAM	512		1 K		1 K ^{Note 1}				
	Expansion RAM			-						
Memory spa	ace	64 KB								
X1 input clock (oscillation frequency)		Ceramic/crystal/ex	Ceramic/crystal/external clock oscillation							
REGC pi	n is directly connected	10 MHz: V _{DD} = 4.0 to 5.5 V, 8.38 MHz: V _{DD} = 3.3 to 5.5 V, 5 MHz: V _{DD} = 2.7 to 5.5 V								
0.1 μF ca	apacitor is connected pin	8.38 MHz: V _{DD} =	3.3 to 5.5 V, 5 MHz	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	1					
Ring-OSC of (oscillation to		On-chip Ring osci	llation (240 kHz (T)	(P.))						
Subsystem (oscillation to		Crystal/external cl	ock oscillation (32.7	768 kHz)						
General-pui	rpose registers	8 bits × 32 registe	rs (8 bits × 8 registe	ers × 4 banks)						
Minimum in	struction execution	0.2 μ s/0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s (X1 input clock: @ fxP = 10 MHz operation)								
time		8.3 μ s/16.6 μ s/33.2 μ s/66.4 μ s/132.8 μ s (TYP.) (Ring-OSC clock: @ f _R = 240 kHz (TYP.) operation)								
		122 μs (subsystem clock: @ fxτ = 32.768 kHz operation)								
Instruction s	set	 16-bit operation Multiply/divide (8 bits × 8 bits × 4 banks) Bit manipulate (set, reset, test, and Boolean operation) BCD adjust, etc. 								
I/O ports		Total:	39							
		CMOS I/O CMOS input CMOS output N-ch open-drain I/	26 8 1 O 4							
Timers			nt counter: 1 chann counter: 2 chann 2 chann 1 chann : 1 chann	nels nels nel						
Timer outpu	uts	5 (PWM output: 3)								
Clock outpu	ut	 78.125 kHz, 156.25 kHz, 312.5 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (X1 input clock: 10 MHz) 32.768 kHz (subsystem clock: 32.768 kHz) 								
A/D convert	ter	10-bit resolution ×	8 channels							
Serial interf	ace	UART mode su 3-wire serial I/O	oporting LIN-bus: mode/UART mode	1 channel						

Notes 1. The internal flash memory capacity and internal high-speed RAM capacity can be changed using the internal memory size switching register (IMS).

2. Select either of the functions of these alternate-function pins.

(2/2)

				I		(2,2)				
Item		μPD780121	μPD780122	μPD780123	μPD780124	μPD78F0124				
Vectored interrupt	Internal	15								
sources	External	8								
Key interrupt (INTKR) occurs by detecting falling edge of key input pins (KR0						0 to KR7).				
Reset		Reset using RESET pin Internal reset by watchdog timer Internal reset by clock monitor Internal reset by power-on-clear Internal reset by low-voltage detector								
Supply voltage		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$								
Operating ambient	temperature	Standard products, (A) products: $T_A = -40 \text{ to } +85^{\circ}\text{C}$ (A1) products: $T_A = -40 \text{ to } +110^{\circ}\text{C}$ (μ PD780121, 780122, 780123, and 780124 only)								
Package		• 52-pin plastic LC	QFP (10 × 10)							

An outline of the timer is shown below.

		16-Bit Timer/ Event Counter 00	8-Bit Timer/ Event Counters 50 and 51	8-Bit Timers H0 and H1	Watch Timer	Watchdog Timer
Operation	Interval timer	1 channel	2 channels	2 channels	1 channel ^{Note}	1 channel
mode	External event counter	1 channel	2 channels	_		-
Function	Timer output	1 output	2 outputs	2 outputs		-
	PPG output	1 output	-	_	-	-
	PWM output	-	2 outputs	2 outputs	-	-
	Pulse width measurement	2 inputs	-	_	-	-
	Square-wave output	1 output	2 outputs	_	- 1	_
	Interrupt source	2	2	2	1	_

Note In the watch timer, the watch timer function and interval timer function can be used simultaneously.

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Function List

(1) Port pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0.	Input	T1000
P01		4-bit I/O port.		TI010/TO00
P02		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		_
P03		software setting.		_
P10	I/O	Port 1.	Input	SCK10/TxD0
P11		8-bit I/O port.		SI10/RxD0
P12		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		SO10
P13		software setting.		TxD6
P14				RxD6
P15				ТОН0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P27	Input	Port 2. 8-bit input-only port.	Input	ANI0 to ANI7
P30 to P32	I/O	Port 3. 4-bit I/O port.	Input	INTP1 to INTP3
P33		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		INTP4/TI51/TO51
P60 to P63	I/O	Port 6. 4-bit I/O port (N-ch open drain). Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a mask option only for mask ROM versions.	Input	-
P70 to P77	1/0	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	KR0 to KR7
P120	I/O	Port 12. 1-bit I/O port. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	INTP0
P130	Output	Port 13. 1-bit output-only port.	Output	-
P140	I/O	Port 14. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	PCL/INTP6

(2) Non-port pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising	Input	P120
INTP1 to INTP3		edge, falling edge, or both rising and falling edges) can be		P30 to P32
INTP4		specified		P33/TI51/TO51
INTP5				P16/TOH1
INTP6				P140/PCL
SI10	Input	Serial data input to serial interface	Input	P11/RxD0
SO10	Output	Serial data output from serial interface	Input	P12
SCK10	I/O	Clock input/output for serial interface	Input	P10/TxD0
RxD0	Input	Serial data input to asynchronous serial interface	Input	P11/SI10
RxD6				P14
TxD0	Output	Serial data output from asynchronous serial interface	Input	P10/SCK10
TxD6				P13
T1000	Input	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input	P00
TI010		Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00		P01/TO00
TO00	Output	16-bit timer/event counter 00 output	Input	P01/TI010
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input	P17/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
TO50	Output	8-bit timer/event counter 50 output	Input	P17/TI50
TO51		8-bit timer/event counter 51 output		P33/TI51/INTP4
ТОН0		8-bit timer H0 output		P15
TOH1		8-bit timer H1 output		P16/INTP5
PCL	Output	Clock output (for trimming of X1 input clock, subsystem clock)	Input	P140/INTP6
ANI0 to ANI7	Input	A/D converter analog input	Input	P20 to P27
AVREF	Input	A/D converter reference voltage input	_	_
AVss	_	A/D converter ground potential. Make the same potential as EVss or Vss.	_	-
KR0 to KR7	Input	Key interrupt input	Input	P70 to P77
REGC	-	Connecting regulator output stabilization capacitor. Connect to Vss via a 0.1 μ F capacitor. To use the CPU at high speed (fxP = 10 MHz, VDD = 4.0 to 5.5 V), connect this pin directly to VDD.	-	-
RESET	Input	System reset input	-	_
X1	Input	Connecting crystal resonator for X1 input clock oscillation	_	_
X2	_		-	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	-	_
XT2	_		_	_
		· · · · · · · · · · · · · · · · · · ·		

(2) Non-port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
V _{DD}	-	Positive power supply (except for ports)	-	_
EV _{DD}	1	Positive power supply for ports	ı	_
Vss	ĺ	Ground potential (except for ports)	ı	_
EVss	-	Ground potential for ports	_	-
IC	-	Internally connected. Connect directly to EVss or Vss.	-	-
V _{PP}	-	Flash memory programming mode setting. High-voltage application for program write/verify. Connect directly to EVss or Vss in normal operation mode.	-	-

2.2 Description of Pin Functions

2.2.1 P00 to P03 (port 0)

P00 to P03 function as a 4-bit I/O port. These pins also function as timer I/O.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P00 to P03 function as a 4-bit I/O port. P00 to P03 can be set to input or output in 1-bit units using port mode register 0 (PM0). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

(2) Control mode

P00 to P03 function as timer I/O.

(a) TI000

This is the pin for inputting an external count clock to 16-bit timer/event counter 00 and is also for inputting a capture trigger signal to the capture registers (CR000, CR010) of 16-bit timer/event counter 00.

(b) TI010

This is the pin for inputting a capture trigger signal to the capture register (CR000) of 16-bit timer/event counter 00.

(c) TO00

This is a timer output pin.

2.2.2 P10 to P17 (port 1)

P10 to P17 function as an 8-bit I/O port. These pins also function as pins for external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P10 to P17 function as an 8-bit I/O port. P10 to P17 can be set to input or output in 1-bit units using port mode register 1 (PM1). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 1 (PU1).

(2) Control mode

P10 to P17 function as external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.

(a) SI10, SO10

These are serial interface serial data I/O pins.

(b) SCK10

This is the serial interface serial clock I/O pin.

(c) RxD0, RxD6, TxD0, and TxD6

These are the serial data I/O pins of the asynchronous serial interface.

(d) TI50

This is the pin for inputting an external count clock to 8-bit timer/event counter 50.

(e) TO50, TOH0, and TOH1

These are timer output pins.

(f) INTP5

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

2.2.3 P20 to P27 (port 2)

P20 to P27 function as an 8-bit input-only port. These pins also function as pins for A/D converter analog input. The following operation modes can be specified in 1-bit units.

(1) Port mode

P20 to P27 function as an 8-bit input-only port.

(2) Control mode

P20 to P27 function as A/D converter analog input pins (ANI0 to ANI7).

2.2.4 P30 to P33 (port 3)

P30 to P33 function as a 4-bit I/O port. These pins also function as pins for external interrupt request input and timer I/O.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P30 to P33 function as a 4-bit I/O port. P30 to P33 can be set to input or output in 1-bit units using port mode register 3 (PM3). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).

(2) Control mode

P30 to P33 function as external interrupt request input pins and timer I/O pins.

(a) INTP1 to INTP4

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) TI51

This is an external count clock input pin to 8-bit timer/event counter 51.

(c) TO51

This is a timer output pin.

2.2.5 P60 to P63 (port 6)

P60 to P63 function as a 4-bit I/O port. P60 to P63 can be set to input port or output port in 1-bit units using port mode register 6 (PM6).

P60 to P63 are N-ch open-drain pins. Use of an on-chip pull-up resistor can be specified by a mask option only for mask ROM versions.

2.2.6 P70 to P77 (port 7)

P70 to P77 function as an 8-bit I/O port. These pins also function as key interrupt input pins.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P70 to P77 function as an 8-bit I/O port. P70 to P77 can be set to input or output in 1-bit units using port mode register 7 (PM7). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).

(2) Control mode

P70 to P77 function as key interrupt input pins.

2.2.7 P120 (port 12)

P120 functions as a 1-bit I/O port. This pin also functions as a pin for external interrupt request input.

The following operation modes can be specified.

(1) Port mode

P120 functions as a 1-bit I/O port. P120 can be set to input or output using port mode register 12 (PM12). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

(2) Control mode

P120 functions as an external interrupt request input pin (INTP0) for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

2.2.8 P130 (port 13)

P130 functions as a 1-bit output-only port.

2.2.9 P140 (port 14)

P140 functions as a 1-bit I/O port. This pin also functions as a pin for external interrupt request input and clock output.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P140 functions as a 1-bit I/O port. P140 can be set to input or output in 1-bit units using port mode register 14 (PM14). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 14 (PU14).

(2) Control mode

P140 functions as external interrupt request input and clock output.

(a) INTP6

This is the external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) PCL

This is a clock output pin.

2.2.10 AVREF

This is the A/D converter reference voltage input pin.

When A/D converter is not used, connect this pin to VDD.

2.2.11 AVss

This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the EVss pin or Vss pin.

2.2.12 **RESET**

This is the active-low system reset input pin.

2.2.13 REGC

This is the pin for connecting the capacitor for the regulator. Connect this pin to Vss via a 0.1 μ F capacitor. To use the CPU at high speed (fxp = 10 MHz, Vdd = 4.0 to 5.5 V), connect this pin directly to Vdd and apply the same potential to it as the Vdd pin.

2.2.14 X1 and X2

These are the pins for connecting a crystal resonator for X1 input clock oscillation.

When supplying an external clock, input a signal to the X1 pin and input the inverse signal to the X2 pin.

2.2.15 XT1 and XT2

These are the pins for connecting a crystal resonator for subsystem clock oscillation.

When supplying an external clock, input a signal to the XT1 pin and input the inverse signal to the XT2 pin.

2.2.16 VDD and EVDD

V_{DD} is the positive power supply pin for other than ports.

EV_{DD} is the positive power supply pin for ports.

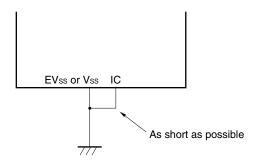
2.2.17 Vss and EVss

Vss is the ground potential pin for other than ports.

EVss is the ground potential pin for ports.

2.2.18 VPP (flash memory versions only)

This is a pin for flash memory programming mode setting and high-voltage application for program write/verify.


Connect directly to EVss or Vss in the normal operation mode.

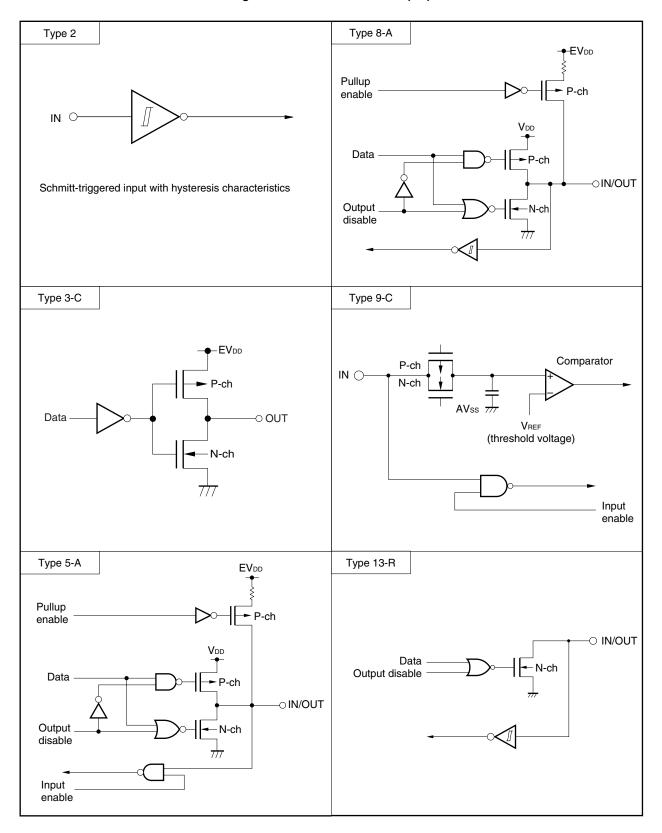
2.2.19 IC (mask ROM versions only)

The IC (Internally Connected) pin is provided to set the test mode to check the 78K0/KD1 Series at shipment. Connect it directly to EVss or Vss pin with the shortest possible wire in the normal operation mode.

When a potential difference is produced between the IC pin and the EVss or Vss pin because the wiring between these two pins is too long or external noise is input to the IC pin, the user's program may not operate normally.

. Connect the IC pin directly to EVss or Vss pin.

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins


Table 2-1 shows the types of pin I/O circuits and the recommended connections of unused pins.

Refer to Figure 2-1 for the configuration of the I/O circuit of each type.

Table 2-1. Pin I/O Circuit Types

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/T1000	8-A	I/O	Input: Independently connect to EVDD or EVss via a resistor.
P01/TI010/TO00			Output: Leave open.
P02			
P03			
P10/SCK10/TxD0			
P11/SI10/RxD0			
P12/SO10	5-A		
P13/TxD6			
P14/RxD6	8-A		
P15/TOH0	5-A		
P16/TOH1/INTP5	8-A		
P17/TI50/TO50			
P20/ANI0 to P27/ANI7	9-C	Input	Connect to EV _{DD} or EVss.
P30/INTP1 to P32/INTP3	8-A	I/O	Input: Independently connect to EVDD or EVSS via a resistor.
P33/TI51/TO51/INTP4			Output: Leave open.
P60, P61 (Mask ROM version)	13-S		Input: Connect to EVss.
P60, P61 (Flash memory version)	13-R		Output: Leave open and keep this pin to low.
P62, P63 (Mask ROM version)	13-W		
P62, P63 (Flash memory version)	13-V		
P70/KR0 to P77/KR7	8-A		Input: Independently connect to EVDD or EVss via a resistor.
P120/INTP0			Output: Leave open.
P130	3-C	Output	Leave open.
P140/PCL/INTP6	8-A	I/O	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open.
RESET	2	Input	-
XT1	16		Connect directly to EVDD or VDD.
XT2		_	Leave open.
AVREF	_	_	Connect directly to EV _{DD} or V _{DD} .
AVss	_	_	Connect directly to EVss or Vss.
IC	_	_	Connect directly to EVss or Vss.
V _{PP}			

Figure 2-1. Pin I/O Circuit List (1/2)

Type 13-S Type 13-W -O IN/OUT (Mask option) O IN/OUT Output disable Data Output disable Input enable Middle-voltage input buffer Type 13-V Type 16 EVDD Feedback cut-off (Mask option) O IN/OUT Data Output disable ♦ XT1 XT2 Input enable Middle-voltage input buffer

Figure 2-1. Pin I/O Circuit List (2/2)

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

Products in the 78K0/KD1 Series can each access a 64 KB memory space. Figures 3-1 to 3-5 show the memory maps.

Caution Regardless of the internal memory capacity, the initial value of the internal memory size switching register (IMS) of all products in the 78K0/KD1 Series is fixed (IMS = CFH). Therefore, set the value corresponding to each product as indicated below.

Table 3-1. Set Values of Internal Memory Size Switching Register (IMS)

	Internal Memory Size Switching Register (IMS)
μPD780121	42H
μPD780122	44H
μPD780123	С6Н
μPD780124	C8H
μPD78F0124	Value corresponding to mask ROM version

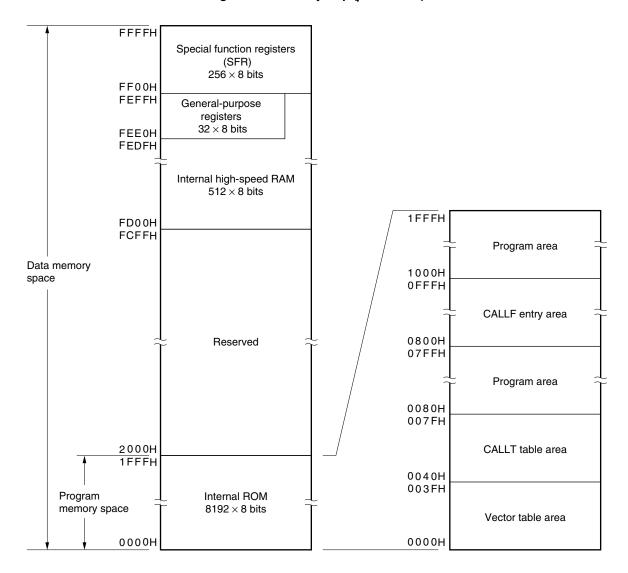


Figure 3-1. Memory Map (μPD780121)

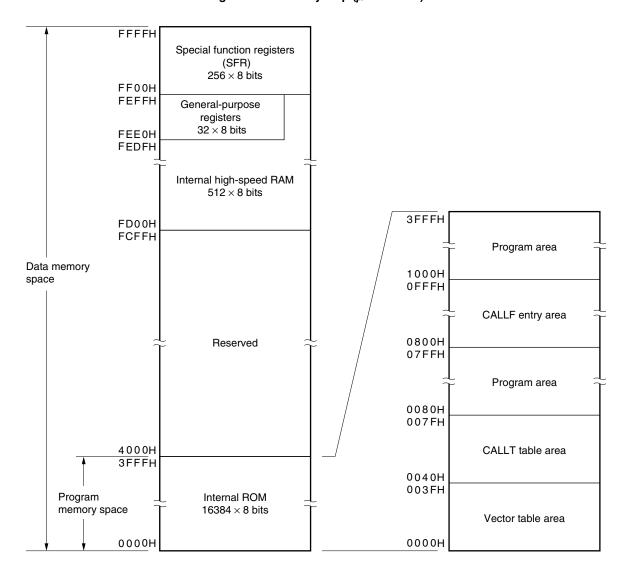


Figure 3-2. Memory Map (μPD780122)

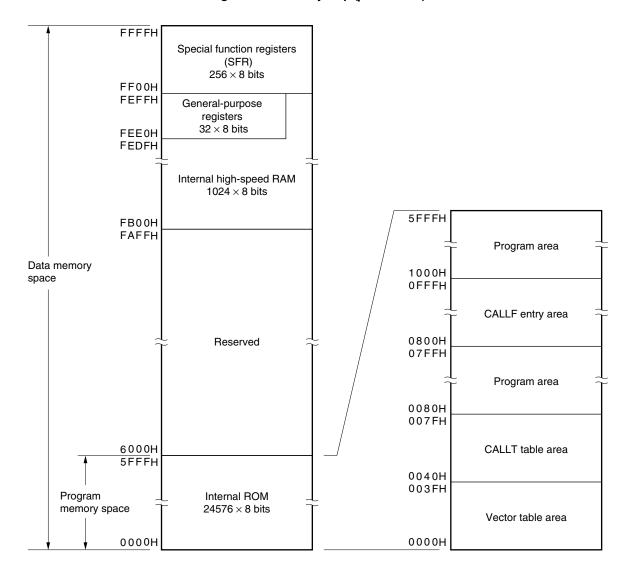


Figure 3-3. Memory Map (μPD780123)

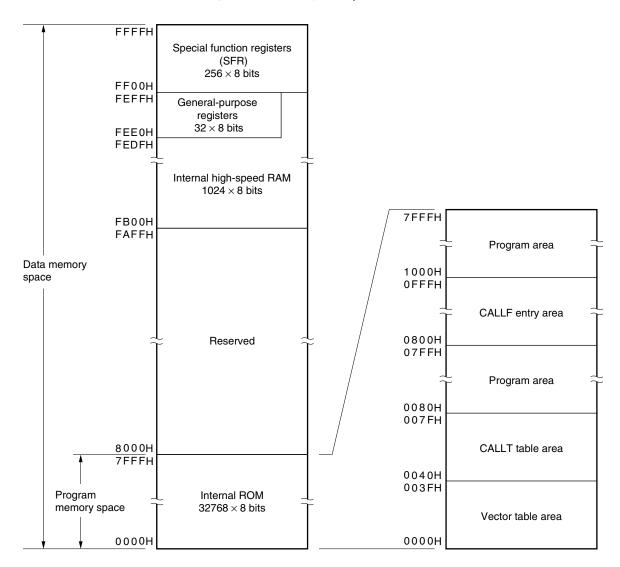


Figure 3-4. Memory Map (μPD780124)

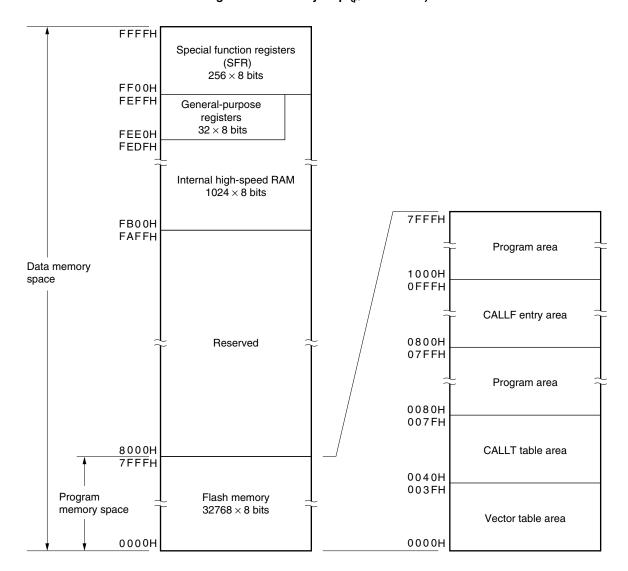


Figure 3-5. Memory Map (μPD78F0124)

3.1.1 Internal program memory space

The internal program memory space stores the program and table data. Normally, it is addressed with the program counter (PC).

78K0/KD1 Series products incorporate internal ROM (or flash memory), as shown below.

Table 3-2. Internal Memory Capacity

Part Number	Internal ROM				
	Structure	Capacity			
μPD780121	Mask ROM	8192 × 8 bits (0000H to 1FFFH)			
μPD780122		16384 × 8 bits (0000H to 3FFFH)			
μPD780123		24576 × 8 bits (0000H to 5FFFH)			
μPD780124		32768 × 8 bits (0000H to 7FFFH)			
μPD78F0124	Flash memory				

The internal program memory space is divided into the following areas.

(1) Vector table area

The 64-byte area 0000H to 003FH is reserved as a vector table area. The program start addresses for branch upon RESET input or generation of each interrupt request are stored in the vector table area.

Of the 16-bit address, the lower 8 bits are stored at even addresses and the higher 8 bits are stored at odd addresses.

Table 3-3. Vector Table

Vector Table Address	Interrupt Source	Vector Table Address	Interrupt Source
0000H	RESET input, POC, LVI,	001AH	INTTMH1
	clock monitor, WDT	001CH	INTTMH0
0004H	INTLVI	001EH	INTTM50
0006H	INTP0	0020H	INTTM000
0008H	INTP1	0022H	INTTM010
000AH	INTP2	0024H	INTAD
000CH	INTP3	0026H	INTSR0
000EH	INTP4	0028H	INTWTI
0010H	INTP5	002AH	INTTM51
0012H	INTSRE6	002CH	INTKR
0014H	INTSR6	002EH	INTWT
0016H	INTST6	0030H	INTP6
0018H	INTCSI10/INTST0		_

(2) CALLT instruction table area

The 64-byte area 0040H to 007FH can store the subroutine entry address of a 1-byte call instruction (CALLT).

(3) CALLF instruction entry area

The area 0800H to 0FFFH can perform a direct subroutine call with a 2-byte call instruction (CALLF).

3.1.2 Internal data memory space

78K0/KD1 Series products incorporate the following internal high-speed RAMs.

Table 3-4. Internal High-Speed RAM Capacity

Part Number	Internal High-Speed RAM
μPD780121	512 × 8 bits (FD00H to FEFFH)
μPD780122	
μPD780123	1024 × 8 bits (FB00H to FEFFH)
μPD780124	
μPD78F0124	

The 32-byte area FEE0H to FEFFH is assigned to four general-purpose register banks consisting of eight 8-bit registers per one bank.

This area cannot be used as a program area in which instructions are written and executed.

The internal high-speed RAM can also be used as a stack memory.

3.1.3 Special function register (SFR) area

On-chip peripheral hardware special function registers (SFRs) are allocated in the area FF00H to FFFFH (refer to Table 3-5 Special Function Register List in 3.2.3 Special Function Registers (SFRs)).

Caution Do not access addresses to which SFRs are not assigned.

3.1.4 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions. The address of the instruction to be executed next is addressed by the program counter (PC) (for details, refer to **3.3 Instruction Address Addressing**).

Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the 78K0/KD1 Series, based on operability and other considerations. For areas containing data memory in particular, special addressing methods designed for the functions of special function registers (SFR) and general-purpose registers are available for use. Data memory addressing is illustrated in Figures 3-6 to 3-10. For details of each addressing mode, refer to **3.4 Operand Address Addressing**.

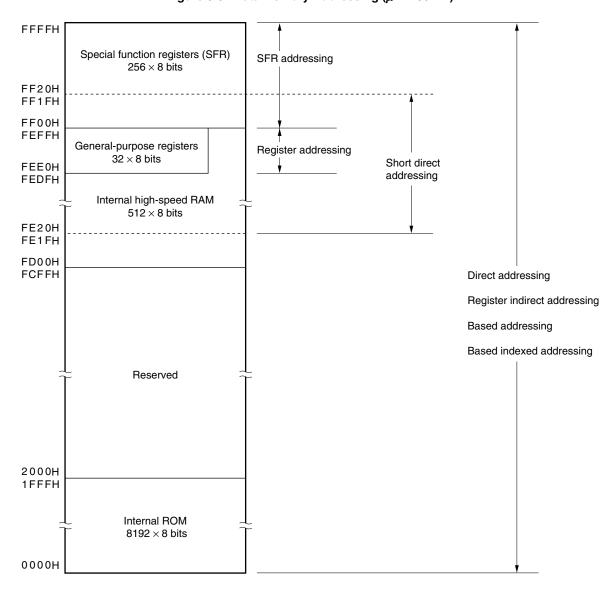


Figure 3-6. Data Memory Addressing (μPD780121)

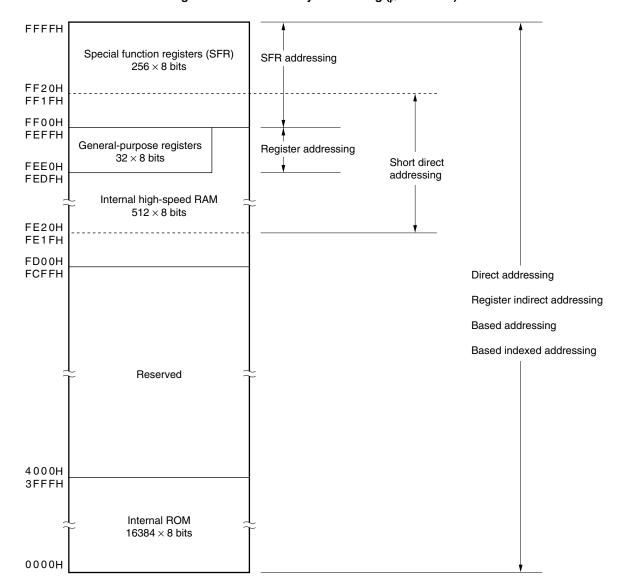


Figure 3-7. Data Memory Addressing (μPD780122)

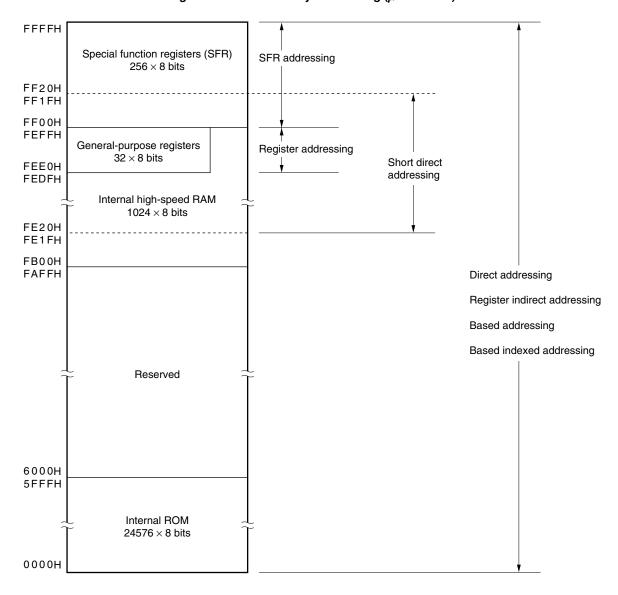


Figure 3-8. Data Memory Addressing (μPD780123)

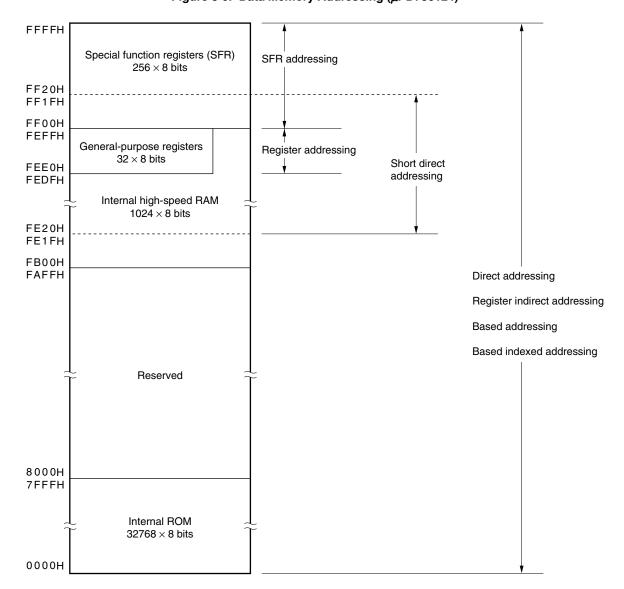


Figure 3-9. Data Memory Addressing (μPD780124)

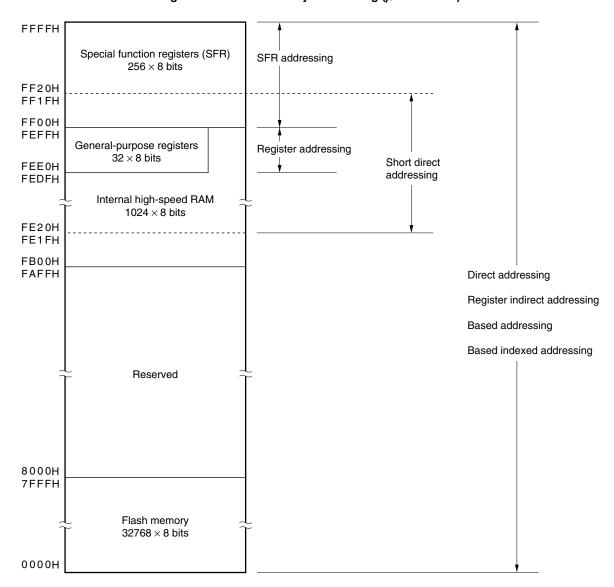
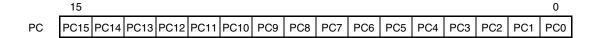


Figure 3-10. Data Memory Addressing (μPD78F0124)

3.2 Processor Registers

The 78K0/KD1 Series products incorporate the following processor registers.

3.2.1 Control registers


The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 16-bit register that holds the address information of the next program to be executed. In normal operation, the PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set.

RESET input sets the reset vector table values at addresses 0000H and 0001H to the program counter.

Figure 3-11. Format of Program Counter

(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags set/reset by instruction execution.

Program status word contents are automatically stacked upon interrupt request generation or PUSH PSW instruction execution and are automatically restored upon execution of the RETB, RETI and POP PSW instructions.

RESET input sets the PSW to 02H.

Figure 3-12. Format of Program Status Word

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.

When 0, the IE flag is set to the interrupt disabled (DI) state, and only non-maskable interrupt requests become acknowledgeable. Other interrupt requests are all disabled.

When 1, the IE flag is set to the interrupt enabled (EI) state and interrupt request acknowledgement is controlled with an in-service priority flag (ISP), an interrupt mask flag for various interrupt sources, and a priority specification flag.

The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgement and is set (1) upon EI instruction execution.

(b) Zero flag (Z)

When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.

(c) Register bank select flags (RBS0 and RBS1)

These are 2-bit flags to select one of the four register banks.

In these flags, the 2-bit information that indicates the register bank selected by SEL RBn instruction execution is stored.

(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other cases.

(e) In-service priority flag (ISP)

This flag manages the priority of acknowledgeable maskable vectored interrupts. When this flag is 0, low-level vectored interrupt requests specified by a priority specification flag register (PR0L, PR0H, PR1L, PR1H) (refer to 16.3 (3) Priority specification flag registers (PR0L, PR0H, PR1L, PR1H)) can not be acknowledged. Actual request acknowledgement is controlled by the interrupt enable flag (IE).

(f) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal high-speed RAM area can be set as the stack area.

Figure 3-13. Format of Stack Pointer

15 0
SP SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restored) from the stack memory.

Each stack operation saves/restores data as shown in Figures 3-14 and 3-15.

Caution Since RESET input makes the SP contents undefined, be sure to initialize the SP before instruction execution.

Figure 3-14. Data to Be Saved to Stack Memory

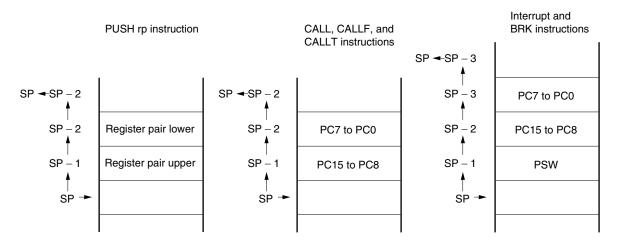
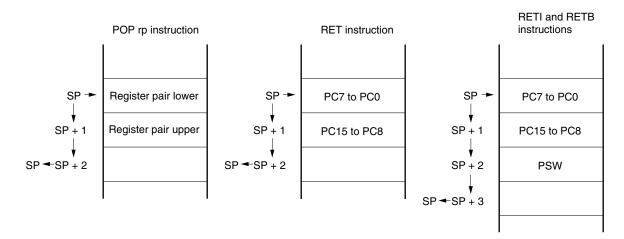



Figure 3-15. Data to Be Restored from Stack Memory

3.2.2 General-purpose registers

General-purpose registers are mapped at particular addresses (FEE0H to FEFFH) of the data memory. The general-purpose registers consists of 4 banks, each bank consisting of eight 8-bit registers (X, A, C, B, E, D, L, and H).

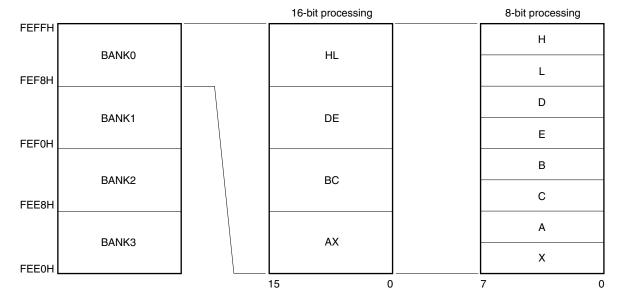
Each register can be used as an 8-bit register, and two 8-bit registers can also be used in a pair as a 16-bit register (AX, BC, DE, and HL).

These registers can be described in terms of function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and absolute names (R0 to R7 and RP0 to RP3).

Register banks to be used for instruction execution are set by the CPU control instruction (SEL RBn). Because of the 4-register bank configuration, an efficient program can be created by switching between a register for normal processing and a register for interrupts for each bank.

Figure 3-16. Configuration of General-Purpose Registers

16-bit processing 8-bit processing **FEFFH** R7 BANK0 RP3 R6 FEF8H R5 RP2 BANK1 R4 FEF0H R3 RP1 BANK2 R2 FEE8H R1 BANK3 RP0 R0 FEE0H


(a) Absolute name

(b) Function name

0

0

15

3.2.3 Special Function Registers (SFRs)

Unlike a general-purpose register, each special function register has a special function.

SFRs are allocated to the FF00H to FFFFH area.

Special function registers can be manipulated like general-purpose registers, using operation, transfer and bit manipulation instructions. The manipulatable bit units, 1, 8, and 16, depend on the special function register type.

Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (sfr.bit). This manipulation can also be specified with an address.

• 8-bit manipulation

Describe the symbol reserved by the assembler for the 8-bit manipulation instruction operand (sfr).

This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol reserved by the assembler for the 16-bit manipulation instruction operand (sfrp). When specifying an address, describe an even address.

Table 3-5 gives a list of the special function registers. The meanings of items in the table are as follows.

Symbol

Symbol indicating the address of a special function register. It is a reserved word in the RA78K0, and is defined by the header file "sfrbit.h" in the CC78K0. When using the RA78K0, ID78K0-NS, ID78K0, or SM78K0, symbols can be written as an instruction operand.

R/W

Indicates whether the corresponding special function register can be read or written.

R/W: Read/write enable

R: Read only W: Write only

Manipulatable bit units

Indicates the manipulatable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

After reset

Indicates each register status upon RESET input.

Table 3-5. Special Function Register List (1/3)

Address	Special Function Register (SFR) Name	Symbol	R/W	Mani	Manipulatable B		After
				1 Bit	8 Bits	16 Bits	Reset
FF00H	Port 0	P0	R/W	V	√	-	00H
FF01H	Port 1	P1	R/W	V	√	-	00H
FF02H	Port 2	P2	R	V	√	-	00H
FF03H	Port 3	P3	R/W	V	√	-	00H
FF06H	Port 6	P6	R/W	$\sqrt{}$	√	-	00H
FF07H	Port 7	P7	R/W	V	√	-	00H
FF08H	A/D conversion result register	ADCR	R	-	-	√	Undefined
FF09H							
FF0AH	Receive buffer register 6	RXB6	R	_	√	_	FFH
FF0BH	Transmit buffer register 6	TXB6	R/W	_	√	-	FFH
FF0CH	Port 12	P12	R/W	V	√	-	00H
FF0DH	Port 13	P13	R/W	V	√	-	00H
FF0EH	Port 14	P14	R/W	V	√	-	00H
FF0FH	Serial I/O shift register 10	SIO10	R	_	√	-	00H
FF10H	16-bit timer counter 00	TM00	R	-	-	√	0000H
FF11H							
FF12H	16-bit timer capture/compare register 000	CR000	R/W	-	-	√	0000H
FF13H							
FF14H	16-bit timer capture/compare register 010	CR010	R/W	-	-	√	0000H
FF15H							
FF16H	8-bit timer counter 50	TM50	R	_	√	-	00H
FF17H	8-bit timer compare register 50	CR50	R/W	-	√	_	00H
FF18H	8-bit timer H compare register 00	CMP00	R/W	_	√	_	00H
FF19H	8-bit timer H compare register 10	CMP10	R/W	_	√	_	00H
FF1AH	8-bit timer H compare register 01	CMP01	R/W	_	√	_	00H
FF1BH	8-bit timer H compare register 11	CMP11	R/W	_	√	-	00H
FF1FH	8-bit timer counter 51	TM51	R	-	√	-	00H
FF20H	Port mode register 0	PM0	R/W	$\sqrt{}$	√	-	FFH
FF21H	Port mode register 1	PM1	R/W	√	√	_	FFH
FF23H	Port mode register 3	PM3	R/W	$\sqrt{}$	√	_	FFH
FF26H	Port mode register 6	PM6	R/W	$\sqrt{}$	√	_	FFH
FF27H	Port mode register 7	PM7	R/W	√	√	_	FFH
FF28H	A/D converter mode register	ADM	R/W	$\sqrt{}$	√	-	00H
FF29H	Analog input channel specification register	ADS	R/W	$\sqrt{}$	√	_	00H
FF2AH	Power-fail comparison mode register	PFM	R/W	$\sqrt{}$	√	_	00H
FF2BH	Power-fail comparison threshold register	PFT	R/W	_	√	_	00H
FF2CH	Port mode register 12	PM12	R/W	$\sqrt{}$	√	_	FFH
FF2EH	Port mode register 14	PM14	R/W	$\sqrt{}$	√	_	FFH
FF30H	Pull-up resistor option register 0	PU0	R/W	$\sqrt{}$	√	_	00H
FF31H	Pull-up resistor option register 1	PU1	R/W	$\sqrt{}$	√	_	00H

Table 3-5. Special Function Register List (2/3)

Address	Special Function Register (SFR) Name	Symbol	R/W	Mani	pulatable B	it Unit	After
				1 Bit	8 Bits	16 Bits	Reset
FF33H	Pull-up resistor option register 3	PU3	R/W	V	√	-	00H
FF37H	Pull-up resistor option register 7	PU7	R/W	$\sqrt{}$	√	-	00H
FF3CH	Pull-up resistor option register 12	PU12	R/W	$\sqrt{}$	√	-	00H
FF3EH	Pull-up resistor option register 14	PU14	R/W	V	√	-	00H
FF40H	Clock output selection register	CKS	R/W	$\sqrt{}$	√	-	00H
FF41H	8-bit timer compare register 51	CR51	R/W	-	√	_	00H
FF43H	8-bit timer mode control register 51	TMC51	R/W	$\sqrt{}$	√	_	00H
FF48H	External interrupt rising edge enable register	EGP	R/W	$\sqrt{}$	√	-	00H
FF49H	External interrupt falling edge enable register	EGN	R/W	$\sqrt{}$	√	-	00H
FF4FH	Input switch control register	ISC	R/W	V	√	-	00H
FF50H	Asynchronous serial interface operation mode register 6	ASIM6	R/W	V	√	_	01H
FF53H	Asynchronous serial interface reception error status register 6	ASIS6	R	-	√	_	00H
FF55H	Asynchronous serial interface transmission status register 6	ASIF6	R	-	√	_	00H
FF56H	Clock selection register 6	CKSR6	R/W	_	√	_	00H
FF57H	Baud rate generator control register 6	BRGC6	R/W	_	√	_	FFH
FF58H	Asynchronous serial interface control register 6	ASICL6	R/W	V	√	_	16H
FF69H	8-bit timer H mode register 0	TMHMD0	R/W	√	√	_	00H
FF6AH	Timer clock selection register 50	TCL50	R/W	_	√	_	00H
FF6BH	8-bit timer mode control register 50	TMC50	R/W	√	√	_	00H
FF6CH	8-bit timer H mode register 1	TMHMD1	R/W	√	√	_	00H
FF6DH	8-bit timer H carrier control register 1	TMCYC1	R/W	V	√	-	00H
FF6EH	Key return mode register	KRM	R/W	V	√	-	00H
FF6FH	Watch timer operation mode register	WTM	R/W	$\sqrt{}$	√	-	00H
FF70H	Asynchronous serial interface operation mode register 0	ASIM0	R/W	\checkmark	√	_	01H
FF71H	Baud rate generator control register 0	BRGC0	R/W	-	√	-	1FH
FF72H	Receive buffer register 0	RXB0	R	-	√	-	FFH
FF73H	Asynchronous serial interface reception error status register 0	ASIS0	R	_	√	_	00H
FF74H	Transmit shift register 0	TXS0	W	_	√	_	FFH
FF80H	Serial operation mode register 10	CSIM10	R/W	√	√	_	00H
FF81H	Serial clock selection register 10	CSIC10	R/W	√	√	_	00H
FF84H	Transmit buffer register 10	SOTB10	R/W	-	√	-	Undefined
FF8CH	Timer clock selection register 51	TCL51	R/W	-	√	-	00H
FF98H	Watchdog timer mode register	WDTM	R/W	_	√	_	67H
FF99H	Watchdog timer enable register	WDTE	R/W	_	√	_	9AH
FFA0H	Ring-OSC mode register	RCM	R/W	√	√	-	00H
FFA1H	Main clock mode register	MCM	R/W	√	√	_	00H

Table 3-5. Special Function Register List (3/3)

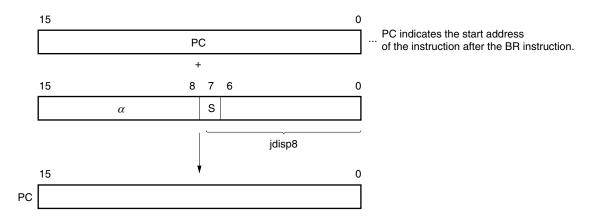
Address	Special Function Register (SFR) Name	Symbol		R/W	Mani	pulatable Bi	t Unit	After
					1 Bit	8 Bits	16 Bits	Reset
FFA2H	Main OSC control register	MOC		R/W	V	√	-	00H
FFA3H	Oscillation stabilization time counter status register	OSTC		R	V	√	-	00H
FFA4H	Oscillation stabilization time select register	OSTS		R/W	_	√	-	05H
FFA9H	Clock monitor mode register	CLM		R/W	V	√	-	00H
FFACH	Reset control flag register	RESF		R	-	√	-	00H ^{Note 1}
FFBAH	16-bit timer mode control register 00	TMC0	0	R/W	$\sqrt{}$	\checkmark	_	00H
FFBBH	Prescaler mode register 00	PRM0	0	R/W	V	√	-	00H
FFBCH	Capture/compare control register 00	CRC0	0	R/W	V	√	-	00H
FFBDH	16-bit timer output control register 00	TOC00		R/W	V	√	-	00H
FFBEH	Low-voltage detection register	LVIM		R/W	V	√	-	00H
FFBFH	Low-voltage detection level selection register	LVIS		R/W	-	√	-	00H
FFE0H	Interrupt request flag register 0L	IF0 IF0L		R/W	V	√	√	00H
FFE1H	Interrupt request flag register 0H		IF0H	R/W	$\sqrt{}$	√		00H
FFE2H	Interrupt request flag register 1L	IF1L		R/W	$\sqrt{}$	√	-	00H
FFE4H	Interrupt mask flag register 0L	MK0	MK0L	R/W	$\sqrt{}$	$\sqrt{}$	√	FFH
FFE5H	Interrupt mask flag register 0H		МКОН	R/W	V	√		FFH
FFE6H	Interrupt mask flag register 1L	MK1L		R/W	V	√	-	FFH
FFE8H	Priority specification flag register 0L	PR0 PR0L		R/W	V	√	√	FFH
FFE9H	Priority specification flag register 0H	PR0H		R/W	V	√		FFH
FFEAH	Priority specification flag register 1L	PR1L		R/W	V	√	_	FFH
FFF0H	Internal memory size switching registerNote 2	IMS		R/W	_	√	_	CFH
FFFBH	Processor clock control register	PCC		R/W	V	√	_	00H

- Notes 1. This value varies depending on the reset source.
 - 2. The initial value of IMS is fixed (IMS = CFH) in all products in the 78K0/KD1 Series regardless of the internal memory capacity. Therefore, set the following value to each product.

	Internal Memory Size Switching Register (IMS)
μPD780121	42H
μPD780122	44H
μPD780123	С6Н
μPD780124	C8H
μPD78F0124	Value corresponding to mask ROM version

3.3 Instruction Address Addressing

An instruction address is determined by program counter (PC) contents and is normally incremented (+1 for each byte) automatically according to the number of bytes of an instruction to be fetched each time another instruction is executed. When a branch instruction is executed, the branch destination information is set to the PC and branched by the following addressing (for details of instructions, refer to **78K/0 Series Instructions User's Manual (U12326E)**).


3.3.1 Relative addressing

[Function]

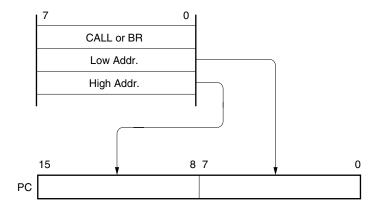
The value obtained by adding 8-bit immediate data (displacement value: jdisp8) of an instruction code to the start address of the following instruction is transferred to the program counter (PC) and branched. The displacement value is treated as signed two's complement data (-128 to +127) and bit 7 becomes a sign bit. In other words, relative addressing consists of relative branching from the start address of the following instruction to the -128 to +127 range.

This function is carried out when the BR \$addr16 instruction or a conditional branch instruction is executed.

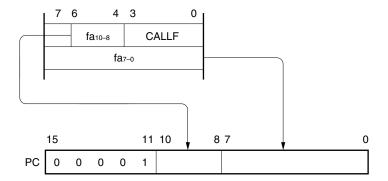
[Illustration]

When S = 0, all bits of α are 0. When S = 1, all bits of α are 1.

3.3.2 Immediate addressing


[Function]

Immediate data in the instruction word is transferred to the program counter (PC) and branched.


This function is carried out when the CALL !addr16 or BR !addr16 or CALLF !addr11 instruction is executed. CALL !addr16 and BR !addr16 instructions can be branched to the entire memory space. The CALLF !addr11 instruction is branched to the 0800H to 0FFFH area.

[Illustration]

In the case of CALL !addr16 and BR !addr16 instructions

In the case of CALLF !addr11 instruction

3.3.3 Table indirect addressing

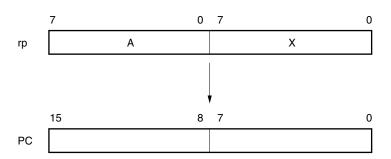
[Function]

Table contents (branch destination address) of the particular location to be addressed by bits 1 to 5 of the immediate data of an operation code are transferred to the program counter (PC) and branched.

This function is carried out when the CALLT [addr5] instruction is executed.

This instruction references the address stored in the memory table from 40H to 7FH, and allows branching to the entire memory space.

[Illustration]


3.3.4 Register addressing

[Function]

Register pair (AX) contents to be specified with an instruction word are transferred to the program counter (PC) and branched.

This function is carried out when the BR AX instruction is executed.

[Illustration]

3.4 Operand Address Addressing

The following methods are available to specify the register and memory (addressing) to undergo manipulation during instruction execution.

3.4.1 Implied addressing

[Function]

The register that functions as an accumulator (A and AX) among the general-purpose registers is automatically (implicitly) addressed.

Of the 78K0/KD1 Series instruction words, the following instructions employ implied addressing.

Instruction	Register to Be Specified by Implied Addressing
MULU	A register for multiplicand and AX register for product storage
DIVUW	AX register for dividend and quotient storage
ADJBA/ADJBS	A register for storage of numeric values that become decimal correction targets
ROR4/ROL4	A register for storage of digit data that undergoes digit rotation

[Operand format]

Because implied addressing can be automatically employed with an instruction, no particular operand format is necessary.

[Description example]

In the case of MULU X

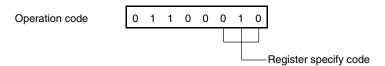
With an 8-bit \times 8-bit multiply instruction, the product of A register and X register is stored in AX. In this example, the A and AX registers are specified by implied addressing.

3.4.2 Register addressing

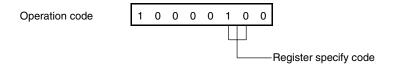
[Function]

The general-purpose register to be specified is accessed as an operand with the register bank select flags (RBS0 to RBS1) and the register specify codes (Rn and RPn) of an operation code.

Register addressing is carried out when an instruction with the following operand format is executed. When an 8-bit register is specified, one of the eight registers is specified with 3 bits in the operation code.


[Operand format]

Identifier	Description
r	X, A, C, B, E, D, L, H
rp	AX, BC, DE, HL


'r' and 'rp' can be described by absolute names (R0 to R7 and RP0 to RP3) as well as function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL).

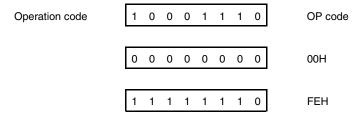
[Description example]

MOV A, C; when selecting C register as r

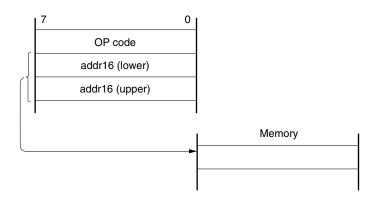
INCW DE; when selecting DE register pair as rp

3.4.3 Direct addressing

[Function]


The memory to be manipulated is directly addressed with immediate data in an instruction word becoming an operand address.

[Operand format]


Identifier	Description
addr16	Label or 16-bit immediate data

[Description example]

MOV A, !0FE00H; when setting !addr16 to FE00H

[Illustration]

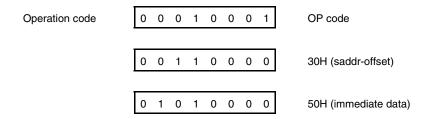
3.4.4 Short direct addressing

[Function]

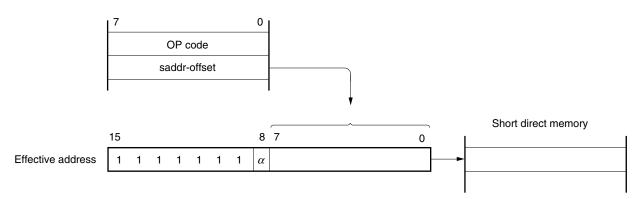
The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word.

This addressing is applied to the 256-byte space FE20H to FF1FH. Internal RAM and special function registers (SFRs) are mapped at FE20H to FEFFH and FF00H to FF1FH, respectively.

The SFR area (FF00H to FF1FH) where short direct addressing is applied is a part of the overall SFR area. Ports that are frequently accessed in a program and compare and capture registers of the timer/event counter are mapped in this area, allowing SFRs to be manipulated with a small number of bytes and clocks.


When 8-bit immediate data is at 20H to FFH, bit 8 of an effective address is set to 0. When it is at 00H to 1FH, bit 8 is set to 1. Refer to the [Illustration] shown below.

[Operand format]


Identifier	Description				
saddr	Label or FE20H to FF1FH immediate data				
saddrp	Label or FE20H to FF1FH immediate data (even address only)				

[Description example]

MOV 0FE30H, #50H; when setting saddr to FE30H and immediate data to 50H

[Illustration]

When 8-bit immediate data is 20H to FFH, α = 0

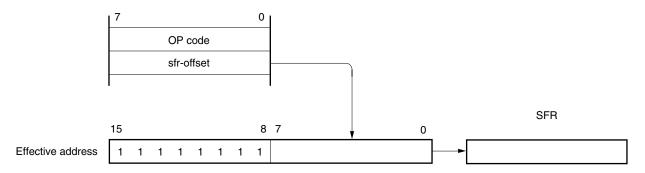
When 8-bit immediate data is 00H to 1FH, $\alpha = 1$

3.4.5 Special function register (SFR) addressing

[Function]

A memory-mapped special function register (SFR) is addressed with 8-bit immediate data in an instruction word. This addressing is applied to the 240-byte spaces FF00H to FFCFH and FFE0H to FFFFH. However, the SFRs mapped at FF00H to FF1FH can be accessed with short direct addressing.

[Operand format]


Identifier	Description				
sfr	Special function register name				
sfrp	16-bit manipulatable special function register name (even address only)				

[Description example]

MOV PM0, A; when selecting PM0 (FF20H) as sfr

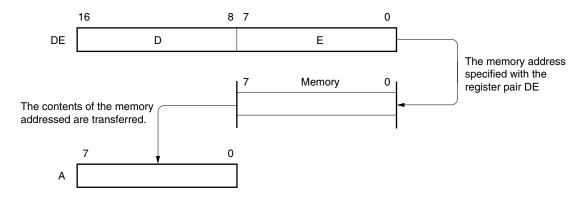
[Illustration]

3.4.6 Register indirect addressing

[Function]

Register pair contents specified by a register pair specify code in an instruction word and by a register bank select flag (RBS0 and RBS1) serve as an operand address for addressing the memory. This addressing can be carried out for all the memory spaces.

[Operand format]


Identifier	Description
_	[DE], [HL]

[Description example]

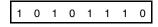
MOV A, [DE]; when selecting [DE] as register pair

[Illustration]

3.4.7 Based addressing

[Function]

8-bit immediate data is added as offset data to the contents of the base register, that is, the HL register pair in the register bank specified by the register bank select flag (RBS0 and RBS1), and the sum is used to address the memory. Addition is performed by expanding the offset data as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.


[Operand format]

Identifier	Description
-	[HL + byte]

[Description example]

MOV A, [HL + 10H]; when setting byte to 10H

Operation code

3.4.8 Based indexed addressing

[Function]

The B or C register contents specified in an instruction word are added to the contents of the base register, that is, the HL register pair in the register bank specified by the register bank select flag (RBS0 and RBS1), and the sum is used to address the memory. Addition is performed by expanding the B or C register contents as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.

[Operand format]

Identifier	Description
_	[HL + B], [HL + C]

[Description example]

In the case of MOV A, [HL + B]

Operation code 1 0 1 0 1 0 1 1

3.4.9 Stack addressing

[Function]

The stack area is indirectly addressed with the stack pointer (SP) contents.

This addressing method is automatically employed when the PUSH, POP, subroutine call and return instructions are executed or the register is saved/reset upon generation of an interrupt request.

With stack addressing, only the internal high-speed RAM area can be accessed.

[Description example]

In the case of PUSH DE

Operation code 1 0 1 1 0 1 0 1

CHAPTER 4 PORT FUNCTIONS

4.1 Port Functions

78K0/KD1 Series products are provided with the ports shown in Figure 4-1, which enable variety of control operations. The functions of each port are shown in Table 4-1.

In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, refer to **CHAPTER 2 PIN FUNCTIONS**.

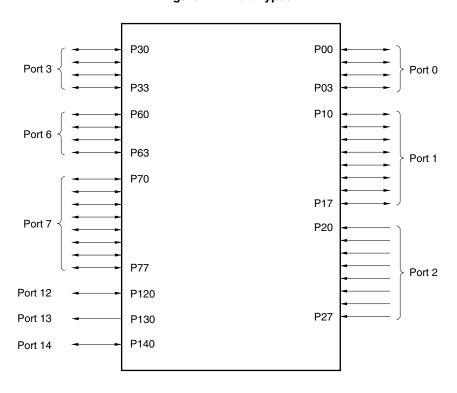


Figure 4-1. Port Types

Table 4-1. Port Functions

Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0.	Input	TI000
P01		4-bit I/O port.		TI010/TO00
P02		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		_
P03		software setting.		-
P10	I/O	Port 1.	Input	SCK10/TxD0
P11		8-bit I/O port.		SI10/RxD0
P12		Input/output can be specified in 1-bit units.		SO10
P13		Use of an on-chip pull-up resistor can be specified by a software setting.		TxD6
P14		3		RxD6
P15				ТОН0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P27	Input	Port 2. 8-bit input-only port.	Input	ANI0 to ANI7
P30 to P32	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units.	Input	INTP1 to INTP3
P33		Use of an on-chip pull-up resistor can be specified by a software setting.		INTP4/TI51/TO51
P60 to P63	I/O	Port 6. 4-bit I/O port (N-ch open drain). Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a mask option only for mask ROM versions.	Input	-
P70 to P77	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	KR0 to KR7
P120	I/O	Port 12. 1-bit I/O port. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	INTP0
P130	Output	Port 13. 1-bit output-only port.	Output	-
P140	I/O	Port 14. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input	PCL/INTP6

4.2 Port Configuration

Ports consist of the following hardware.

Table 4-2. Port Configuration

Item	Configuration		
Control registers	Port mode register (PM0, PM1, PM3, PM6, PM7, PM12, PM14) Pull-up resistor option register (PU0, PU1, PU3, PU7, PU12, PU14) Input switch control register (ISC)		
Port	Total: 39 (CMOS I/O: 26, CMOS input: 8, CMOS output: 1, N-ch open drain I/O: 4)		
Pull-up resistor	 Mask ROM version Total: 30 (software control: 26, mask option specification: 4) Flash memory version: Total: 26 		

4.2.1 Port 0

Port 0 is a 4-bit I/O port with an output latch. Port 0 can be set to the input mode or output mode in 1-bit units using port mode register 0 (PM0). When the P00 to P03 pins are used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

This port can also be used for timer I/O.

RESET input sets port 0 to input mode.

Figures 4-2 to 4-4 show block diagrams of port 0.

PU00, PU03

Alternate function

RD

WRPONT

Output latch (P00, P03)

WRPM

PM00, PM03

Figure 4-2. Block Diagram of P00 and P03

PU0: Pull-up resistor option register 0

WRevart PU01

Alternate function

WRevart

Output latch (P01)

WRevart

PM01

Alternate function

Figure 4-3. Block Diagram of P01

PU02

RD

WRPORT

WRPORT

Output latch
(P02)

PM02

Alternate function

Figure 4-4. Block Diagram of P02

4.2.2 Port 1

Port 1 is an 8-bit I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units using port mode register 1 (PM1). When the P10 to P17 pins are used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 1 (PU1).

This port can also be used for external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.

RESET input sets port 1 to input mode.

Figures 4-5 to 4-10 show block diagrams of port 1.

Caution When P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 are used as general-purpose ports, do not write to serial clock selection register 10 (CSIC10).

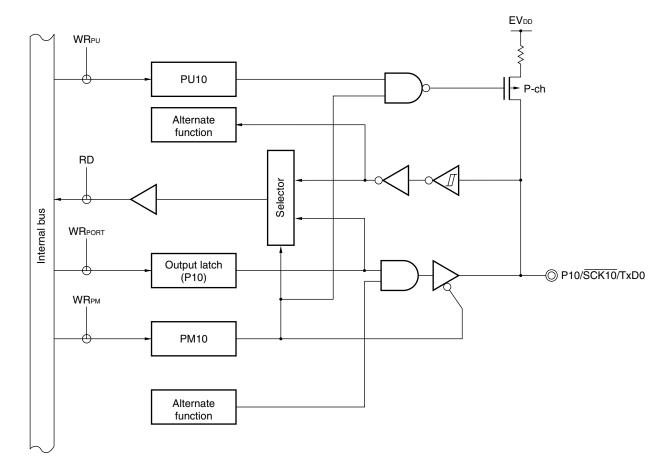


Figure 4-5. Block Diagram of P10

PU1: Pull-up resistor option register 1

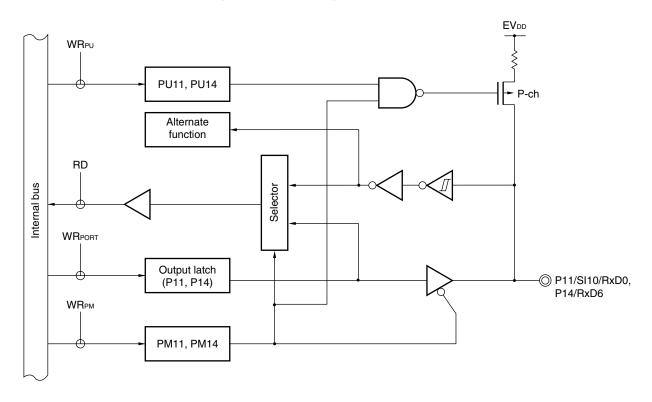


Figure 4-6. Block Diagram of P11 and P14

WRPORT
Output latch
(P12)
PM12
Alternate
function

Figure 4-7. Block Diagram of P12

PU13

PU13

WRPD

WRPD

WRPD

WRPD

Proh

Figure 4-8. Block Diagram of P13

WRPORT

Output latch
(P15)

PM15

Alternate
function

Figure 4-9. Block Diagram of P15

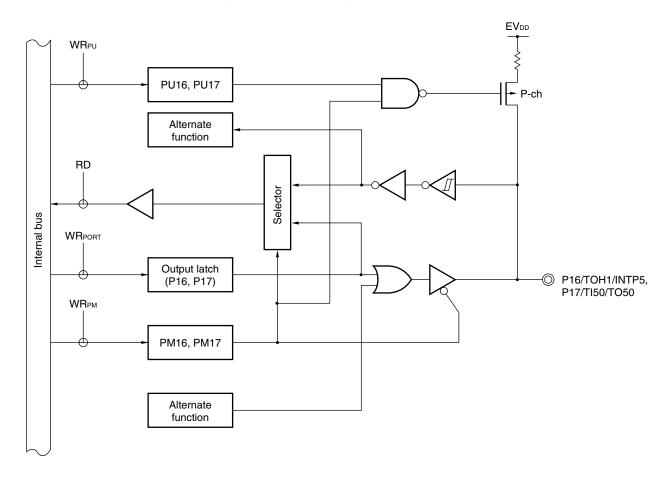
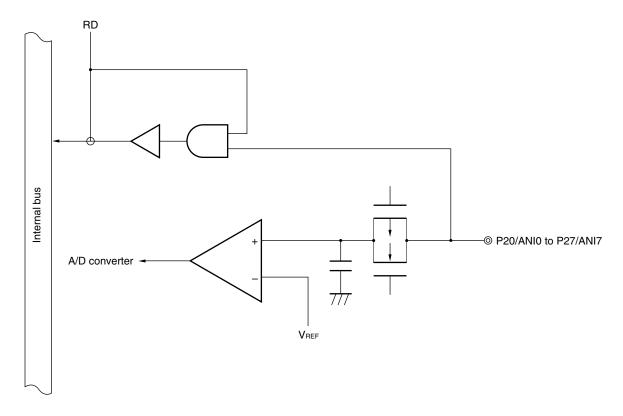


Figure 4-10. Block Diagram of P16 and P17


4.2.3 Port 2

Port 2 is an 8-bit input-only port.

This port can also be used for A/D converter analog input.

Figure 4-11 shows a block diagram of port 2.

Figure 4-11. Block Diagram of P20 to P27

RD: Port 2 read signal

4.2.4 Port 3

Port 3 is a 4-bit I/O port with an output latch. Port 3 can be set to the input mode or output mode in 1-bit units using port mode register 3 (PM3). When used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).

This port can also be used for external interrupt request input.

RESET input sets port 3 to input mode.

Figures 4-12 and 4-13 show block diagrams of port 3.

PU30 to PU32

Alternate function

RD

Output latch (P30 to P32)

WRem

PM30 to PM32

PM30 to PM32

Figure 4-12. Block Diagram of P30 to P32

PU3: Pull-up resistor option register 3

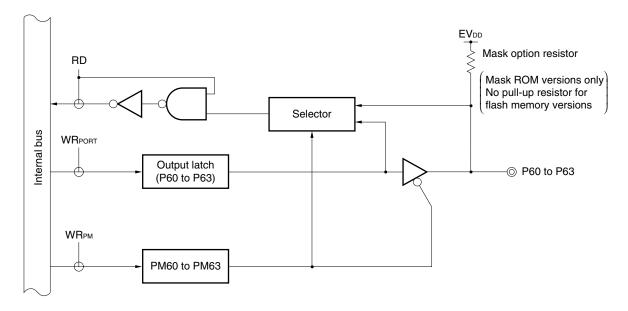
 EV_DD WR_{PU} PU33 P-ch Alternate function RD Selector Internal bus WRPORT Output latch - P33/INTP4/TI51/TO51 (P33) WR_{PM} PM33 Alternate function

Figure 4-13. Block Diagram of P33

4.2.5 Port 6

Port 6 is a 4-bit I/O port with an output latch. Port 6 can be set to the input mode or output mode in 1-bit units using port mode register 6 (PM6).

This port has the following functions for pull-up resistors. These functions differ depending on whether the product is a mask ROM version or a flash memory version.


Table 4-3. Pull-up Resistor of Port 6

	Pins P60 to P63
Mask ROM version	An on-chip pull-up resistor can be specified in 1-bit units by mask option
Flash memory version	On-chip pull-up resistors are not provided

RESET input sets port 6 to input mode.

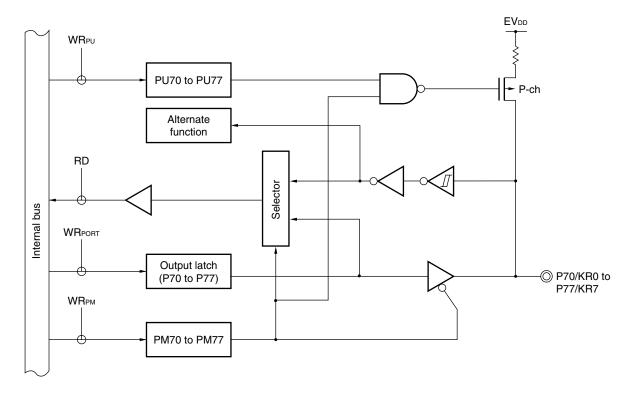
Figure 4-14 shows a block diagram of port 6.

Figure 4-14. Block Diagram of P60 to P63

PM: Port mode register RD: Port 6 read signal

WR: Port 6 write signal

4.2.6 Port 7


Port 7 is an 8-bit I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units using port mode register 7 (PM7). When the P70 to P77 pins are used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).

This port can also be used for key return input.

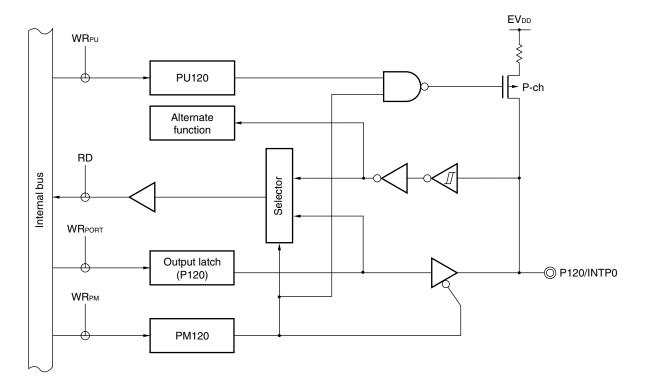
RESET input sets port 7 to input mode.

Figure 4-15 shows a block diagram of port 7.

Figure 4-15. Block Diagram of P70 to P77

PU7: Pull-up resistor option register 7

4.2.7 Port 12

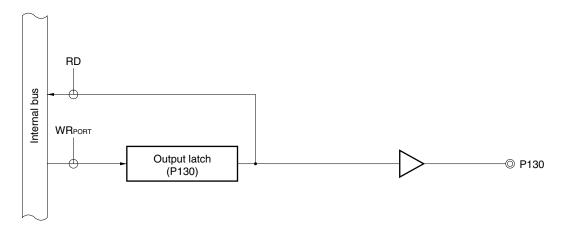

Port 12 is a 1-bit I/O port with an output latch. Port 12 can be set to the input mode or output mode in 1-bit units using port mode register 12 (PM12). When used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

This port can also be used for external interrupt input.

RESET input sets port 12 to input mode.

Figure 4-16 shows a block diagram of port 12.

Figure 4-16. Block Diagram of P120


PU12: Pull-up resistor option register 12

4.2.8 Port 13

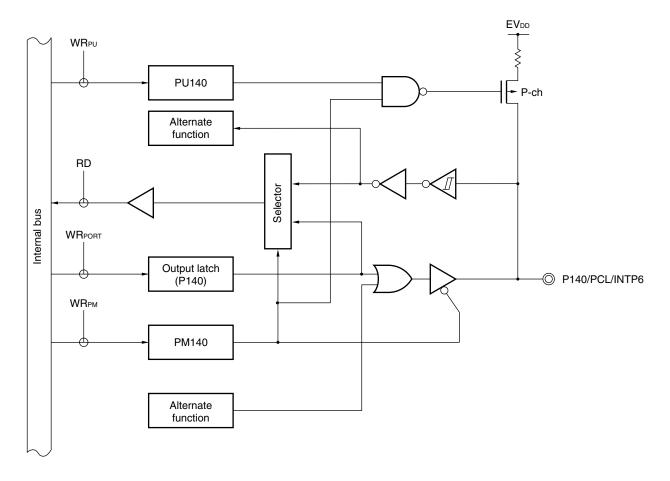
Port 13 is a 1-bit output-only port.

Figure 4-17 shows a block diagram of port 13.

Figure 4-17. Block Diagram of P130

RD: Port 13 read signal WD: Port 13 write signal

4.2.9 Port 14


Port 14 is a 1-bit I/O port with an output latch. Port 14 can be set to the input mode or output mode in 1-bit units using port mode register 14 (PM14). When the P140 pin is used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 14 (PU14).

This port can also be used for external interrupt request input and clock output.

RESET input sets port 14 to input mode.

Figure 4-18 shows a block diagram of port 14.

Figure 4-18. Block Diagram of P140

PU14: Pull-up resistor option register 14

4.3 Registers Controlling Port Function

Port functions are controlled by the following three types of registers.

- Port mode registers (PM0, PM1, PM3, PM6, PM7, PM12, PM14)
- Pull-up resistor option registers (PU0, PU1, PU3, PU7, PU12, PU14)
- Input switch control register (ISC)

(1) Port mode registers (PM0, PM1, PM3, PM6, PM7, PM12, and PM14)

These registers specify input or output mode for the port in 1-bit units.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to FFH.

When port pins are used as alternate-function pins, set the port mode register and output latch as shown in Table 4-4.

Figure 4-19. Format of Port Mode Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM0	1	1	1	1	PM03	PM02	PM01	PM00	FF20H FFH		R/W
	7	6	5	4	3	2	1	0			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
									•		
	7	6	5	4	3	2	1	0			
РМ3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
									•		
	7	6	5	4	3	2	1	0			
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
	7	6	5	4	3	2	1	0			
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
	7	6	5	4	3	2	1	0	•		
PM12	1	1	1	1	1	1	1	PM120	FF2CH	FFH	R/W
	7	6	5	4	3	2	1	0			
PM14	1	1	1	1	1	1	1	PM140	FF2EH	FFH	R/W
		•	•						-		

PMmn	Pmn pin I/O mode selection (m = 0, 1, 3, 6, 7, 12, 14; n = 0 to 7)			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			

Table 4-4. Settings of Port Mode Register and Output Latch When Using Alternate Function

Pin Name	Alternate Function	PM××	Pxx	
	Function Name	I/O		
P00	TI000	Input	1	×
P01	TI010	Input	1	×
	TO00	Output	0	0
P10	SCK10	Input	1	×
		Output	0	1
	TxD0	Output	0	1
P11	SI10	Input	1	×
	RxD0	Input	1	×
P12	SO10	Output	0	0
P13	TxD6	Output	0	1
P14	RxD6	Input	1	×
P15	тоно	Output	0	0
P16	ТОН1	Output	0	0
	INTP5	Input	1	×
P17	TI50	Input	1	×
	TO50	Output	0	0
P30 to P32	INTP1 to INTP3	Input	1	×
P33	INTP4	Input	1	×
	TI51	Input	1	×
	TO51	Output	0	0
P70 to P77	KR0 to KR7	Input	1	×
P120	INTP0	Input	1	×
P140	PCL	Output	0	0
	INTP6	Input	1	×

Remark x: Don't care

PMxx: Port mode register Pxx: Port output latch

(2) Pull-up resistor option registers (PU0, PU1, PU3, PU7, PU12, and PU14)

These registers specify whether the on-chip pull-up resistors of P00 to P03, P10 to P17, P30 to P33, P70 to P77, P120, or P140 are to be used or not. On-chip pull-up resistors can be used in 1-bit units only for the bits set to input mode of the pins to which the use of an on-chip pull-up resistor has been specified in PU0, PU1, PU3, PU7, PU12, and PU14. On-chip pull-up resistors cannot be used for bits set to output mode and bits used as alternate-function output pins, regardless of the settings of PU0, PU1, PU3, PU7, PU12, and PU14.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Caution Use of a pull-up resistor can be specified for P60 to P63 pins by a mask option only in the mask ROM versions.

Figure 4-20. Format of Pull-up Resistor Option Register

Symbol 6 5 3 2 1 0 Address After reset R/W PU0 0 0 0 0 PU03 PU02 PU01 PU00 FF30H R/W 00H 7 6 5 4 3 2 1 0 PU1 PU17 PU16 PU15 PU14 PU13 PU12 PU11 PU10 FF31H 00H R/W 6 5 3 2 0 PU3 0 0 0 0 PU33 PU32 PU31 PU30 FF33H R/W 00H 6 5 3 2 4 1 0 PU7 PU77 PU76 PU75 PU74 PU73 PU72 PU71 PU70 FF37H 00H R/W 6 5 0 4 3 2 1 PU12 0 0 0 0 0 0 0 PU120 FF3CH R/W 00H 6 5 3 7 4 2 1 0 PU14 0 0 0 0 0 0 0 PU140 FF3EH 00H R/W

ĺ	PUmn	Pmn pin on-chip pull-up resistor selection	
ļ		(m = 0, 1, 3, 7, 12, 14; n = 0 to 7)	
ĺ	0	On-chip pull-up resistor not connected	
ĺ	1	On-chip pull-up resistor connected	

(3) Input switch control register (ISC)

This register is used to receive a status signal transmitted from the master during LIN (Local Interconnect Network) reception. The input signal is switched by setting ISC.

For the port configuration during LIN reception, refer to Figure 14-3 Port Configuration for LIN Reception Operation in CHAPTER 14 SERIAL INTERFACE UART6.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 4-21. Format of Input Switch Control Register (ISC)

Address: FF	4FH After	reset: 00H I	R/W					
Symbol	7	6	5	4	3	2	1	0
ISC	0	0	0	0	0	0	ISC1	ISC0
	ISC1			Inpu	ıt signal selec	tion		
	0	TI000 input						
	1	RxD6 input						
	ISC0			Inpu	ıt signal selec	tion		
	0	INTP0 input						
	1	RxD6 input						

4.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

4.4.1 Writing to I/O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.

Once data is written to the output latch, it is retained until data is written to the output latch again.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change.

Once data is written to the output latch, it is retained until data is written to the output latch again.

4.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.

(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

4.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.

Once data is written to the output latch, it is retained until data is written to the output latch again.

(2) Input mode

The output latch contents are undefined, but since the output buffer is off, the pin status does not change.

Caution In the case of 1-bit memory manipulation instruction, although a single bit is manipulated, the port is accessed as an 8-bit unit. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined, even for bits other than the manipulated bit.

CHAPTER 5 CLOCK GENERATOR

5.1 Functions of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware.

The following three system clock oscillators are available.

X1 oscillator

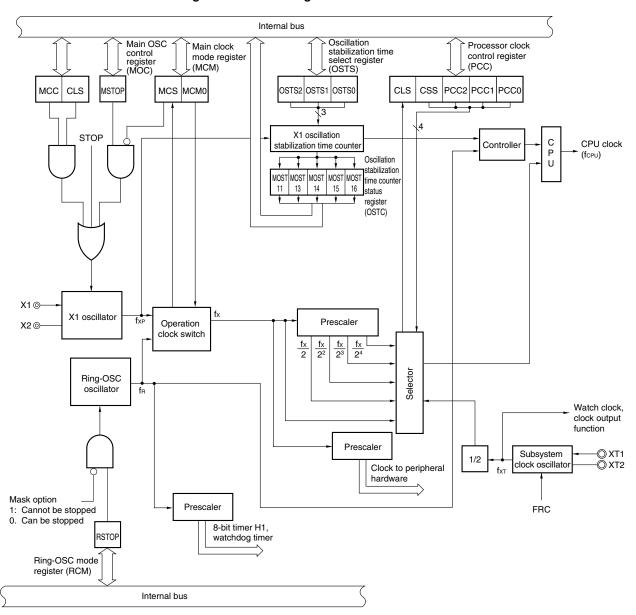
The X1 oscillator oscillates a clock of 2.0 to 10.0 MHz. Oscillation can be stopped by executing the STOP instruction or setting the main OSC control register (MOC) and processor clock control register (PCC).

• Ring-OSC oscillator

The Ring-OSC oscillator oscillates a clock of 240 kHz (TYP.). Oscillation can be stopped by setting the Ring-OSC mode register (RCM) when "Can be stopped by software" is set by a mask option and the X1 input clock is used as the CPU clock.

• Subsystem clock oscillator

The subsystem clock oscillator oscillates a clock of 32.768 kHz. Oscillation cannot be stopped. When subsystem clock oscillator is not used, setting not to use the on-chip feedback resistor is possible using the processor clock control register (PCC), and the power consumption can be reduced in the STOP mode.


5.2 Configuration of Clock Generator

The clock generator consists of the following hardware.

Table 5-1. Configuration of Clock Generator

Item	Configuration	
Control registers	Processor clock control register (PCC)	
	Ring-OSC mode register (RCM) Main clock mode register (MCM)	
	Main OSC control register (MOC)	
	Oscillation stabilization time counter status register (OSTC)	
	Oscillation stabilization time select register (OSTS)	
Oscillator	X1 oscillator	
	Ring-OSC oscillator	
	Subsystem clock oscillator	

Figure 5-1. Block Diagram of Clock Generator

5.3 Registers Controlling Clock Generator

The following six registers are used to control the clock generator.

- Processor clock control register (PCC)
- Ring-OSC mode register (RCM)
- Main clock mode register (MCM)
- Main OSC control register (MOC)
- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

(1) Processor clock control register (PCC)

The PCC register is used to select the CPU clock, the division ratio, main system clock oscillator operation/stop and whether to use the on-chip feedback resistor of the subsystem clock oscillator.

The PCC is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears PCC to 00H.

Figure 5-2. Subsystem Clock Feedback Resistor

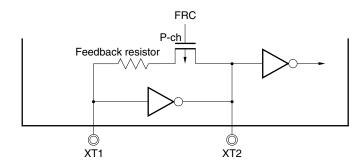


Figure 5-3. Format of Processor Clock Control Register (PCC)

R/W^{Note 1} Address: FFFBH After reset: 00H 7 6 5 4 2 Symbol PCC MCC **FRC** CLS CSS 0 PCC2 PCC1 PCC0

MCC	Control of X1 oscillator operation ^{Note 2}	
0	Oscillation possible	
1	Oscillation stopped	

FRC	Subsystem clock feedback resistor selection ^{Note 3}			
0	On-chip feedback resistor used			
1	n-chip feedback resistor not used			

CLS	CPU clock status
0	X1 input clock or Ring-OSC clock
1	Subsystem clock

CSS ^{Note 4}	PCC2	PCC1	PCC0	CPU	CPU Clock (fcpu) Selection		
					MCM0 = 0	MCM0 = 1	
0	0	0	0	fx	fR	fxp	
	0	0	1	fx/2	f _R /2	f _{xP} /2	
	0	1	0	fx/2 ²	f _R /2 ²	fxp/2 ²	
	0	1	1	fx/2 ³	f _R /2 ³	f _{XP} /2 ³	
	1	0	0	fx/2 ⁴	f _R /2 ⁴	fxp/2 ⁴	
1	0	0	0	fxт/2			
	0	0	1				
	0	1	0				
	0	1	1				
	1	0	0				
	Other than above				d		

Notes 1. Bit 5 is read-only.

- 2. When the CPU is operating on the subsystem clock, MCC should be used to stop the X1 oscillator operation. When the CPU is operating on the Ring-OSC clock, use bit 7 (MSTOP) of the main OSC control register (MOC) to stop the X1 oscillator operation (this cannot be set by MCC). A STOP instruction should not be used.
- 3. The feedback resistor is required to adjust the bias point of the oscillation waveform to close to the middle of the power supply voltage. Setting FRC to 1 can further reduce the current consumption in the STOP mode, but only when the subsystem clock is not used.
- **4.** Be sure to switch CSS from 1 to 0 when bits 1 (MCS) and 0 (MCM0) of the main clock mode register (MCM) are 1.

Caution Be sure to set bit 3 to 0.

Remarks 1. MCM0: Bit 0 of the main clock mode register (MCM)

- 2. fx: Main system clock oscillation frequency (X1 input clock oscillation frequency or Ring-OSC clock oscillation frequency)
- 3. fr.: Ring-OSC clock oscillation frequency
- 4. fxp: X1 input clock oscillation frequency
- **5.** fxT: Subsystem clock oscillation frequency

The fastest instruction can be executed in 2 clocks of the CPU clock in the 78K0/KD1 Series. Therefore, the relationship between the CPU clock (fcpu) and minimum instruction execution time is as shown in the Table 5-2.

Table 5-2. Relationship Between CPU Clock and Minimum Instruction Execution Time

CPU Clock (fcpu)	Minimum Instruction Execution Time: 2/fcpu						
	X1 Input Clock ^{Note} (at 10 MHz Operation)	Ring-OSC Clock ^{Note} (at 240 kHz (TYP.) Operation)	Subsystem Clock (at 32.768 kHz Operation)				
fx	0.2 μs	8.3 μs (TYP.)	_				
fx/2	0.4 μs	16.6 μs (TYP.)	-				
fx/2 ²	0.8 μs	33.2 μs (TYP.)	-				
fx/2 ³	1.6 <i>μ</i> s	66.4 μs (TYP.)	-				
fx/2 ⁴	3.2 μs	132.8 μs (TYP.)	_				
fхт/2	-	_	122.1 μs				

Note The main clock mode register (MCM) is used to set the CPU clock (X1 input clock/Ring-OSC clock) (see Figure 5-5).

(2) Ring-OSC mode register (RCM)

This register sets the operation mode of Ring-OSC.

This register is valid when "Can be stopped by software" is set for Ring-OSC by a mask option, and the X1 input clock or subsystem clock is selected as the CPU clock. If "Cannot be stopped" is selected for Ring-OSC by a mask option, settings for this register are invalid.

RCM can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 5-4. Format of Ring-OSC Mode Register (RCM)

Address: FFA0H After reset: 00H		R/W						
Symbol	7	6	5	4	3	2	1	0
RCM	0	0	0	0	0	0	0	RSTOP

	RSTOP	Ring-OSC oscillating/stopped	
	0	Ring-OSC oscillating	
I	1	Ring-OSC stopped	

Caution Make sure that the bit 1 (MCS) of the main clock mode register (MCM) is 1 before setting RSTOP.

(3) Main clock mode register (MCM)

This register sets the CPU clock (X1 input clock/Ring-OSC clock).

MCM can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 5-5. Format of Main Clock Mode Register (MCM)

Address: FF	A1H After	reset: 00H	R/W ^{Note}					
Symbol	7	6	5	4	3	2	1	0
MCM	0	0	0	0	0	0	MCS	МСМ0

MCS	CPU clock status	
0	Operates with Ring-OSC clock	
1	Operates with X1 input clock	

MCM0	Selection of clock supplied to CPU
0	Ring-OSC clock
1	X1 input clock

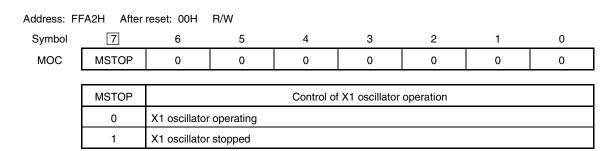
Note Bit 1 is read-only.

Cautions 1. When Ring-OSC clock is selected as the clock to be supplied to the CPU, the divided clock of the Ring-OSC oscillator output (fx) is supplied to the peripheral hardware (fx = 240 kHz (TYP.)).

Operation of the peripheral hardware with Ring-OSC clock cannot be guaranteed. Therefore, when Ring-OSC clock is selected as the clock supplied to the CPU, do not use peripheral hardware. In addition, stop the peripheral hardware before switching the clock supplied to the CPU from the X1 input clock to the Ring-OSC clock. Note, however, that the following peripheral hardware can be used when the CPU operates on the Ring-OSC clock.

- Watchdog timer
- Clock monitor
- 8-bit timer H1 when f_R/2⁷ is selected as count clock
- Peripheral hardware selecting external clock as the clock source (Except when external count clock of TM00 is selected (Tl000 valid edge))
- Set MCS = 1 and MCM0 = 1 before switching subsystem clock operation to X1 input clock operation (bit 4 (CSS) of the processor clock control register (PCC) is changed from 1 to 0).

(4) Main OSC control register (MOC)


This register selects the operation mode of the X1 input clock.

This register is used to stop the X1 oscillator operation when the CPU is operating with the Ring-OSC clock. Therefore, this register is valid only when the CPU is operating with the Ring-OSC clock.

MOC can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 5-6. Format of Main OSC Control Register (MOC)

- Cautions 1. Make sure that bit 1 (MCS) of the main clock mode register (MCM) is 0 before setting MSTOP.
 - 2. To stop X1 oscillation during operation with the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC) to 1 (setting by MSTOP is not possible).

(5) Oscillation stabilization time counter status register (OSTC)

This is the status register of the X1 input clock oscillation stabilization time counter. If the Ring-OSC clock is used as the CPU clock, the X1 input clock oscillation stabilization time can be checked.

OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.

When reset is released (reset by $\overline{\text{RESET}}$ input, POC, LVI, clock monitor, and WDT), the STOP instruction, MSTOP = 1, and MCC = 1 clear OSTC to 00H.

Figure 5-7. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

Address: FF	A3H After	reset: 00H	R					
Symbol	7	6	5	4	3	2	1	0
OSTC	0	0	0	MOST11	MOST13	MOST14	MOST15	MOST16

MOST11	MOST13	MOST14	MOST15	MOST16	Oscillation stabilization time status
1	0	0	0	0	2 ¹¹ /f _{XP} min. (204.8 μs min.)
1	1	0	0	0	2 ¹³ /f _{XP} min. (819.2 μs min.)
1	1	1	0	0	2 ¹⁴ /f _{XP} min. (1.64 ms min.)
1	1	1	1	0	2 ¹⁵ /f _{XP} min. (3.27 ms min.)
1	1	1	1	1	2 ¹⁶ /fxp min. (6.55 ms min.)

Caution After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.

Remarks 1. Values in parentheses are for operation with fxp = 10 MHz.

2. fxp: X1 input clock oscillation frequency

(6) Oscillation stabilization time select register (OSTS)

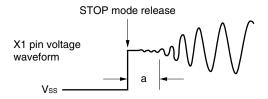
This register is used to select the X1 oscillation stabilization wait time when STOP mode is released.

The wait time set by OSTS is valid only after STOP mode is released with the X1 input clock selected as CPU clock. After STOP mode is released with Ring-OSC selected as CPU clock, the oscillation stabilization time must be confirmed by OSTC.

OSTS can be set by an 8-bit memory manipulation instruction.

RESET input sets OSTS to 05H.

Figure 5-8. Format of Oscillation Stabilization Time Select Register (OSTS)


Address: FF	A4H After	reset: 05H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0

OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection
0	0	1	2 ¹¹ /f _{XP} (204.8 μs)
0	1	0	2 ¹³ /f _{XP} (819.2 μs)
0	1	1	2 ¹⁴ /f _{XP} (1.64 ms)
1	0	0	2 ¹⁵ /f _{XP} (3.27 ms)
1	0	1	2 ¹⁶ /f _{XP} (6.55 ms)
0	Other than above		Setting prohibited

- Cautions 1. If the STOP mode is entered and then released while the Ring-OSC clock is being used as the CPU clock, set the oscillation stabilization time as follows.
 - Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS

The X1 oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

2. The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.

Remarks 1. Values in parentheses are for operation with fxp = 10 MHz.

2. fxp: X1 input clock oscillation frequency

5.4 System Clock Oscillator

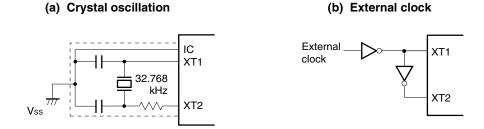
5.4.1 X1 oscillator

The X1 oscillator oscillates with a crystal resonator or ceramic resonator (Standard: 8.38 MHz, 10 MHz when REGC pin is directly connected to VDD) connected to the X1 and X2 pins.

An external clock can be input to the X1 oscillator when the REGC pin is directly connected to V_{DD} . In this case, input the clock signal to the X1 pin and input the inverse signal to the X2 pin.

Figure 5-9 shows the external circuit of the X1 oscillator.

Figure 5-9. External Circuit of X1 Oscillator

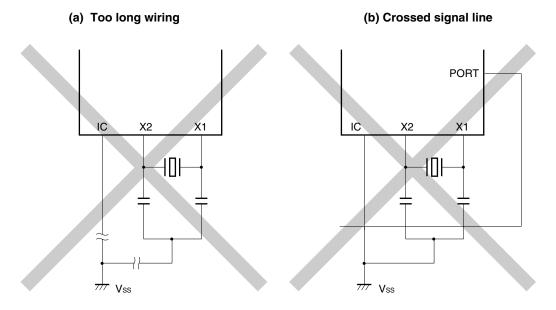

5.4.2 Subsystem clock oscillator

The subsystem clock oscillator oscillates with a crystal resonator (Standard: 32.768 kHz) connected to the XT1 and XT2 pins.

External clocks can be input to the subsystem clock oscillator when the REGC pin is directly connected to V_{DD} . In this case, input the clock signal to the XT1 pin and the inverse signal to the XT2 pin.

Figure 5-10 shows an external circuit of the subsystem clock oscillator.

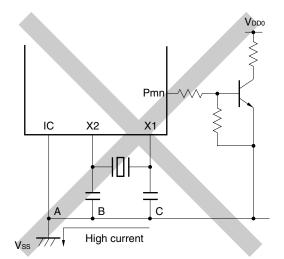
Figure 5-10. External Circuit of Subsystem Clock Oscillator


Cautions are listed on the next page.

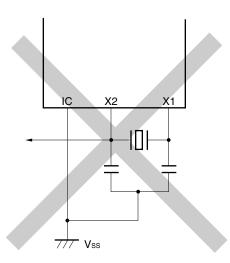
- Cautions 1. When using the X1 oscillator and subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the Figure 5-11 to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss. Do
 not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.

Note that the subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption.

Figure 5-11 shows examples of incorrect resonator connection.


Figure 5-11. Examples of Incorrect Resonator Connection (1/2)

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.


Figure 5-11. Examples of Incorrect Resonator Connection (2/2)

- (c) Wiring near high alternating current
 - IC X2 X1
- (d) Current flowing through ground line of oscillator (potential at points A, B, and C fluctuates)

(e) Signals are fetched

<u>√//</u> √ss

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

Cautions 2. When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT1, resulting in malfunctioning.

To prevent that from occurring, it is recommended to wire X2 and XT1 so that they are not in parallel, and to connect the IC pin between X2 and XT1 directly to Vss.

5.4.3 When subsystem clock is not used

If it is not necessary to use the subsystem clock for low power consumption operations and watch operations, connect the XT1 and XT2 pins as follows.

XT1: Connect to EVDD or VDD

XT2: Leave open

In this state, however, some current may leak via the on-chip feedback resistor of the subsystem clock oscillator when the X1 input clock and Ring-OSC clock stop. To minimize leakage current, the above on-chip feedback resistor can be set not to be used via bit 6 (FRC) of the processor clock control register (PCC). In this case also, connect the XT1 and XT2 pins as described above.

5.4.4 Ring-OSC oscillator

Ring-OSC oscillator is incorporated in this product.

"Can be stopped by software" or "Cannot be stopped" can be selected by a mask option. The Ring-OSC clock always oscillates after RESET release (240 kHz (TYP.)).

5.4.5 Prescaler

The prescaler generates various clocks by dividing the X1 oscillator output (fx) when the X1 input clock is selected as the clock to be supplied to the CPU.

Caution When the Ring-OSC clock is selected as the clock supplied to the CPU, the prescaler generates various clocks by dividing the Ring-OSC oscillator output (fx) (fx = 240 kHz (TYP.)).

5.5 Clock Generator Operation

The clock generator generates the following clocks and controls the operation modes of the CPU, such as standby mode.

- X1 input clock fxp
- Ring-OSC clock fR
- Subsystem clock fxT
- CPU clock fcpu
- · Clock to peripheral hardware

The CPU starts operation when the on-chip Ring-OSC oscillator starts outputting after reset release in the 78K0/KD1 Series, thus enabling the following.

(1) Enhancement of security function

When the X1 input clock is set as the CPU clock by the default setting, the device cannot operate if the X1 input clock is damaged or badly connected and therefore does not operate after reset is released. However, the start clock of the CPU is the on-chip Ring-OSC clock, so the device can be started by the Ring-OSC clock after reset release by the clock monitor (detection of X1 input clock stop). Consequently, the system can be safely shut down by performing a minimum operation, such as acknowledging a reset source by software or performing safety processing when there is a malfunction.

(2) Improvement of performance

Because the CPU can be started without waiting for the X1 input clock oscillation stabilization time, the total performance can be improved.

A timing diagram of the CPU default start using Ring-OSC is shown in Figure 5-12.

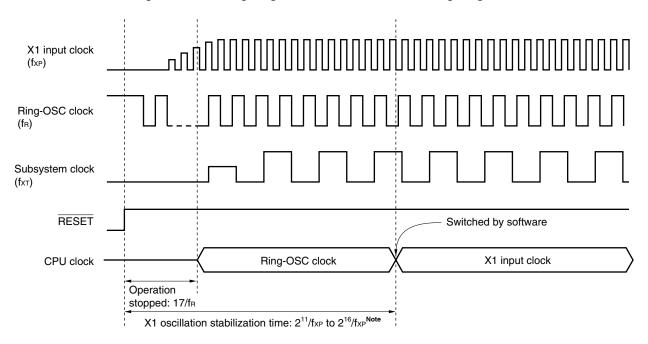
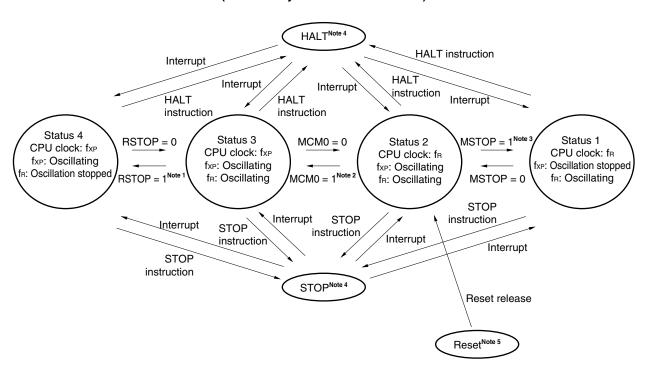


Figure 5-12. Timing Diagram of CPU Default Start Using Ring-OSC

Note Check using the oscillation stabilization time counter status register (OSTC).

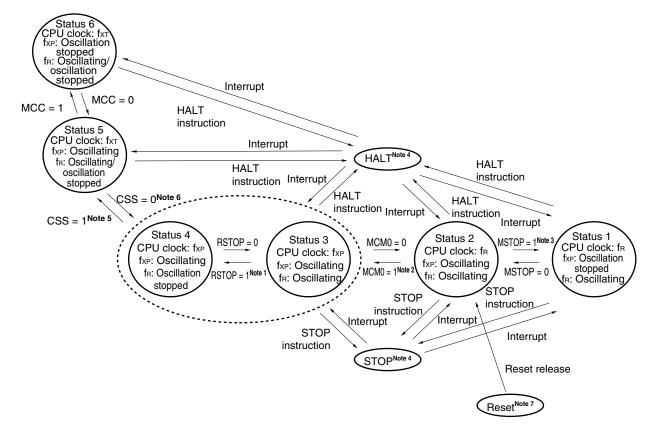

- (a) When the RESET signal is generated, bit 0 of the main clock mode register (MCM) is set to 0 and the Ring-OSC clock is set as the CPU clock. However, a clock is supplied to the CPU after 17 clocks of the Ring-OSC clock have elapsed after RESET release (or clock supply to the CPU stops for 17 clocks). During the RESET period, oscillation of the X1 input clock and Ring-OSC clock is stopped.
- (b) After RESET release, the CPU clock can be switched from the Ring-OSC clock to the X1 input clock using bit 0 (MCM0) of the main clock mode register (MCM) after the X1 input clock oscillation stabilization time has elapsed. At this time, check the oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) before switching the CPU clock. The CPU clock status can be checked using bit 1 (MCS) of MCM.
- (c) Ring-OSC can be set to stopped/oscillating using the Ring-OSC mode register (RCM) when "Can be stopped by software" is selected for the Ring-OSC by a mask option, if the X1 input or subsystem clock is used as the CPU clock. Make sure that MCS is 1 at this time.
- (d) When Ring-OSC is used as the CPU clock, the X1 input clock can be set to stopped/oscillating using the main OSC control register (MOC). Make sure that MCS is 0 at this time.
 - When the subsystem clock is used as the CPU clock, whether the X1 input clock stops or oscillates can be set by the processor clock control register (PCC). In addition, HALT mode can be used during operation with the subsystem clock, but STOP mode cannot be used (subsystem clock oscillation cannot be stopped by the STOP instruction).

(e) Select the X1 input clock oscillation stabilization time (2¹¹/fxP, 2¹³/fxP, 2¹⁴/fxP, 2¹⁵/fxP, 2¹⁶/fxP) using the oscillation stabilization time select register (OSTS) when releasing STOP mode while X1 input clock is being used as the CPU clock. In addition, when releasing STOP mode while RESET is released and Ring-OSC clock is being used as the CPU clock, check the X1 input clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC).

A status transition diagram of this product is shown in Figure 5-13, and the relationship between the operation clocks in each operation status and between the oscillation control flag and oscillation status of each clock are shown in Tables 5-3 and 5-4, respectively.

Figure 5-13. Status Transition Diagram (1/4)

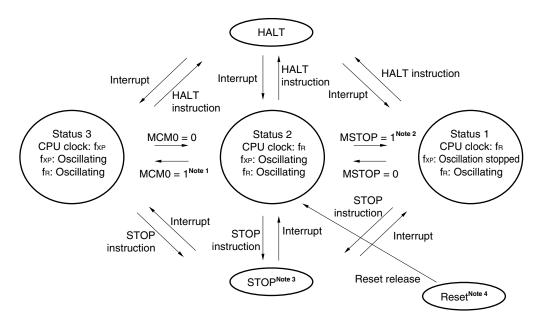
(1) When "Ring-OSC can be stopped by software" is selected by mask option (when subsystem clock is not used)



- **Notes 1.** When shifting from status 3 to status 4, make sure that bit 1 (MCS) of the main clock mode register (MCM) is 1.
 - Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).
 - 3. When shifting from status 2 to status 1, make sure that MCS is 0.
 - **4.** When "Ring-OSC can be stopped by software" is selected by a mask option, the watchdog timer stops operating in the HALT and STOP modes, regardless of the source clock of the watchdog timer. However, oscillation of Ring-OSC does not stop even in the HALT and STOP modes if RSTOP = 0.
 - 5. All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

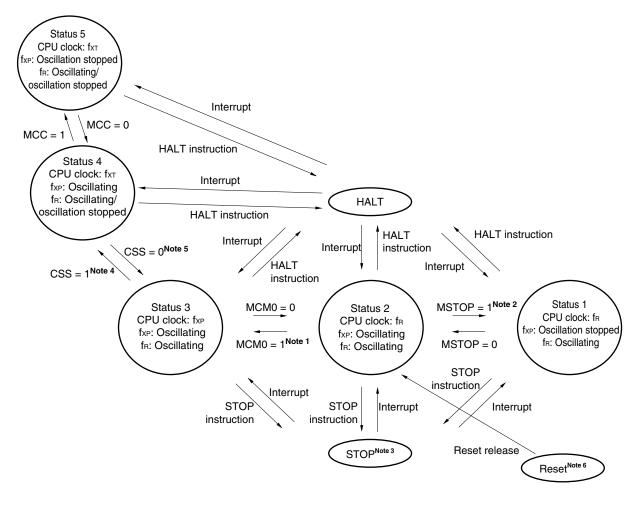
(2) When "Ring-OSC can be stopped by software" is selected by mask option

Figure 5-13. Status Transition Diagram (2/4)


(when subsystem clock is used)

- When shifting from status 3 to status 4, make sure that bit 1 (MCS) of the main clock mode register Notes 1. (MCM) is 1.
 - 2. Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).
 - 3. When shifting from status 2 to status 1, make sure that MCS is 0.
 - 4. When "Ring-OSC can be stopped by software" is selected by a mask option, the Ring-OSC oscillator is stopped after the HALT or STOP instruction has been executed, regardless of the setting of bit 0 (RSTOP) of the Ring-OSC mode register (RCM) and bit 0 (MCM0) of the main clock mode register (MCM).
 - 5. Shifting to status 5 (subsystem clock operation) can be performed only from status 3 or 4 (X1 input clock operation).
 - 6. Shifting to status 1 or status 2 from status 5 is not possible.
 - All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

Figure 5-13. Status Transition Diagram (3/4)


(3) When "Ring-OSC cannot be stopped" is selected by mask option (when subsystem clock is not used)

- **Notes 1.** Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).
 - 2. When shifting from status 2 to status 1, make sure that MCS is 0.
 - 3. The watchdog timer operates using Ring-OSC even in STOP mode if "Ring-OSC cannot be stopped" is selected by a mask option. Ring-OSC division can be selected as the count source of 8-bit timer H1 (TMH1), so clear the watchdog timer using the TMH1 interrupt request before watchdog timer overflow. If this processing is not performed, an internal reset signal is generated at watchdog timer overflow after STOP instruction execution.
 - 4. All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

Figure 5-13. Status Transition Diagram (4/4)

(4) When "Ring-OSC cannot be stopped" is selected by mask option (when subsystem clock is used)

Notes 1. Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock oscillation stabilization time status using the oscillation stabilization time counter status register (OSTC).

- 2. When shifting from status 2 to status 1, make sure that MCS is 0.
- 3. The watchdog timer operates using Ring-OSC even in STOP mode if "Ring-OSC cannot be stopped" is selected by a mask option. Ring-OSC division can be selected as the count source of 8-bit timer H1 (TMH1), so clear the watchdog timer using the TMH1 interrupt request before watchdog timer overflow. If this processing is not performed, an internal reset signal is generated at watchdog timer overflow after STOP instruction execution.
- **4.** Shifting to status 4 (subsystem clock operation) can be performed only from status 3 (X1 input clock operation).
- 5. Shifting to status 1 or status 2 from status 4 is not possible.
- **6.** All reset sources (RESET input, POC, LVI, clock monitor, and WDT)

Table 5-3. Relationship Between Operation Clocks in Each Operation Status

Status	X1 Oscillator	Ring-OSC Oscillator			Subsystem Clock	CPU Clock After	Prescaler Cl to Peri	ock Supplied pherals
Operation		Note 1	Note 2		Oscillator	Release	MCM0 = 0	MCM0 = 1
Mode			RSTOP = 0	RSTOP = 1				
Reset	Stopped	Stopped			Stopped	Ring-OSC	Stopped	
STOP		Oscillating	Oscillating	Stopped	Oscillating	Note 3	Stopped	
HALT	Oscillating					Note 4	Ring-OSC	X1

Caution The RSTOP setting is valid only when "Can be stopped by software" is set for Ring-OSC by a mask option.

Notes 1. When "Cannot be stopped" is selected for Ring-OSC by a mask option.

- 2. When "Can be stopped by software" is selected for Ring-OSC by a mask option.
- 3. Operates using the CPU clock at STOP instruction execution.
- 4. Operates using the CPU clock at HALT instruction execution.

Remark RSTOP: Bit 0 of the Ring-OSC mode register (RCM)

MCM0: Bit 0 of the main clock mode register (MCM)

Table 5-4. Oscillation Control Flags and Clock Oscillation Status

		X1 Oscillator	Ring-OSC Oscillator
MSTOP = 1 ^{Note}	RSTOP = 0	Stopped	Oscillating
	RSTOP = 1	Setting prohibited	
MSTOP = 0 ^{Note}	RSTOP = 0	Oscillating	Oscillating
	RSTOP = 1		Stopped
MCC = 1 ^{Note}	RSTOP = 0	Stopped	Oscillating
	RSTOP = 1		Stopped
MCC = 0 ^{Note}	RSTOP = 0	Oscillating	Oscillating
	RSTOP = 1		Stopped

Note Setting X1 oscillator oscillating/stopped differs depending on the CPU clock used.

- When the Ring-OSC clock is used as the CPU clock: Set using the MSTOP bit
- When the subsystem clock is used as the CPU clock: Set using the MCC bit

Caution The RSTOP setting is valid only when "Can be stopped by software" is set for Ring-OSC by a mask option.

Remark MSTOP: Bit 7 of the main OSC control register (MOC)

MCC: Bit 7 of the processor clock control register (PCC)
RSTOP: Bit 0 of the Ring-OSC mode register (RCM)

5.6 Time Required to Switch Between Ring-OSC Clock and X1 Input Clock

Bit 0 (MCM0) of the main clock mode register (MCM) is used to switch between the Ring-OSC clock and X1 input clock.

In the actual switching operation, switching does not occur immediately after MCM0 rewrite; several instructions are executed using the pre-switch clock after switching MCM0 (see **Table 5-5**).

Bit 1 (MCS) of MCM is used to judge that operation is performed using either the Ring-OSC clock or X1 input clock. To stop the clock, wait for the number of clocks shown in Table 5-5 before stopping.

Table 5-5. Time Required to Switch Between Ring-OSC Clock and X1 Input Clock

	PCC		Time Required for Switching	
PCC2	PCC1	PCC0	X1→Ring-OSC	Ring-OSC→X1
0	0	0	fxp/fn + 1 clock	2 clocks
0	0	1	fxp/2fn + 1 clock	
0	1	0	fxp/4fn + 1 clock	
0	1	1	fxp/8fn + 1 clock	
1	0	0	fxp/16fn + 1 clock	

Caution To calculate the maximum time, set fR = 120 kHz.

Remarks 1. PCC: Processor clock control register

2. fxp: X1 input clock oscillation frequency

3. fr.: Ring-OSC clock oscillation frequency

4. The maximum time is the number of clocks of the CPU clock before switching.

5.7 Changing System Clock and CPU Clock Settings

5.7.1 Time required for switching between system clock and CPU clock

The system clock and CPU clock can be switched using bits 0 to 2 (PCC0 to PCC2) and bit 4 (CSS) of the processor clock control register (PCC).

The actual switchover operation is not performed immediately after rewriting to the PCC; operation continues on the pre-switchover clock for several instructions (see **Table 5-6**).

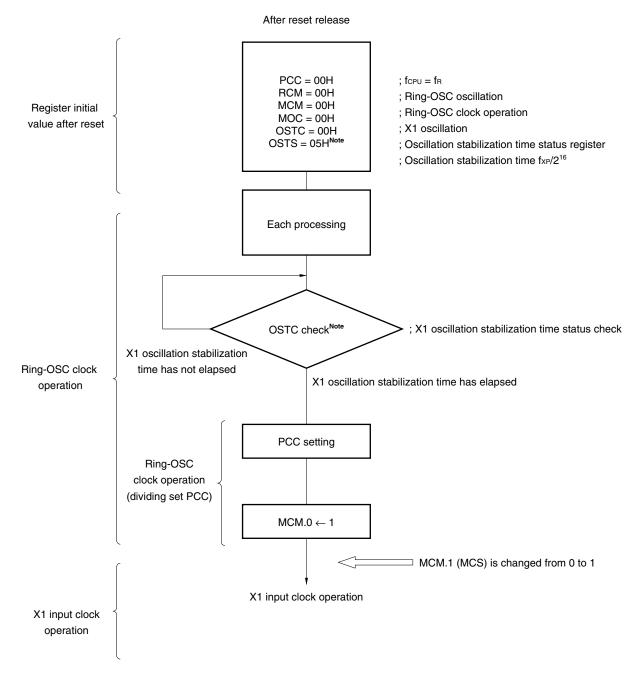
Whether the system is operating on the X1 input clock (or Ring-OSC clock) or the subsystem clock can be ascertained using bit 5 (CLS) of the PCC register.

Set Value After Switchover Set Value Before Switchover CSS PCC2 PCC1 PCC0 PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 × × 0 0 16 clocks 16 clocks 16 clocks 16 clocks fxp/fxt clocks (306 clocks) 0 8 clocks 8 clocks 8 clocks fxp/2fxt clocks 0 1 8 clocks (153 clocks) 0 0 1 4 clocks 4 clocks 4 clocks 4 clocks fxp/4fxt clocks (77 clocks) 0 1 2 clocks 2 clocks 2 clocks 2 clocks fxp/8fxt clocks 1 (39 clocks) 1 0 0 1 clock 1 clock fxp/16fxT clocks 1 clock 1 clock (20 clocks) 1 1 clock 1 clock 1 clock 1 clock 1 clock × ×

Table 5-6. Maximum Time Required for CPU Clock Switchover

Remarks 1. The maximum time is the number of clocks of the CPU clock before switching.

2. Figures in parentheses apply to operation with $f_{XP} = 10$ MHz and $f_{XT} = 32.768$ kHz.


Caution Selection of the CPU clock cycle division factor (PCC0 to PCC2) and switchover from the X1 input clock to the subsystem clock (changing CSS from 0 to 1) should not be set simultaneously.

Simultaneous setting is possible, however, for selection of the CPU clock cycle division factor (PCC0 to PCC2) and switchover from the subsystem clock to the X1 input clock (changing CSS from 1 to 0).

5.8 Clock Switching Flowchart and Register Setting

5.8.1 Switching from Ring-OSC clock to X1 input clock

Figure 5-14. Switching from Ring-OSC Clock to X1 Input Clock (Flowchart)

Note Check the oscillation stabilization wait time of the X1 oscillator after reset release using the OSTC register and then switch to the X1 input clock operation after the oscillation stabilization wait time has elapsed. The OSTS register setting is valid only after STOP mode is released during X1 input clock operation.

5.8.2 Switching from X1 input clock to Ring-OSC clock

Ring-OSC clock operation

Register setting PCC.7 (MCC) = 0; X1 oscillation in X1 input PCC.4 (CSS) = 0; X1 input clock or Ring-OSC clock clock operation MCM = 03H; X1 input clock operation Yes: RSTOP = 1 X1 input RCM.0^{Note} ; Ring-OSC oscillating? clock operation (RSTOP) = 1?No: RSTOP = 0 RSTOP = 0 $MCM0 \leftarrow 0$; Ring-OSC clock operation

Figure 5-15. Switching from X1 Input Clock to Ring-OSC Clock (Flowchart)

Note Required only when "clock can be stopped by software" is selected for Ring-OSC by a mask option.

Ring-OSC clock operation

☐ MCM.1 (MCS) is changed from 1 to 0

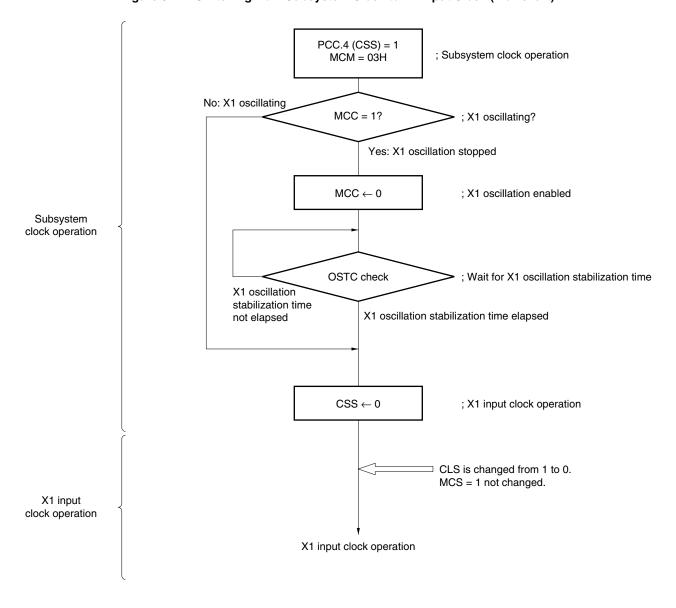

5.8.3 Switching from X1 input clock to subsystem clock

Figure 5-16. Switching from X1 Input Clock to Subsystem Clock (Flowchart)

5.8.4 Switching from subsystem clock to X1 input clock

Figure 5-17. Switching from Subsystem Clock to X1 Input Clock (Flowchart)

5.8.5 Register settings

Table 5-7. Clock and Register Setting

fсри	Mode	,		Setting Fla	.g	Status Flag		
		PCC R	legister	MCM	мос	RCM	PCC	MCM
				Register	Register	Register	Register	Register
		MCC	css	мсмо	MSTOP	RSTOP ^{Note 1}	CLS	MCS
X1 input clock ^{Note 2}	Ring-OSC oscillating	0	0	1	0	0	0	1
	Ring-OSC stopped	0	0	1	0	1	0	1
Ring-OSC clock	X1 oscillating	0	0	0	0	0	0	0
	X1 stopped	O ^{Note 3}	0	0	1	0	0	0
Subsystem clock ^{Note 4}	X1 oscillating, Ring-OSC oscillating	0	1	1 Note 5	O ^{Note 6}	0	1	1
	X1 stopped, Ring-OSC oscillating	1	1	1 Note 5	O ^{Note 6}	0	1	1
	X1 oscillating, Ring-OSC stopped	0	1	1 Note 5	O ^{Note 6}	1	1	1
	X1 stopped, Ring-OSC stopped	1	1	1 Note 5	O ^{Note 6}	1	1	1

- Notes 1. Valid only when "clock can be stopped by software" is selected for Ring-OSC by a mask option.
 - 2. Do not set MCC = 1 or MSTOP = 1 during X1 input clock operation (even if MCC = 1 or MSTOP = 1 is set, the X1 oscillation does not stop).
 - 3. Do not set MCC = 1 during Ring-OSC operation (even if MCC = 1 is set, the X1 oscillation does not stop). To stop X1 oscillation during Ring-OSC operation, use MSTOP.
 - **4.** Shifting to subsystem clock operation mode must be performed from the X1 input clock operation mode. From subsystem clock operation mode, only X1 input clock operation mode can be shifted to.
 - **5.** Do not set MCM0 = 0 (shifting to Ring-OSC operation) during subsystem clock operation.
 - **6.** Do not set MSTOP = 1 during subsystem clock operation (even if MSTOP = 1 is set, X1 oscillation does not stop). To stop X1 oscillation during subsystem clock operation, use MCC.

CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00

6.1 Functions of 16-Bit Timer/Event Counter 00

16-bit timer/event counter 00 has the following functions.

- Interval timer
- PPG output
- Pulse width measurement
- · External event counter
- Square-wave output
- · One-shot pulse output

(1) Interval timer

16-bit timer/event counter 00 generates an interrupt request at the preset time interval.

(2) PPG output

16-bit timer/event counter 00 can output a rectangular wave whose frequency and output pulse width can be set freely.

(3) Pulse width measurement

16-bit timer/event counter 00 can measure the pulse width of an externally input signal.

(4) External event counter

16-bit timer/event counter 00 can measure the number of pulses of an externally input signal.

(5) Square-wave output

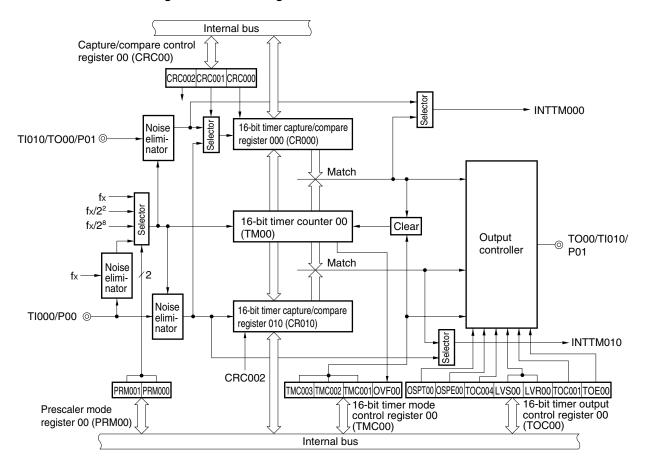
16-bit timer/event counter 00 can output a square wave with any selected frequency.

(6) One-shot pulse output

16-bit timer/event counter 00 can output a one-shot pulse whose output pulse width can be set freely.

6.2 Configuration of 16-Bit Timer/Event Counter 00

16-bit timer/event counter 00 consists of the following hardware.


Table 6-1. Configuration of 16-Bit Timer/Event Counter 00

Item	Configuration
Timer counter	16 bits × 1 (TM00)
Register	16-bit timer capture/compare register: 16 bits × 2 (CR000, CR010)
Timer output	1 (TO00)
Control registers	16-bit timer mode control register 00 (TMC00) 16-bit timer capture/compare control register 00 (CRC00) 16-bit timer output control register 00 (TOC00) Prescaler mode register 00 (PRM00) Port mode register 0 (PM0) ^{Note}

Note See Figure 4-2 Block Diagram of P00 and P03 and Figure 4-3 Block Diagram of P01.

Figure 6-1 shows the block diagram.

Figure 6-1. Block Diagram of 16-Bit Timer/Event Counter 00

(1) 16-bit timer counter 00 (TM00)

TM00 is a 16-bit read-only register that counts count pulses.

The counter is incremented in synchronization with the rising edge of the input clock. The count value is reset to 0000H in the following cases.

- <1> At RESET input
- <2> If TMC003 and TMC002 are cleared
- <3> If the valid edge of Tl000 is input in the mode in which clear & start occurs when inputting the valid edge of Tl000
- <4> If TM00 and CR000 match in the mode in which clear & start occurs on a match of TM00 and CR000
- <5> OSPT00 is set in one-shot pulse output mode

(2) 16-bit timer capture/compare register 000 (CR000)

CR000 is a 16-bit register that has the functions of both a capture register and a compare register. Whether it is used as a capture register or as a compare register is set by bit 0 (CRC000) of capture/compare control register 00 (CRC000).

When CR000 is used as a compare register

The value set in CR000 is constantly compared with the 16-bit timer counter 00 (TM00) count value, and an interrupt request (INTTM000) is generated if they match. It can also be used as the register that holds the interval time when TM00 is set to interval timer operation.

• When CR000 is used as a capture register

It is possible to select the valid edge of the Tl000 pin or the Tl010 pin as the capture trigger. The Tl000 or Tl010 valid edge is set using prescaler mode register 00 (PRM00).

If the capture trigger is specified to be the valid edge of the TI000 pin, the situation is as shown in Table 6-2. On the other hand, when the capture trigger is specified to be the valid edge of the TI010 pin, the situation is as shown in Table 6-3.

l able 6-2.	11000 Pin Valid Edge and CR000, CR010 Captu	re Trigger
-------------	---	------------

ES001	ES000	TI000 Pin Valid Edge	CR000 Capture Trigger	CR010 Capture Trigger
0	0	Falling edge	Rising edge	Falling edge
0	1	Rising edge	Falling edge	Rising edge
1	0	Setting prohibited	Setting prohibited	Setting prohibited
1	1	Both rising and falling edges	No capture operation	Both rising and falling edges

Table 6-3. Tl010 Pin Valid Edge and CR000 Capture Trigger

ES101	ES100	TI010 Pin Valid Edge	CR000 Capture Trigger		
0	0	Falling edge	Falling edge		
0	1	Rising edge	Rising edge		
1	0	Setting prohibited	Setting prohibited		
1	1	Both rising and falling edges	Both rising and falling edges		

CR000 can be set by a 16-bit memory manipulation instruction.

RESET input clears CR000 to 0000H.

Cautions 1. Set a value other than 0000H in CR000 in the mode in which clear & start occurs on a match of TM00 and CR000. However, in the free-running mode and in the clear mode using the valid edge of Tl000, if CR000 is set to 0000H, an interrupt request (INTTM000) is generated following overflow (FFFFH).

- If the changed value of CR000 is smaller than the value of 16-bit timer counter 00 (TM00), TM00 continues counting and starts counting again from 0 after overflow. Therefore, if the value of CR000 after the change is smaller than before the change, the timer should be restarted after CR000 is changed.
- 3. When P01 is used as the valid edge of Tl010, it cannot be used as the timer output (TO00). Moreover, when P01 is used as TO00, it cannot be used as the valid edge of Tl010.
- 4. When CR000 is used as a capture register, read data is undefined if the register read time and capture trigger input conflict (the capture data itself is the correct value).
 If count stop input and capture trigger input conflict, the captured data is undefined.
- 5. Do not rewrite CR000 during TM00 operation.

(3) 16-bit timer capture/compare register 010 (CR010)

CR010 is a 16-bit register that has the functions of both a capture register and a compare register. Whether it is used as a capture register or a compare register is set by bit 2 (CRC002) of capture/compare control register 00 (CRC00).

When CR010 is used as a compare register

The value set in the CR010 is constantly compared with the 16-bit timer counter 00 (TM00) count value, and an interrupt request (INTTM010) is generated if they match.

• When CR010 is used as a capture register

It is possible to select the valid edge of the Tl000 pin as the capture trigger. The Tl000 valid edge is set by prescaler mode register 00 (PRM00).

CR010 can be set by a 16-bit memory manipulation instruction.

RESET input clears CR010 to 0000H.

Cautions 1. Set CR010 to other than 0000H. This means a 1-pulse count operation cannot be performed when CR010 is used as the event counter.

However, in the free-running mode and in the clear mode using the valid edge of Tl000, if CR010 is set to 0000H, an interrupt request (INTTM010) is generated following overflow (FFFFH).

- When CR010 is used as a capture register, read data is undefined if the register read time and capture trigger input conflict (the capture data itself is the correct value).
 - If count stop input and capture trigger input conflict, the captured data is undefined.
- 3. CR010 can be rewritten during TM00 operation. For details, refer to Remark 2 in Figure 6-12.

6.3 Registers Controlling 16-Bit Timer/Event Counter 00

The following five registers are used to control 16-bit timer/event counter 00.

- 16-bit timer mode control register 00 (TMC00)
- Capture/compare control register 00 (CRC00)
- 16-bit timer output control register 00 (TOC00)
- Prescaler mode register 00 (PRM00)
- Port mode register 0 (PM0)

(1) 16-bit timer mode control register 00 (TMC00)

This register sets the 16-bit timer operating mode, the 16-bit timer counter 00 (TM00) clear mode, and output timing, and detects an overflow.

TMC00 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TMC00 to 00H.

Caution 16-bit timer counter 00 (TM00) starts operation at the moment TMC002 and TMC003 are set to values other than 0, 0 (operation stop mode), respectively. Set TMC002 and TMC003 to 0, 0 to stop the operation.

Figure 6-2. Format of 16-Bit Timer Mode Control Register 00 (TMC00)

Address	FFBA	H Af	ter rese	t: 00H	R/W			
Symbol	7	6	5	4	3	2	1	0
TMC00	0	0	0	0	TMC003	TMC002	TMC001	OVF00

TMC003	TMC002	TMC001	Operating mode and clear mode selection	TO00 output timing selection	Interrupt request generation
0	0	0	Operation stop	No change	Not generated
0	0	1	(TM00 cleared to 0)		
0	1	0	Free-running mode	Match between TM00 and CR000 or match between TM00 and CR010	Generated on match between TM00 and CR000, or match between TM00 and CR010
0	1	1		Match between TM00 and CR000, match between TM00 and CR010 or Tl000 valid edge	
1	0	0	Clear & start occurs on TI000	-	
1	0	1	valid edge		
1	1	0	Clear & start occurs on match between TM00 and CR000	Match between TM00 and CR000 or match between TM00 and CR010	
1	1	1		Match between TM00 and CR000, match between TM00 and CR010 or Tl000 valid edge	

OVF00	16-bit timer counter 00 (TM00) overflow detection
0	Overflow not detected
1	Overflow detected

Cautions 1. Timer operation must be stopped before writing to bits other than the OVF00 flag.

- 2. Set the valid edge of the Tl000/P00 pin using prescaler mode register 00 (PRM00).
- 3. If any of the following modes: the mode in which clear & start occurs on match between TM00 and CR000, the mode in which clear & start occurs at the Tl00 valid edge, or free-running mode is selected, when the set value of CR000 is FFFFH and the TM00 value changes from FFFFH to 0000H, the OVF00 flag is set to 1.

Remarks 1. TO00: 16-bit timer/event counter 00 output pin

2. Tl000: 16-bit timer/event counter 00 input pin

3. TM00: 16-bit timer counter 00

4. CR000: 16-bit timer capture/compare register 000

5. CR010: 16-bit timer capture/compare register 010

(2) Capture/compare control register 00 (CRC00)

This register controls the operation of the 16-bit timer capture/compare registers (CR000, CR010).

CRC00 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CRC00 to 00H.

Figure 6-3. Format of Capture/Compare Control Register 00 (CRC00)

Address: FFBCH After reset: 00H			R/W					
Symbol	7	6	5	4	3	2	1	0
CRC00	0	0	0	0	0	CRC002	CRC001	CRC000

CRC002	CR010 operating mode selection		
0	Operates as compare register		
1	Operates as capture register		

CRC001	CR000 capture trigger selection			
0	Captures on valid edge of Tl010			
1	Captures on valid edge of TI000 by reverse phase			

CRC000	CR000 operating mode selection		
0	Operates as compare register		
1	Operates as capture register		

Cautions 1. Timer operation must be stopped before setting CRC00.

- 2. When the mode in which clear & start occurs on a match between TM00 and CR000 is selected with 16-bit timer mode control register 00 (TMC00), CR000 should not be specified as a capture register.
- 3. To ensure that the capture operation is performed properly, the capture trigger requires a pulse two times longer than the count clock selected by prescaler mode register 00 (PRM00).

(3) 16-bit timer output control register 00 (TOC00)

This register controls the operation of the 16-bit timer/event counter 00 output controller. It sets/resets the R-S type flip-flop (LV00), enables/disables output inversion and 16-bit timer/event counter 00 timer output, enables/disables the one-shot pulse output operation, and sets the one-shot pulse output trigger via software.

TOC00 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TOC00 to 00H.

Figure 6-4. Format of 16-Bit Timer Output Control Register 00 (TOC00)

Address: FFBDH After reset: 00H R/W Symbol 6 5 4 3 2 0 TOC00 OSPT00 OSPE00 TOC004 LVS00 LVR00 TOC001 TOE00

OSPT00	One-shot pulse output trigger control via software			
0	No one-shot pulse trigger			
1	One-shot pulse trigger			

OSPE00	One-shot pulse output operation control			
0	Successive pulse output mode			
1	One-shot pulse output mode ^{Note}			

TOC004	Timer output F/F control using match of CR010 and TM00			
0	Disables inversion operation			
1	Enables inversion operation			

LVS00	LVR00	16-bit timer/event counter 00 timer output F/F status setting
0	0	No change
0	1	Timer output F/F reset (0)
1	0	Timer output F/F set (1)
1	1	Setting prohibited

TOC001	Timer output F/F control using match of CR000 and TM00			
0	Disables inversion operation			
1	Enables inversion operation			

TOE00	16-bit timer/event counter 00 output control					
0	Disables output (output fixed to level 0)					
1	Enables output					

Note The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which clear & start occurs at the Tl000 valid edge. In the mode in which clear & start occurs on a match between the TM00 register and CR000 register, one-shot pulse output is not possible because an overflow does not occur.

Cautions 1. Timer operation must be stopped before setting other than TOC004.

- 2. If LVS00 and LVR00 are read after data is set, 0 is read.
- 3. OSPT00 is automatically cleared after data is set, so 0 is read.
- 4. Do not set OSPT00 to 1 other than in one-shot pulse output mode.
- 5. A write interval of two cycles or more of the operating clock is required to write to OSPT00 successively.

(4) Prescaler mode register 00 (PRM00)

This register is used to set the 16-bit timer counter 00 (TM00) count clock and Tl000 and Tl010 input valid edges. PRM00 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears PRM00 to 00H.

Figure 6-5. Format of Prescaler Mode Register 00 (PRM00)

Address: FFBBH After reset: 00H		R/W						
Symbol	7	6	5	4	3	2	1	0
PRM00	ES101	ES100	ES001	ES000	0	0	PRM001	PRM000

ES101	ES100	Tl010 valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

ES001	ES000	TI000 valid edge selection			
0	0	Falling edge			
0	1	Rising edge			
1	0	Setting prohibited			
1	1	Both falling and rising edges			

PRM001	PRM000	Count clock selection
0	0	fx (10 MHz)
0	1	fx/2² (2.5 MHz)
1	0	fx/2 ⁸ (39.06 kHz)
1	1	TI000 valid edge ^{Note}

Note The external clock requires a pulse two times longer than internal clock (fx).

Cautions 1. If the valid edge of Tl000 is to be set for the count clock, do not set the clear & start mode using the valid edge of Tl000 and the capture trigger.

- 2. Always set data to PRM00 after stopping the timer operation.
- 3. If the TI000 or TI010 pin is high level immediately after system reset, the rising edge is immediately detected after the rising edge or both the rising and falling edges are set as the valid edge(s) of the TI000 pin or TI010 pin to enable the operation of 16-bit timer counter 00 (TM00). Care is therefore required when pulling up the TI000 or TI010 pin. However, when reenabling operation after the operation has been stopped once, the rising edge is not detected.
- 4. When P01 is used as the Tl010 valid edge, it cannot be used as the timer output (TO00), and when used as TO00, it cannot be used as the Tl010 valid edge.

Remarks 1. fx: X1 input clock oscillation frequency

- 2. TI000, TI010: 16-bit timer/event counter 00 input pin
- **3.** Figures in parentheses are for operation with fx = 10 MHz.

(5) Port mode register 0 (PM0)

This register sets port 0 input/output in 1-bit units.

When using the P01/T000/Tl010 pin for timer output, set PM01 and the output latch of P01 to 0.

PM0 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM0 to FFH.

Figure 6-6. Format of Port Mode Register 0 (PM0)

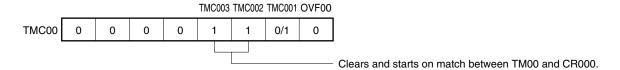
Address	: FF20	H Af	ter rese	t: FFH	R/W			
Symbol	7	6	5	4	3	2	1	0
РМ0	1	1	1	1	PM03	PM02	PM01	PM00

PM0n	P0n pin I/O mode selection (n = 0 to 3)				
0	Output mode (output buffer on)				
1	Input mode (output buffer off)				

6.4 Operation of 16-Bit Timer/Event Counter 00

6.4.1 Interval timer operation

Setting 16-bit timer mode control register 00 (TMC00) and capture/compare control register 00 (CRC00) as shown in Figure 6-7 allows operation as an interval timer. Interrupt requests are generated repeatedly using the count value preset in 16-bit timer capture/compare register 000 (CR000) as the interval.


When the count value of 16-bit timer counter 00 (TM00) matches the value set in CR000, counting continues with the TM00 value cleared to 0 and the interrupt request signal (INTTM000) is generated.

The count clock of the 16-bit timer/event counter 00 can be selected with bits 0 and 1 (PRM000, PRM001) of prescaler mode register 00 (PRM00).

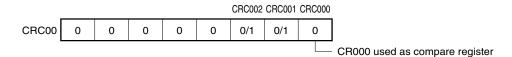

See 6.5 Cautions for 16-Bit Timer/Event Counter 00 (2) 16-bit timer capture/compare register setting for details of the operation when the compare register value is changed during timer count operation.

Figure 6-7. Control Register Settings for Interval Timer Operation

(a) 16-bit timer mode control register 00 (TMC00)

(b) Capture/compare control register 00 (CRC00)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with the interval timer. For details, see **Figures 6-2** and **6-3**.

Figure 6-8. Interval Timer Configuration Diagram

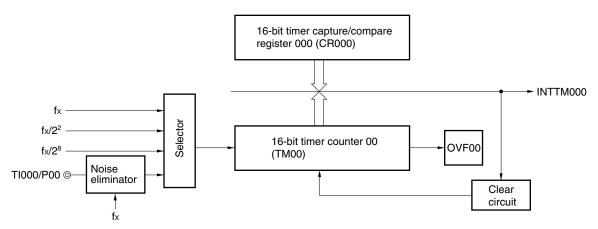
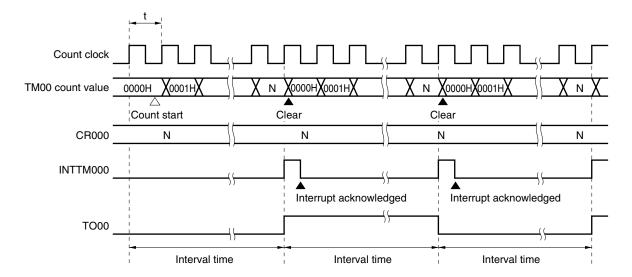



Figure 6-9. Timing of Interval Timer Operation

Remark Interval time = $(N + 1) \times t$ N = 0001H to FFFFH

6.4.2 PPG output operations

Setting 16-bit timer mode control register 00 (TMC00) and capture/compare control register 00 (CRC00) as shown in Figure 6-10 allows operation as PPG (Programmable Pulse Generator) output.

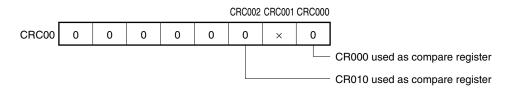
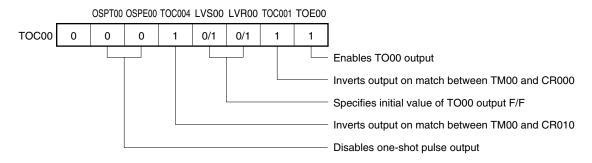

In the PPG output operation, rectangular waves are output from the TO00 pin with the pulse width and the cycle that correspond to the count values preset in 16-bit timer capture/compare register 010 (CR010) and in 16-bit timer capture/compare register 000 (CR000), respectively.

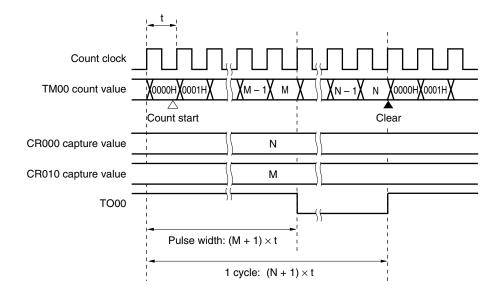
Figure 6-10. Control Register Settings for PPG Output Operation


(a) 16-bit timer mode control register 00 (TMC00)

(b) Capture/compare control register 00 (CRC00)

(c) 16-bit timer output control register 00 (TOC00)

Cautions 1. Values in the following range should be set in CR000 and CR010: 0000H < CR010 < CR000 ≤ FFFFH


2. The cycle of the pulse generated through PPG output (CR000 setting value + 1) has a duty of (CR010 setting value + 1)/(CR000 setting value + 1).

Remark ×: Don't care

16-bit timer capture/compare register 000 (CR000) fx/22 Clear 16-bit timer counter 00 $f_{x}/2^{8}$ circuit (TM00) Noise TI000/P00 ⊚-Output controller eliminator - TO00/TI010/P01 fx 16-bit timer capture/compare register 010 (CR010)

Figure 6-11. Configuration of PPG Output

Figure 6-12. PPG Output Operation Timing

Caution CR000 cannot be rewritten during TM00 operation.

Remarks 1. $0000H < M < N \le FFFFH$

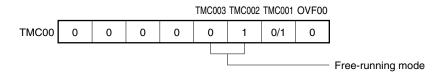
- 2. In the PPG output operation, change the pulse width (rewrite CR010) during TM00 operation using the following procedure.
 - <1> Disable the timer output inversion operation by match of TM00 and CR010 (TOC004 = 0)
 - <2> Disable the INTTM010 interrupt (TMMK010 = 1)
 - <3> Rewrite CR010
 - <4> Wait for 1 cycle of the TM00 count clock
 - <5> Enable the timer output inversion operation by match of TM00 and CR010 (TOC004 = 1)
 - <6> Clear the interrupt request flag of INTTM010 (TMIF010 = 0)
 - <7> Enable the INTTM010 interrupt (TMMK010 = 0)

6.4.3 Pulse width measurement operations

It is possible to measure the pulse width of the signals input to the TI000 pin and TI010 pin using 16-bit timer counter 00 (TM00).

There are two measurement methods: measuring with TM00 used in free-running mode, and measuring by restarting the timer in synchronization with the edge of the signal input to the Tl000 pin.

(1) Pulse width measurement with free-running counter and one capture register


When 16-bit timer counter 00 (TM00) is operated in free-running mode (see register settings in **Figure 6-13**), and the edge specified by prescaler mode register 00 (PRM00) is input to the Tl000 pin, the value of TM00 is taken into 16-bit timer capture/compare register 010 (CR010) and an external interrupt request signal (INTTM010) is set.

Any of three edges—rising, falling, or both edges—can be selected using bits 4 and 5 (ES000 and ES001) of PRM00.

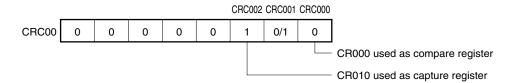

For valid edge detection, sampling is performed using the count clock selected by PRM00, and a capture operation is only performed when a valid level is detected twice, thus eliminating noise with a short pulse width.

Figure 6-13. Control Register Settings for Pulse Width Measurement with Free-Running Counter and One Capture Register

(a) 16-bit timer mode control register 00 (TMC00)

(b) Capture/compare control register 00 (CRC00)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. For details, see **Figures 6-2** and **6-3**.

Figure 6-14. Configuration Diagram for Pulse Width Measurement with Free-Running Counter

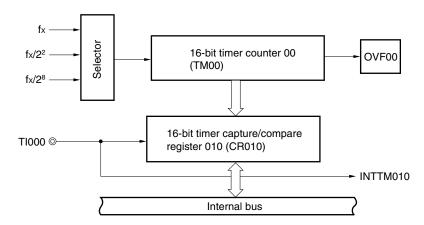
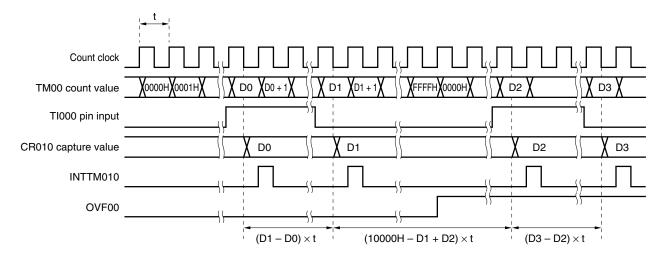
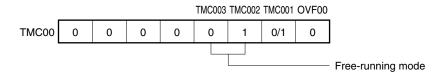



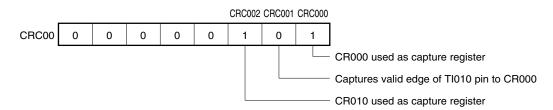
Figure 6-15. Timing of Pulse Width Measurement Operation with Free-Running Counter and One Capture Register (with Both Edges Specified)

(2) Measurement of two pulse widths with free-running counter

When 16-bit timer counter 00 (TM00) is operated in free-running mode (see **Figure 6-16**), it is possible to simultaneously measure the pulse widths of the two signals input to the Tl000 pin and the Tl010 pin.

When the edge specified by bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00) is input to the TI000 pin, the value of TM00 is taken into 16-bit timer capture/compare register 010 (CR010) and an interrupt request signal (INTTM010) is set.


Also, when the edge specified by bits 6 and 7 (ES100 and ES101) of PRM00 is input to the TI010 pin, the value of TM00 is taken into 16-bit timer capture/compare register 000 (CR000) and an interrupt request signal (INTTM000) is set.


Any of three edges—rising, falling, or both edges—can be selected as the valid edge of the TI000 pin and the TI010 pin, specified using bits 4 and 5 (ES000 and ES001) and bits 6 and 7 (ES100 and ES101) of PRM00, respectively.

For valid edge detection of the TI000 and TI010 pins, sampling is performed at the interval selected by prescaler mode register 00 (PRM00), and a capture operation is only performed when a valid level is detected twice, thus eliminating noise with a short pulse width.

Figure 6-16. Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter

(a) 16-bit timer mode control register 00 (TMC00)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. For details, see **Figure 6-2**.

• Capture operation (free-running mode)

The capture register operation when capture trigger is input is shown below.

Figure 6-17. CR010 Capture Operation with Rising Edge Specified

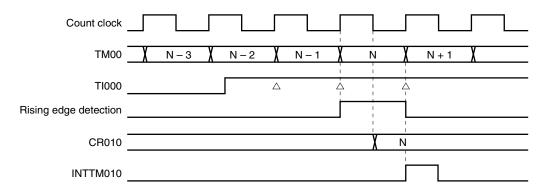
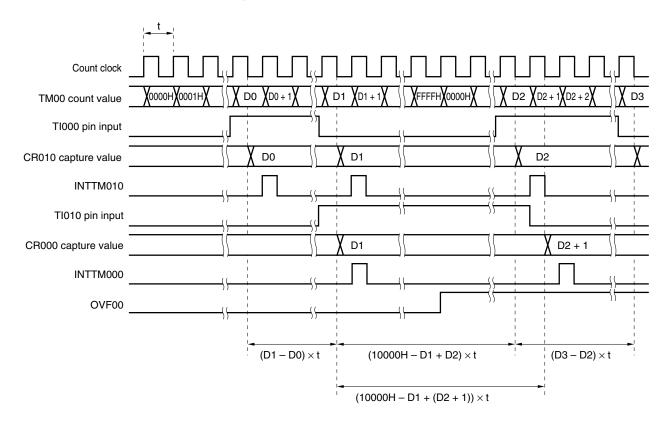
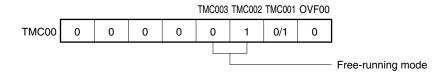



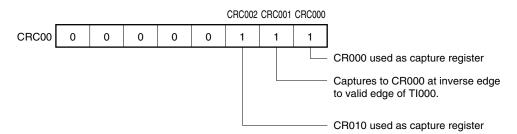
Figure 6-18. Timing of Pulse Width Measurement Operation with Free-Running Counter (with Both Edges Specified)

(3) Pulse width measurement with free-running counter and two capture registers

When 16-bit timer counter 00 (TM00) is operated in free-running mode (see **Figure 6-19**), it is possible to measure the pulse width of the signal input to the Tl000 pin.

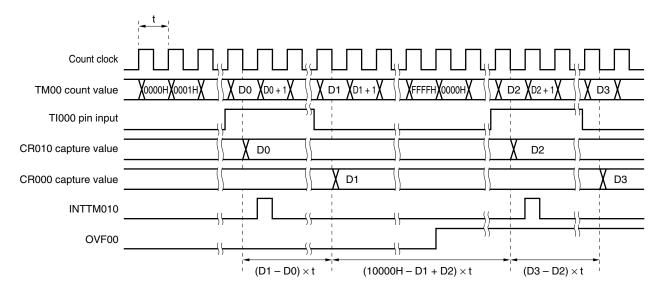
When the edge specified by bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00) is input to the Tl000 pin, the value of TM00 is taken into 16-bit timer capture/compare register 010 (CR010) and an interrupt request signal (INTTM010) is set.


Also, when the inverse edge to that of the capture operation is input into CR010, the value of TM00 is taken into 16-bit timer capture/compare register 000 (CR000).


Either of two edges—rising or falling—can be selected as the valid edge of the Tl000 pin specified using bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00).

For Tl000 pin valid edge detection, sampling is performed at the interval selected by prescaler mode register 00 (PRM00), and a capture operation is only performed when a valid level is detected twice, thus eliminating noise with a short pulse width.

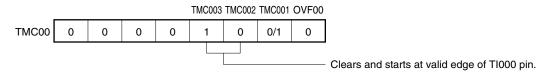
Figure 6-19. Control Register Settings for Pulse Width Measurement with Free-Running Counter and Two Capture Registers

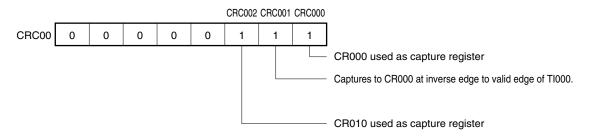

(a) 16-bit timer mode control register 00 (TMC00)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. See the description of the respective control registers for details.

Figure 6-20. Timing of Pulse Width Measurement Operation with Free-Running Counter and Two Capture Registers (with Rising Edge Specified)

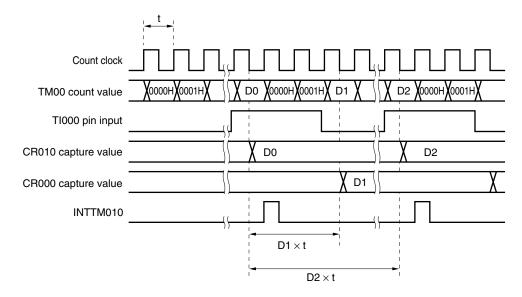
(4) Pulse width measurement by means of restart


When input of a valid edge to the TI000 pin is detected, the count value of 16-bit timer counter 00 (TM00) is taken into 16-bit timer capture/compare register 010 (CR010), and then the pulse width of the signal input to the TI000 pin is measured by clearing TM00 and restarting the count operation (see **Figure 6-21**).


Either of two edges—rising or falling—can be selected using bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00).

In valid edge detection, sampling is performed using the count clock cycle selected by prescaler mode register 00 (PRM00) and a capture operation is only performed when a valid level is detected twice, thus eliminating noise with a short pulse width.

Figure 6-21. Control Register Settings for Pulse Width Measurement by Means of Restart


(a) 16-bit timer mode control register 00 (TMC00)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. For details, see **Figure 6-2**.

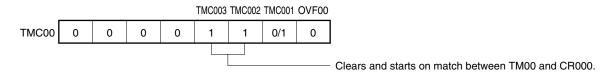
Figure 6-22. Timing of Pulse Width Measurement Operation by Means of Restart (with Rising Edge Specified)

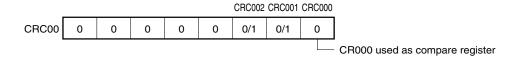
6.4.4 External event counter operation

The external event counter counts the number of external clock pulses input to the TI000 pin using 16-bit timer counter 00 (TM00).

TM00 is incremented each time the valid edge specified by prescaler mode register 00 (PRM00) is input.

When the TM00 count value matches the 16-bit timer capture/compare register 000 (CR000) value, TM00 is cleared to 0 and the interrupt request signal (INTTM000) is generated.


Input a value other than 0000H to CR000 (a count operation with 1-bit pulse cannot be carried out).


Any of three edges—rising, falling, or both edges—can be selected using bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00).

Because operation is carried out only after the valid edge is detected twice by sampling using the internal clock (fx), noise with short pulse widths can be eliminated.

Figure 6-23. Control Register Settings in External Event Counter Mode

(a) 16-bit timer mode control register 00 (TMC00)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with the external event counter. For details, see **Figures 6-2** and **6-3**.

Figure 6-24. Configuration Diagram of External Event Counter

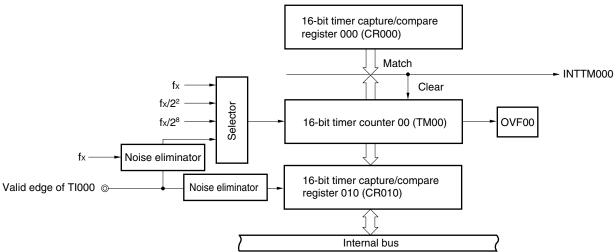
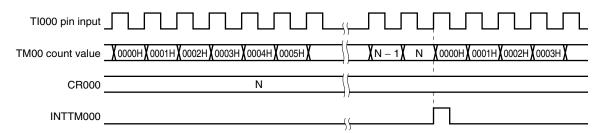



Figure 6-25. External Event Counter Operation Timing (with Rising Edge Specified)

Caution When reading the external event counter count value, TM00 should be read.

6.4.5 Square-wave output operation

A square wave with any selected frequency can be output at intervals of the count value preset to 16-bit timer capture/compare register 000 (CR000).

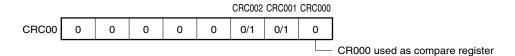
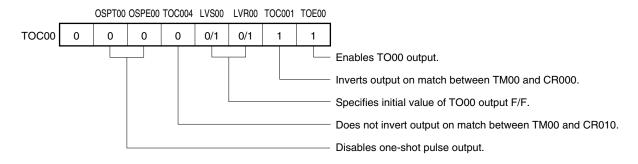

The TO00 pin output status is reversed at intervals of the count value preset to CR000 by setting bit 0 (TOE00) and bit 1 (TOC001) of 16-bit timer output control register 00 (TOC00) to 1. This enables a square wave with any selected frequency to be output.

Figure 6-26. Control Register Settings in Square-Wave Output Mode


(a) 16-bit timer mode control register 00 (TMC00)

(b) Capture/compare control register 00 (CRC00)

(c) 16-bit timer output control register 00 (TOC00)

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with square-wave output. For details, see **Figures 6-3** and **6-4**.

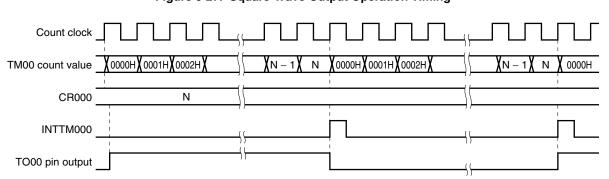


Figure 6-27. Square-Wave Output Operation Timing

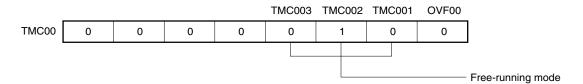
6.4.6 One-shot pulse output operation

16-bit timer/event counter 00 can output a one-shot pulse in synchronization with a software trigger or an external trigger (TI000 pin input).

(1) One-shot pulse output with software trigger

A one-shot pulse can be output from the TO00 pin by setting 16-bit timer mode control register 00 (TMC00), capture/compare control register 00 (CRC00), and 16-bit timer output control register 00 (TOC00) as shown in Figure 6-27, and by setting bit 6 (OSPT00) of the TOC00 register to 1 by software.

By setting the OSPT00 bit to 1, 16-bit timer/event counter 00 is cleared and started, and its output becomes active at the count value (N) set in advance to 16-bit timer capture/compare register 010 (CR010). After that, the output becomes inactive at the count value (M) set in advance to 16-bit timer capture/compare register 000 (CR000)^{Note}.


Even after the one-shot pulse has been output, the TM00 register continues its operation. To stop the TM00 register, the TMC003 and TMC002 bits of the TMC00 register must be set to 00.

Note The case where N < M is described here. When N > M, the output becomes active with the CR000 register and inactive with the CR010 register.

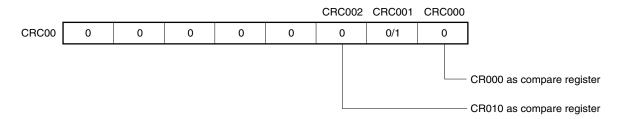
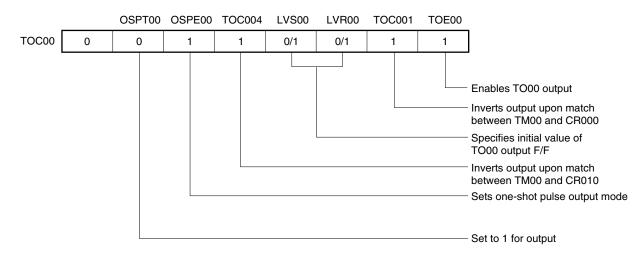

- Cautions 1. Do not set the OSPT00 bit to 1 while the one-shot pulse is being output. To output the one-shot pulse again, wait until the current one-shot pulse output is completed.
 - 2. When using the one-shot pulse output of 16-bit timer/event counter 00 with a software trigger, do not change the level of the Tl000 pin or its alternate-function port pin. Because the external trigger is valid even in this case, the timer is cleared and started even at the level of the Tl000 pin or its alternate-function port pin, resulting in the output of a pulse at an undesired timing.

Figure 6-28. Control Register Settings for One-Shot Pulse Output with Software Trigger


(a) 16-bit timer mode control register 00 (TMC00)

(b) Capture/compare control register 00 (CRC00)

(c) 16-bit timer output control register 00 (TOC00)

Caution Do not set 0000H to the CR000 and CR010 registers.

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. For details, see **Figures 6-3** and **6-4**.

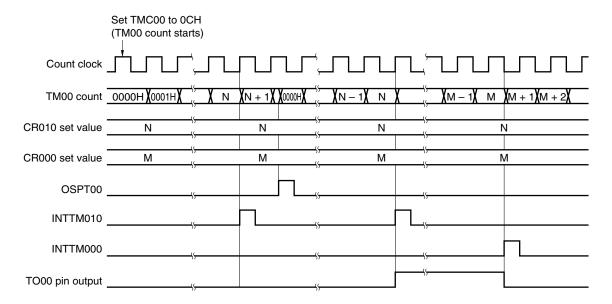


Figure 6-29. Timing of One-Shot Pulse Output Operation with Software Trigger

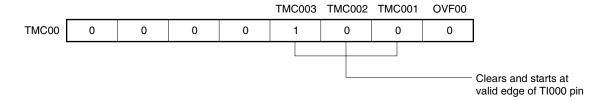
Caution 16-bit timer counter 00 starts operating as soon as a value other than 00 (operation stop mode) is set to the TMC003 and TMC002 bits.

Remark N < M

(2) One-shot pulse output with external trigger

A one-shot pulse can be output from the TO00 pin by setting 16-bit timer mode control register 00 (TMC00), capture/compare control register 00 (CRC00), and 16-bit timer output control register 00 (TOC00) as shown in Figure 6-30, and by using the valid edge of the Tl000 pin as an external trigger.

The valid edge of the Tl000 pin is specified by bits 4 and 5 (ES000, ES001) of prescaler mode register 00 (PRM00). The rising, falling, or both the rising and falling edges can be specified.


When the valid edge of the Tl000 pin is detected, the 16-bit timer/event counter is cleared and started, and the output becomes active at the count value set in advance to 16-bit timer capture/compare register 010 (CR010). After that, the output becomes inactive at the count value set in advance to 16-bit timer capture/compare register 000 (CR000)^{Note}.

Note The case where N < M is described here. When N > M, the output becomes active with the CR000 register and inactive with the CR010 register.

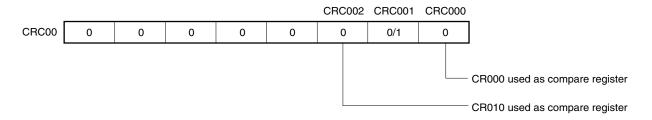
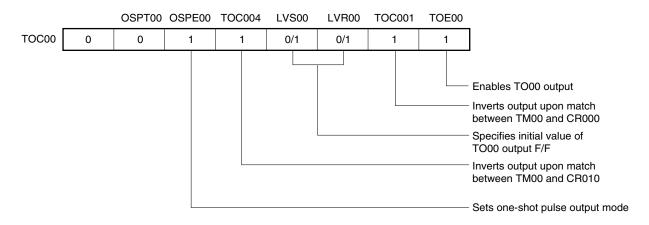

Caution Even if the external trigger is generated again while the one-shot pulse is output, it is ignored.

Figure 6-30. Control Register Settings for One-Shot Pulse Output with External Trigger


(a) 16-bit timer mode control register 00 (TMC00)

(b) Capture/compare control register 00 (CRC00)

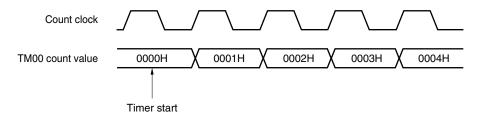
(c) 16-bit timer output control register 00 (TOC00)

Caution Do not set 0000H to the CR000 and CR010 registers.

Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement. For details, see **Figures 6-3** and **6-4**.

Figure 6-31. Timing of One-Shot Pulse Output Operation with External Trigger (with Rising Edge Specified)

Caution 16-bit timer counter 00 starts operating as soon as a value other than 00 (operation stop mode) is set to the TMC002 and TMC003 bits.

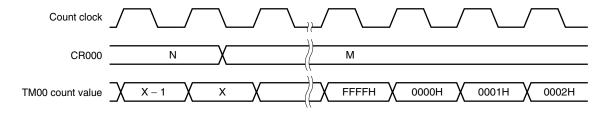

Remark N < M

6.5 Cautions for 16-Bit Timer/Event Counter 00

(1) Timer start errors

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 16-bit timer counter 00 (TM00) is started asynchronously to the count clock.

Figure 6-32. Start Timing of 16-Bit Timer Counter 00 (TM00)


(2) 16-bit timer capture/compare register setting (in the mode in which clear & start occurs on match between TM00 and CR000)

Set 16-bit timer capture/compare registers 000, 010 (CR000, CR010) to other than 0000H. This means a 1-pulse count operation cannot be performed when 16-bit timer/event counter 00 is used as an event counter.

(3) Operation after compare register change during timer count operation

If the value after 16-bit timer capture/compare register 000 (CR000) is changed is smaller than that of 16-bit timer counter 00 (TM00), TM00 continues counting, overflows and then restarts counting from 0. Thus, if the value (M) after CR000 changes is smaller than that (N) before the change, it is necessary to restart the timer after changing CR000.

Figure 6-33. Timings After Change of Compare Register During Timer Count Operation

Remark N > X > M

(4) Capture register data retention timing

If the valid edge of the Tl000 pin is input during 16-bit timer capture/compare register 010 (CR010) read, CR010 performs a capture operation. However, the value read at this time is not guaranteed.

The interrupt request flag (TMIF010) is set upon detection of the valid edge.

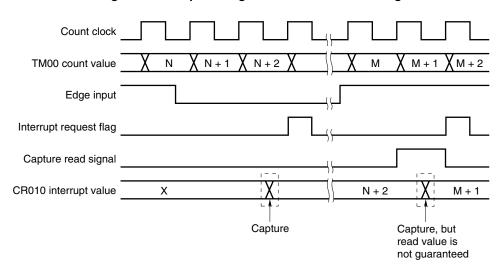


Figure 6-34. Capture Register Data Retention Timing

(5) Valid edge setting

Set the valid edge of the Tl000 pin after setting bits 2 and 3 (TMC002 and TMC003) of 16-bit timer mode control register 00 (TMC00) to 0, 0, respectively, and then stopping timer operation. The valid edge is set using bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00).

(6) Re-triggering one-shot pulse

(a) One-shot pulse output by software

When a one-shot pulse is output, do not set the OSPT00 bit to 1. Do not output the one-shot pulse again until INTTM000, which occurs upon a match with the CR000 register, or INTTM010, which occurs upon a match with the CR010 register, occurs.

(b) One-shot pulse output with external trigger

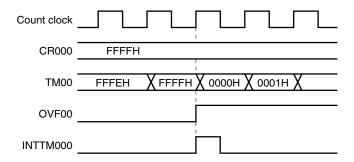
If the external trigger occurs again while a one-shot pulse is output, it is ignored.

(c) One-shot pulse output function

When using the one-shot pulse output of 16-bit timer/event counter 00 with a software trigger, do not change the level of the Tl000 pin or its alternate function port pin.

Because the external trigger is valid even in this case, the timer is cleared and started even at the level of the Tl000 pin or its alternate function port pin, resulting in the output of a pulse at an undesired timing.

(7) Operation of OVF00 flag


<1> The OVF00 flag is set to 1 in the following case.

When of the following modes: the mode in which clear & start occurs on a match between TM00 and CR000, the mode in which clear & start occurs on a Tl00 valid edge, or the free-running mode, is selected

↓
CR000 is set to FFFFH

TM00 is counted up from FFFFH to 0000H.

Figure 6-35. Operation Timing of OVF00 Flag

<2> Even if the OVF00 flag is cleared before the next count clock (before TM00 becomes 0001H) after the occurrence of TM00 overflow, the OVF00 flag is re-set newly and clear is disabled.

(8) Conflicting operations

Conflict between the read period of the 16-bit timer capture/compare register (CR000/CR010) and capture trigger input (CR000/CR010 used as capture register)

Capture trigger input has priority. The data read from CR000/CR010 is undefined.

(9) Timer operation

- <1> Even if 16-bit timer counter 00 (TM00) is read, the value is not captured by 16-bit timer capture/compare register 010 (CR010).
- <2> Regardless of the CPU's operation mode, when the timer stops, the input signals to the Tl000/Tl010 pins are not acknowledged.
- <3> The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which clear & start occurs at the Tl000 valid edge. In the mode in which clear & start occurs on a match between the TM00 register and CR000 register, one-shot pulse output is not possible because an overflow does not occur.

(10) Capture operation

- <1> If TI000 valid edge is specified as the count clock, a capture operation by the capture register specified as the trigger for TI000 is not possible.
- <2> To ensure the reliability of the capture operation, the capture trigger requires a pulse two times longer than the count clock selected by prescaler mode register 00 (PRM00).
- <3> The capture operation is performed at the falling edge of the count clock. An interrupt request input (INTTM000/INTTM010), however, is generated at the rise of the next count clock.

(11) Compare operation

- <1> When the 16-bit timer capture/compare register (CR000/CR010) is overwritten during timer operation, a match interrupt may be generated or a clear operation may not be performed normally if that value is close to or larger than the timer value.
- <2> A capture operation may not be performed for CR000/CR010 set in compare mode even if a capture trigger has been input.

(12) Edge detection

- <1> If the TI000 or TI010 pin is high level immediately after system reset and the rising edge or both the rising and falling edges are specified as the valid edge of the TI000 or TI010 pin to enable the 16-bit timer counter 00 (TM00) operation, a rising edge is detected immediately after the operation is enabled. Be careful therefore when pulling up the TI000 or TI010 pin. However, the rising edge is not detected at restart after the operation has been stopped once.
- <2> The sampling clock used to eliminate noise differs when the Tl000 valid edge is used as the count clock and when it is used as a capture trigger. In the former case, the count clock is fx, and in the latter case the count clock is selected by prescaler mode register 00 (PRM00). The capture operation is started only after a valid edge is detected twice by sampling, thus eliminating noise with a short pulse width.

CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51

7.1 Functions of 8-Bit Timer/Event Counters 50 and 51

8-bit timer/event counters 50 and 51 have the following functions.

- Interval timer
- · External event counter
- Square-wave output
- PWM output

Figures 7-1 and 7-2 show the block diagrams of 8-bit timer/event counters 50 and 51.

Internal bus 8-bit timer compare ► INTTM50 Selector Mask circuit register 50 (CR50) TI50/TO50/P17 @ Match Selector fx/2 fx/2² S Selector NV 8-bit timer OVF -⊚ TO50/TI50/P17 fx/2⁶ counter 50 (TM50) fx/2⁸ R Clear Invert ′3 level Selector TCE50 TMC506 LVS50 LVR50 TMC501 TOE50 TCL502 TCL501 TCL500 8-bit timer mode control Timer clock selection 2 register 50 (TMC50) register 50 (TCL50) Internal bus

Figure 7-1. Block Diagram of 8-Bit Timer/Event Counter 50

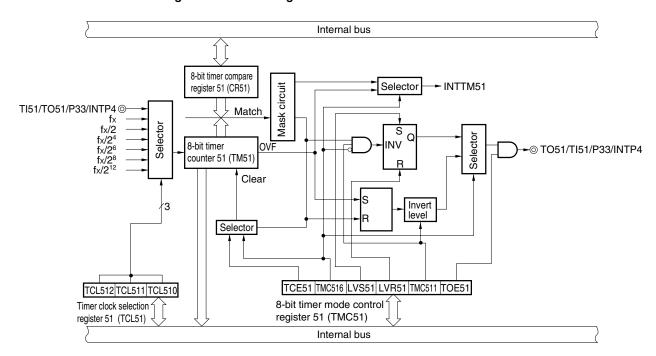


Figure 7-2. Block Diagram of 8-Bit Timer/Event Counter 51

7.2 Configuration of 8-Bit Timer/Event Counters 50 and 51

8-bit timer/event counters 50 and 51 consist of the following hardware.

Table 7-1. Configuration of 8-Bit Timer/Event Counters 50 and 51

Item	Configuration				
Timer register	8-bit timer counter 5n (TM5n)				
Register	8-bit timer compare register 5n (CR5n)				
Timer output	1 (TO5n)				
Control registers	Timer clock selection register 5n (TCL5n) 8-bit timer mode control register 5n (TMC5n) Port mode register 1 (PM1) ^{Note} or port mode register 3 (PM3) ^{Note}				

Note See Figure 4-10 Block Diagram of P16 and P17 and Figure 4-13 Block Diagram of P33.

(1) 8-bit timer counter 5n (TM5n)

TM5n is an 8-bit register that counts the count pulses and is read-only.

The counter is incremented in synchronization with the rising edge of the count clock.

When the count value is read during operation, count clock input is temporary stopped, and then the count value is read. In the following situations, the count value is cleared to 00H.

- <1> RESET input
- <2> When TCE5n is cleared
- <3> When TM5n and CR5n match in the mode in which clear & start occurs upon a match of the TM5n and CR5n.

(2) 8-bit timer compare register 5n (CR5n)

CR5n can be read and written by an 8-bit memory manipulation instruction.

Except in PWM mode, the value set in CR5n is constantly compared with the 8-bit timer counter 5n (TM5n) count value, and an interrupt request (INTTM5n) is generated if they match.

In PWM mode, when the TO5n pin becomes active due to a TM5n overflow and the values of TM5n and CR5n match, the TO5n pin becomes inactive.

The value of CR5n can be set within 00H to FFH.

- Cautions 1. In the mode in which clear & start occurs on a match of TM5n and CR5n (TMC5n6 = 0), do not write other values to CR5n during operation.
 - 2. In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock selected by TCL5n) or more.

7.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51

The following three registers are used to control 8-bit timer/event counters 50 and 51.

- Timer clock selection register 5n (TCL5n)
- 8-bit timer mode control register 5n (TMC5n)
- Port mode register 1 (PM1) or port mode register 3 (PM3)

(1) Timer clock selection register 5n (TCL5n)

This register sets the count clock of 8-bit timer/event counter 5n and the valid edge of TI5n input.

TCL5n can be set by an 8-bit memory manipulation instruction.

RESET input clears TCL5n to 00H.

Remark n = 0, 1

Figure 7-3. Format of Timer Clock Selection Register 50 (TCL50)

Address: FF	F6AH After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
TCL50	0	0	0	0	0	TCL502	TCL501	TCL500

TCL502	TCL501	TCL500	Count clock selection
0	0	0	TI50 falling edge
0	0	1	TI50 rising edge
0	1	0	fx (10 MHz)
0	1	1	fx/2 (5 MHz)
1	0	0	fx/2 ² (2.5 MHz)
1	0	1	f _X /2 ⁶ (156.25 kHz)
1	1	0	fx/2 ⁸ (39.06 kHz)
1	1	1	fx/2 ¹³ (1.22 kHz)

Cautions 1. When rewriting TCL50 to other data, stop the timer operation beforehand.

2. Be sure to set bits 3 to 7 to 0.

Remarks 1. fx: X1 input clock oscillation frequency

2. Figures in parentheses apply to operation at fx = 10 MHz.

Figure 7-4. Format of Timer Clock Selection Register 51 (TCL51)

Address: FF	RCH After	reset: 00H	R/W						
Symbol	7	6	5	4	3	2	1	0	
TCL51	0	0	0	0	0	TCL512	TCL511	TCL510	ì

TCL512	TCL511	TCL510	Count clock selection
0	0	0	TI51 falling edge
0	0	1	TI51 rising edge
0	1	0	fx (10 MHz)
0	1	1	fx/2 (5 MHz)
1	0	0	fx/2 ⁴ (625 kHz)
1	0	1	fx/2 ⁶ (156.25 kHz)
1	1	0	fx/2 ⁸ (39.06 kHz)
1	1	1	fx/2 ¹² (2.44 kHz)

Cautions 1. When rewriting TCL51 to other data, stop the timer operation beforehand.

2. Be sure to set bits 3 to 7 to 0.

Remarks 1. fx: X1 input clock oscillation frequency

2. Figures in parentheses apply to operation at fx = 10 MHz.

(2) 8-bit timer mode control register 5n (TMC5n)

TMC5n is a register that performs the following five types of settings.

- <1> 8-bit timer counter 5n (TM5n) count operation control
- <2> 8-bit timer counter 5n (TM5n) operating mode selection
- <3> Timer output F/F (flip-flop) status setting
- <4> Active level selection in timer F/F control or PWM (free-running) mode
- <5> Timer output control

TMC5n can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Remark n = 0, 1

Figure 7-5. Format of 8-Bit Timer Mode Control Register 50 (TMC50)

Address: FF	F6BH After	reset: 00H	R/W ^{Note}					
Symbol	7	6	5	4	3	2	1	0
TMC50	TCE50	TMC506	0	0	LVS50	LVR50	TMC501	TOE50

TCE50	TM50 count operation control
0	After clearing to 0, count operation disabled (counter stopped)
1	Count operation start

TMC506	TM50 operating mode selection
0	Mode in which clear & start occurs on a match between TM50 and CR50
1	PWM (free-running) mode

LVS50	LVR50	Timer output F/F status setting
0	0	No change
0	1	Timer output F/F reset (0)
1	0	Timer output F/F set (1)
1	1	Setting prohibited

TMC501	In other modes (TMC506 = 0)	In PWM mode (TMC506 = 1)		
	Timer F/F control	Active level selection		
0	Inversion operation disabled	Active-high		
1	Inversion operation enabled	Active-low		

	TOE50	Timer output control
ſ	0	Output disabled (TO50 pin outputs the low level)
ſ	1	Output enabled

Note Bits 2 and 3 are write-only.

(Refer to Caution and Remark on the page after the next.)

Figure 7-6. Format of 8-Bit Timer Mode Control Register 51 (TMC51)

After reset: 00H R/W^{Note} Address: FF43H 0 Symbol 7 6 3 2 TMC51 TCE51 0 LVS51 TMC511 TOE51 TMC516 0 LVR51

TCE51	TM51 count operation control
0	After clearing to 0, count operation disabled (counter stopped)
1	Count operation start

	TMC516 TM51 operating mode selection			
0 Mode in which clear & start occurs on a match between TM51 and CR51		Mode in which clear & start occurs on a match between TM51 and CR51		
1 PWM (free-running) mode		PWM (free-running) mode		

LVS51	LVR51	Timer output F/F status setting		
0	0	change		
0	1	mer output F/F reset (0)		
1	0	ner output F/F set (1)		
1	1	etting prohibited		

TMC511	In other modes (TMC516 = 0)	In PWM mode (TMC516 = 1)		
	Timer F/F control	Active level selection		
0	Inversion operation disabled	Active-high		
1	Inversion operation enabled	Active-low		

TOE51 Timer output control		Timer output control
	0 Output disabled (TO51 pin outputs the low level)	
	1 Output enabled	

Note Bits 2 and 3 are write-only.

(Refer to Caution and Remark on the next page.)

Cautions 1. To clear TCE5n to 0, set the interrupt mask flag (TMMK5n) to 1 beforehand. Otherwise, an interrupt may occur when TCE5n is cleared.

TCE5n is cleared to 0 as follows.

TMMK5n = 1; Mask set

TCE5n = 0; Timer clear

TMIF5n = 0; Interrupt request flag clear

TMMK5n = 0; Mask clear

:

TCE5n = 1; Timer start
:

- 2. The settings of LVS5n and LVR5n are valid in other than PWM mode.
- 3. Do not rewrite TMC5n1 and TOE5n simultaneously.
- 4. When switching to the PWM mode, do not rewrite TM5n6 and LVS5n or LVR5n simultaneously.
- 5. To rewrite TMC5n6, stop operation beforehand.
- Remarks 1. In PWM mode, PWM output is made inactive by setting TCE5n to 0.
 - 2. If LVS5n and LVR5n are read after data is set, 0 is read.
 - **3.** The values of the TMC5n6, LVS5n, LVR5n, TMC5n1, and TOE5n bits are reflected at the TO5n pin regardless of the value of TCE5n.
 - **4.** n = 0, 1

(3) Port mode register 1 (PM1) and port mode register 3 (PM3)

These registers set ports 1 and 3 input/output in 1-bit units.

When using the P17/T050/Tl50 and P33/T051/Tl51/INTP4 pins for timer output, set PM17 and PM33 and the output latches of P17 and P33 to 0.

PM1 and PM3 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to FFH.

Figure 7-7. Format of Port Mode Register 1 (PM1)

Address: FF21H After reset: FFH			FH R/W					
Symbol	7	6	5	4	3	2	1	0
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

PM1n	P1n pin I/O mode selection (n = 0 to 7)	
0	Output mode (output buffer on)	
1	Input mode (output buffer off)	

Figure 7-8. Format of Port Mode Register 3 (PM3)

Address: FF23H		fter reset: FI	FH R/W					
Symbol	7	6	5	4	3	2	1	0
РМ3	0	0	0	0	PM33	PM32	PM31	PM30

PM3n	PM3n P3n pin I/O mode selection (n = 0 to 3)	
0	0 Output mode (output buffer on)	
1	Input mode (output buffer off)	

7.4 Operations of 8-Bit Timer/Event Counters 50 and 51

7.4.1 Operation as interval timer

8-bit timer/event counter 5n operates as an interval timer that generates interrupt requests repeatedly at intervals of the count value preset to 8-bit timer compare register 5n (CR5n).

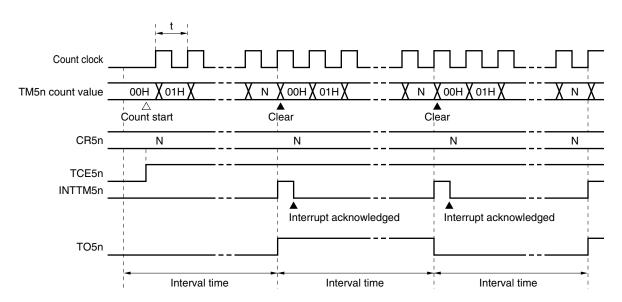
When the count value of 8-bit timer counter 5n (TM5n) matches the value set to CR5n, counting continues with the TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.

The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n (TCL5n).

[Setting]

- <1> Set the registers.
 - TCL5n: Select the count clock.
 - CR5n: Compare value
 - TMC5n: Stop the count operation, select the mode in which clear & start occurs on a match of TM5n

and CR5n.

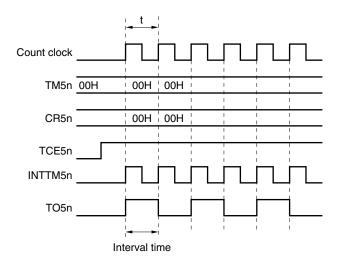

 $(TMC5n = 0000 \times \times \times 0B \times = Don't care)$

- <2> After TCE5n = 1 is set, the count operation starts.
- <3> If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> INTTM5n is generated repeatedly at the same interval.

Set TCE5n to 0 to stop the count operation.

Caution Do not write other values to CR5n during operation.

Figure 7-9. Interval Timer Operation Timing (1/2)



(a) Basic operation

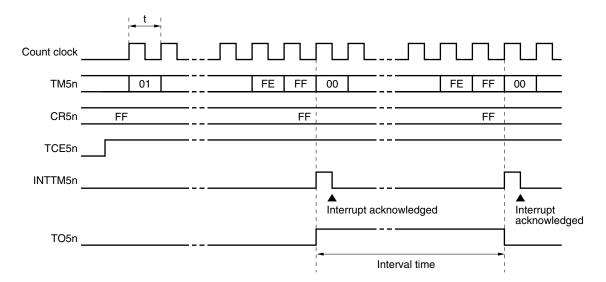

Remark Interval time = $(N + 1) \times t$ N = 00H to FFHn = 0, 1

Figure 7-9. Interval Timer Operation Timing (2/2)

(b) When CR5n = 00H

(c) When CR5n = FFH

7.4.2 Operation as external event counter

The external event counter counts the number of external clock pulses to be input to TI5n by 8-bit timer counter 5n (TM5n).

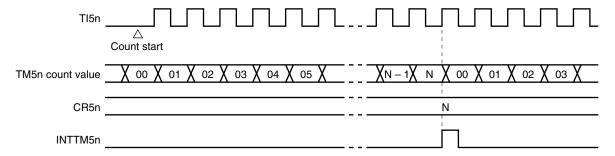
TM5n is incremented each time the valid edge specified by timer clock selection register 5n (TCL5n) is input. Either the rising or falling edge can be selected.

When the TM5n count value matches the value of 8-bit timer compare register 5n (CR5n), TM5n is cleared to 0 and an interrupt request signal (INTTM5n) is generated.

Whenever the TM5n value matches the value of CR5n, INTTM5n is generated.

[Setting]

- <1> Set each register.
 - TCL5n: Select TI5n input edge.


TI5n falling edge \rightarrow TCL5n = 00H TI5n rising edge \rightarrow TCL5n = 01H

- CR5n: Compare value
- TMC5n: Stop the count operation, select the mode in which clear & start occurs on match of TM5n and CR5n, disable the timer F/F inversion operation, disable timer output.

 $(TMC5n = 0000 \times \times 00B \times = Don't care)$

- <2> When TCE5n = 1 is set, the number of pulses input from TI5n is counted.
- <3> When the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> After these settings, INTTM5n is generated each time the values of TM5n and CR5n match.

Figure 7-10. External Event Counter Operation Timing (with Rising Edge Specified)

Remark N = 00H to FFH n = 0, 1

7.4.3 Square-wave output operation

A square wave with any selected frequency is output at intervals of the value preset to 8-bit timer compare register 5n (CR5n).

The TO5n pin output status is inverted at intervals of the count value preset to CR5n by setting bit 0 (TOE5n) of 8-bit timer mode control register 5n (TMC5n) to 1. This enables a square wave with any selected frequency to be output (duty = 50%).

[Setting]

- <1> Set each register.
 - Set the port latches (P17 and P33) Note and port mode registers (PM17 and PM33) Note to 0.
 - TCL5n: Select the count clock.
 - CR5n: Compare value
 - TMC5n: Stop the count operation, select the mode in which clear & start occurs on a match of TM5n and CR5n.

LVS5n	LVR5n	Timer Output F/F Status Setting	
1	0	High-level output	
0	1	Low-level output	

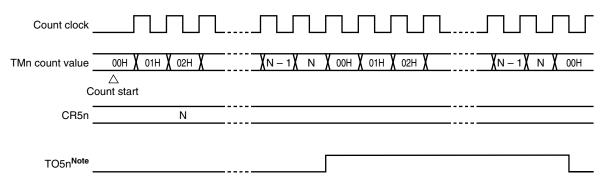
Timer output F/F inversion enabled

Timer output enabled

(TMC5n = 00001011B or 00000111B)

- <2> After TCE5n = 1 is set, the count operation starts.
- <3> The timer output F/F is inverted by a match of TM5n and CR5n. After INTTM5n is generated, TM5n is cleared to 00H.
- <4> After these settings, the timer output F/F is inverted at the same interval and a square wave is output from TO5n

The frequency is as follows.


Frequency = fcnt/2 (N + 1)

(N: 00H to FFH, fcnt: Count clock)

Note 8-bit timer/event counter 50: P17, PM17 8-bit timer/event counter 51: P33, PM33

Caution Do not write other values to CR5n during operation.

Note The initial value of TO5n output can be set by bits 2 and 3 (LVR5n, LVS5n) of 8-bit timer mode control register 5n (TMC5n).

7.4.4 PWM output operation

8-bit timer/event counter 5n operates as a PWM output when bit 6 (TMC5n6) of 8-bit timer mode control register 5n (TMC5n) is set to 1.

The duty ratio pulse determined by the value set to 8-bit timer compare register 5n (CR5n) is output from TO5n.

Set the active level width of the PWM pulse to CR5n; the active level can be selected with bit 1 (TMC5n1) of TMC5n.

The count clock can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n (TCL5n). PWM output can be enabled/disabled with bit 0 (TOE5n) of TMC5n.

Caution In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock selected by TCL5n) or more.

(1) PWM output basic operation

[Setting]

- <1> Set each register.
 - Set the port latches (P17, P33) Note and port mode registers (PM17, PM33) To 0.
 - TCL5n: Select the count clock.
 - CR5n: Compare value
 - TMC5n: Stop the count operation, select PWM mode.

The timer output F/F is not changed.

TMC5n1	Active Level Selection
0	Active-high
1	Active-low

Timer output enabled

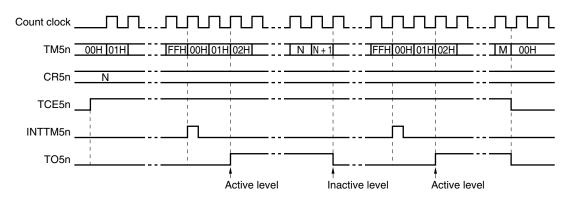
(TMC5n = 01000001B or 01000011B)

<2> The count operation starts when TCE5n = 1.

Set TCE5n to 0 to stop the count operation.

Note 8-bit timer/event counter 50: P17, PM17 8-bit timer/event counter 51: P33, PM33

[PWM output operation]


- <1> PWM output (output from TO5n) outputs an inactive level after the count operation starts until an overflow occurs.
- <2> When an overflow occurs, the active level set in <1> above is output.

The active level is output until CR5n matches the count value of 8-bit timer counter 5n (TM5n).

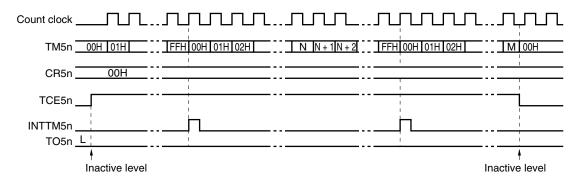
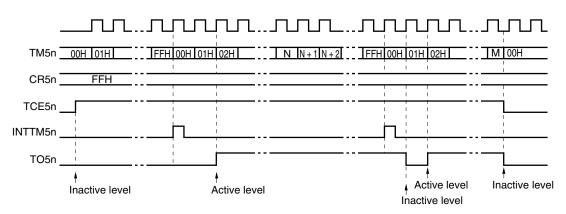
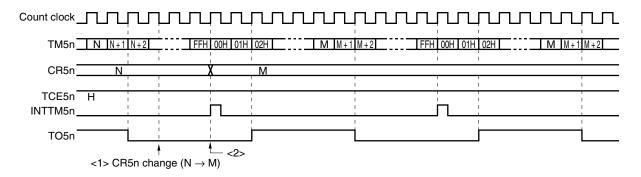

- <3> After the CR5n matches the count value, the inactive level is output until an overflow occurs again.
- <4> Operations <2> and <3> are repeated until the count operation stops.
- <5> When the count operation is stopped with TCE5n = 0, PWM output becomes inactive.

Figure 7-12. PWM Output Operation Timing


(a) Basic operation (active level = H)

(b) CR5n = 00H


(c) CR5n = FFH

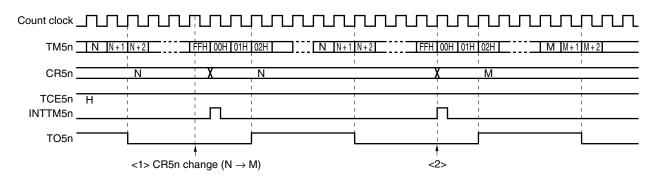

(2) Operation with CR5n changed

Figure 7-13. Timing of Operation with CR5n Changed

(a) CR5n value is changed from N to M before clock rising edge of FFH
 → Value is reloaded to CR5n at overflow immediately after change.

(b) CR5n value is changed from N to M after clock rising edge of FFH \rightarrow Value is reloaded to CR5n at second overflow.

Caution When reading from CR5n between <1> and <2> in Figure 7-13, the value read differs from the actual value (read value: M, actual value of CR5n: N).

7.5 Cautions for 8-Bit Timer/Event Counters 50 and 51

(1) Timer start error

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 8-bit timer counters 50 and 51 (TM50, TM51) are started asynchronously to the count clock.

Count clock

TM5n count value

00H

01H

02H

03H

04H

Timer start

Figure 7-14. 8-Bit Timer Counter 5n Start Timing

CHAPTER 8 8-BIT TIMERS H0 AND H1

8.1 Functions of 8-Bit Timers H0 and H1

8-bit timers H0 and H1 have the following functions.

- 8-bit-accuracy interval timer
- 8-bit-accuracy PWM pulse generator mode
- 8-bit-accuracy carrier generator mode (8-bit timer H1 only)

8.2 Configuration of 8-Bit Timers H0 and H1

8-bit timers H0 and H1 consist of the following hardware.

Table 8-1. Configuration of 8-Bit Timers H0 and H1

Item	Configuration
Timer register	8-bit timer counter Hn (TMHn)
Registers	8-bit timer H compare register 0n (CMP0n) 8-bit timer H compare register 1n (CMP1n)
Timer output	Two outputs (TOHn)
Control registers	8-bit timer H mode register n (TMHMDn) 8-bit timer H carrier control register 1 (TMCYC1) ^{Note}

Note 8-bit timer H1 only

Remark n = 0, 1

Figures 8-1 and 8-2 show the block diagrams.

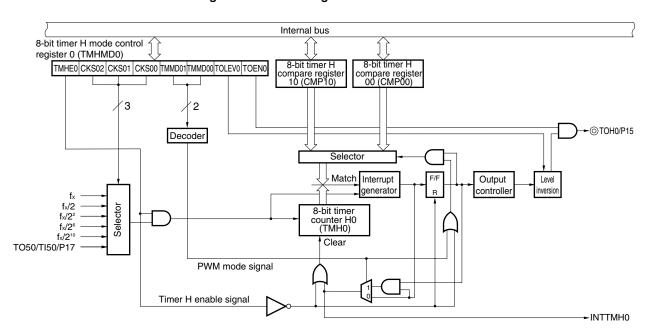
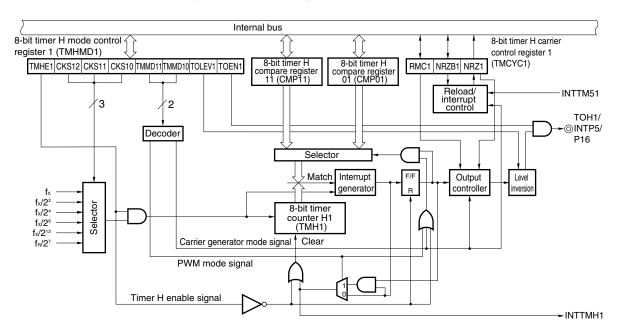
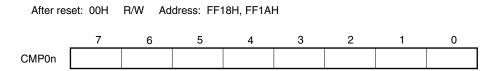



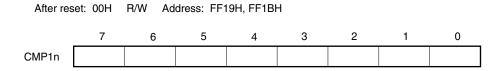
Figure 8-1. Block Diagram of 8-Bit Timer H0


Figure 8-2. Block Diagram of 8-Bit Timer H1

(1) 8-bit timer H compare register 0n (CMP0n)

This register can be read/written by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.



Caution This register cannot be rewritten during timer count operation.

(2) 8-bit timer H compare register 1n (CMP1n)

This register can be read/written by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

The CMP1n register can be rewritten during timer count operation.

In the carrier generator mode, an interrupt request signal (INTTMHn) is generated if the values of the timer counter and CMP1n register match after setting the CMP1n register. The timer counter value is cleared at the same time. If the CMP1n register value is rewritten during timer operation, reloading is performed at the timing at which the counter value and CMP1n register value match. If the transfer timing and writing from CPU to CMP1n register conflict, transfer is not performed.

Caution In the PWM pulse generator mode and carrier generator mode, be sure to set the CMP1n register when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to the CMP1n register).

8.3 Registers Controlling 8-Bit Timers H0 and H1

8-bit timers H0 and H1 are controlled by 8-bit timer H mode registers 0 and 1 (TMHMD0, TMHMD1) and 8-bit timer H carrier control register 1 (TMCYC1)^{Note}.

Note 8-bit timer H1 only

(1) 8-bit timer H mode registers 0 and 1 (TMHMD0, TMHMD1)

These registers control the mode of timer H.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Figure 8-3. Format of 8-Bit Timer H Mode Register 0 (TMHMD0)

Address: FF69H After reset: 00H R/W

 7
 6
 5
 4
 3
 2
 1
 0

 TMHMD0
 TMHE0
 CKS02
 CKS01
 CKS00
 TMMD01
 TMMD00
 TOLEV0
 TOEN0

TMHE0	Timer operation enable			
0	Stops timer count operation			
1	Enables timer count operation (count operation started by inputting clock)			

CKS02	CKS01	CKS00		Count clock (fcnт) selection
0	0	0	fx	(10 MHz)
0	0	1	fx/2	(5 MHz)
0	1	0	fx/2 ²	(2.5 MHz)
0	1	1	fx/2 ⁶	(156.25 kHz)
1	0	0	fx/2 ¹⁰	(9.77 kHz)
1	0	1	TO50	
Other than above		Setting	prohibited	

TMMD01	TMMD00	Timer operation mode		
0	0	Interval timer mode		
1	0	PWM pulse generator mode		
Other than above		Setting prohibited		

TOLEV0	Timer output level control (in default mode)
0	Low level
1	High level

TOEN0	Timer output control			
0	Disables output			
1	Enables output			

Cautions 1. When TMHE0 = 1, setting the other bits of the TMHMD0 register is prohibited.

2. In the PWM pulse generator mode, be sure to set 8-bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHE0 = 1) after the timer count operation was stopped (TMHE0 = 0) (be sure to set again even if setting the same value to the CMP10 register).

Remarks 1. fx: X1 input clock oscillation frequency

2. Figures in parentheses apply to operation at fx = 10 MHz

Figure 8-4. Format of 8-Bit Timer H Mode Register 1 (TMHMD1)

Address: FF6CH After reset: 00H R/W

TMHMD1

7	6	5	4	3	2	1	0
TMHE1	CKS12	CKS11	CKS10	TMMD11	TMMD10	TOLEV1	TOEN1

TMHE1	Timer operation enable			
0	Stops timer count operation			
1	Enables timer count operation (count operation started by inputting clock)			

CKS12	CKS11	CKS10		Count clock (fcnt) selection
0	0	0	fx	(10 MHz)
0	0	1	fx/2 ²	(2.5 MHz)
0	1	0	fx/2 ⁴	(625 kHz)
0	1	1	fx/2 ⁶	(156.25 kHz)
1	0	0	fx/2 ¹²	(2.44 kHz)
1	0	1	f _R /2 ⁷	(1.88 kHz (TYP.))
Other than above		Setting	prohibited	

TMMD11	TMMD10	Timer operation mode			
0	0	Interval timer mode			
0	1	Carrier generator mode			
1	0	PWM pulse generator mode			
Other than above		Setting prohibited			

TOLEV1	Timer output level control (in default mode)
0	Low level
1	High level

TOEN1	Timer output control			
0	Disables output			
1	Enables output			

Cautions 1. When TMHE1 = 1, setting the other bits of the TMHMD1 register is prohibited.

- 2. In the PWM pulse generator mode and carrier generator mode, be sure to set 8-bit timer H compare register 11 (CMP11) when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to the CMP11 register).
- 3. When the carrier generator mode is used, set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.

Remarks 1. fx: X1 input clock oscillation frequency

- 2. fr: Ring-OSC clock oscillation frequency
- 3. Figures in parentheses apply to operation at fx = 10 MHz, fR = 240 kHz (TYP.).

(2) 8-bit timer H carrier control register 1 (TMCYC1)

This register controls the remote control output and carrier pulse output status of 8-bit timer H1.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 8-5. Format of 8-Bit Timer H Carrier Control Register 1 (TMCYC1)

Address: FF6DH After reset: 00H R/W^{Note}

7 6 5 4 3 2 1 0

TMCYC1 0 0 0 0 0 RMC1 NRZB1 NRZ1

RMC1	NRZB1	Remote control output		
0	0	Low-level output		
0	1	High-level output		
1	0	Low-level output		
1	1	Carrier pulse output		

NRZ1	Carrier pulse output status flag			
0	Carrier output disabled status (low-level status)			
1	Carrier output enabled status			
	(RMC1 = 1: Carrier pulse output, RMC1 = 0: High-level status)			

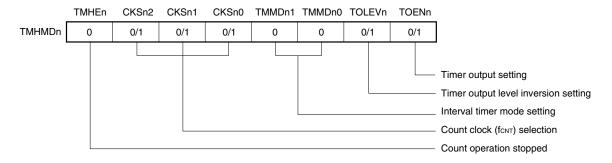
Note Bit 0 is read-only.

8.4 Operation of 8-Bit Timers H0 and H1

8.4.1 Operation as interval timer

When 8-bit timer counter Hn and compare register 0n (CMP0n) match, an interrupt request signal (INTTMHn) is generated and 8-bit timer counter Hn is cleared to 00H.

Compare register 1n (CMP1n) is not used in interval timer mode. Since a match of 8-bit timer counter Hn and the CMP1n register is not detected even if the CMP1n register is set, timer output is not affected.


(1) Usage

Generates the INTTMHn signal repeatedly at the same interval.

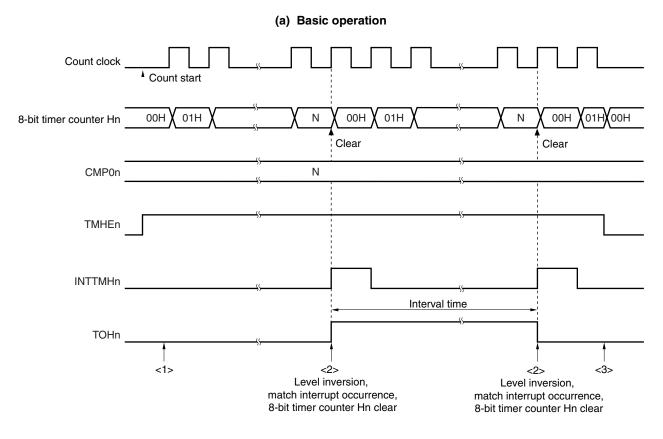
<1> Set each register.

Figure 8-6. Register Setting in Interval Timer Mode

(i) Setting timer H mode register n (TMHMDn)

(ii) CMP0n register setting

- Compare value (N)
- <2> Count operation starts when TMHEn = 1.
- <3> When the values of 8-bit timer counter Hn and the CMP0n register match, the INTTMHn signal is generated and 8-bit timer counter Hn is cleared to 00H.

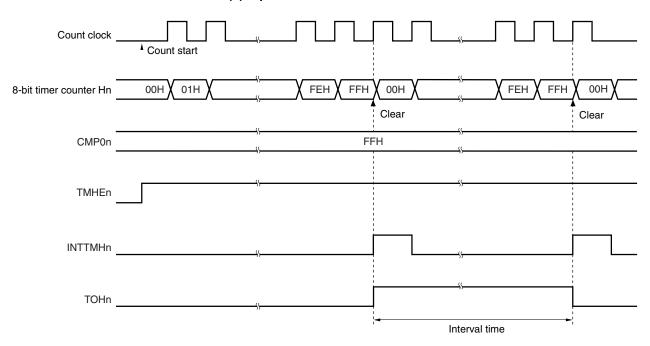

Interval time =
$$(N + 1)/f_{CNT}$$

<4> Subsequently, the INTTMHn signal is generated at the same interval. To stop the count operation, set TMHEn to 0.

(2) Timing chart

The timing in interval timer mode is shown below.

Figure 8-7. Timing of Interval Timer Operation (1/2)



- <1> The count operation is enabled by setting the TMHEn bit to 1. The count clock starts counting no more than 1 clock after the operation is enabled.
- <2> When the values of 8-bit timer counter Hn and the CMP0n register match, the value of 8-bit timer counter Hn is cleared, the TOHn output level is inverted, and the INTTMHn signal is output.
- <3> The INTTMHn signal and TOHn output become inactive by setting the TMHEn bit to 0 during timer Hn operation. If these are inactive from the first, the level is retained.

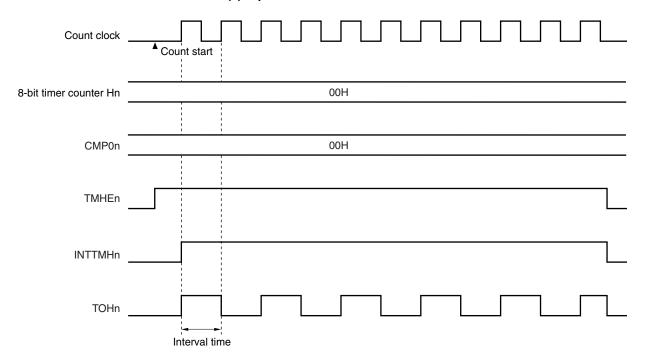

Remark n = 0, 1N = 00H to FFH

Figure 8-7. Timing of Interval Timer Operation (2/2)

(b) Operation when CMP0n = FFH

(c) Operation when CMP0n = 00H

8.4.2 Operation as PWM pulse generator

In PWM mode, a pulse with an arbitrary duty and arbitrary cycle can be output.

8-bit timer compare register 0n (CMP0n) controls the cycle of timer output (TOHn). Rewriting the CMP0n register during timer operation is prohibited.

8-bit timer compare register 1n (CMP1n) controls the duty of timer output (TOHn). Rewriting the CMP1n register during timer operation is possible.

The operation in PWM mode is as follows.

TOHn output becomes active and 8-bit timer counter Hn is cleared to 0 when 8-bit timer counter Hn and the CMP0n register match after the timer count is started. TOHn output becomes inactive when 8-bit timer counter Hn and the CMP1n register match.

(1) Usage

In PWM mode, a pulse for which an arbitrary duty and arbitrary cycle can be set is output.

<1> Set each register.

Figure 8-8. Register Setting in PWM Pulse Generator Mode

(i) Setting timer H mode register n (TMHMDn)

(ii) Setting CMP0n register

· Compare value (N): Cycle setting

(iii) Setting CMP1n register

• Compare value (M): Duty setting

Remarks 1. n = 0.1

2. 00H ≤ CMP1n (M) < CMP0n (N) < FFH

- <2> The count operation starts when TMHEn = 1.
- <3> The CMP0n register is the compare register that is to be compared first after counter operation is enabled. When the values of 8-bit timer counter Hn and the CMP0n register match, 8-bit timer counter Hn is cleared, an interrupt request signal (INTTMHn) is generated, and TOHn output becomes active. At the same time, the compare register to be compared with 8-bit timer counter Hn is changed from the CMP0n register to the CMP1n register.

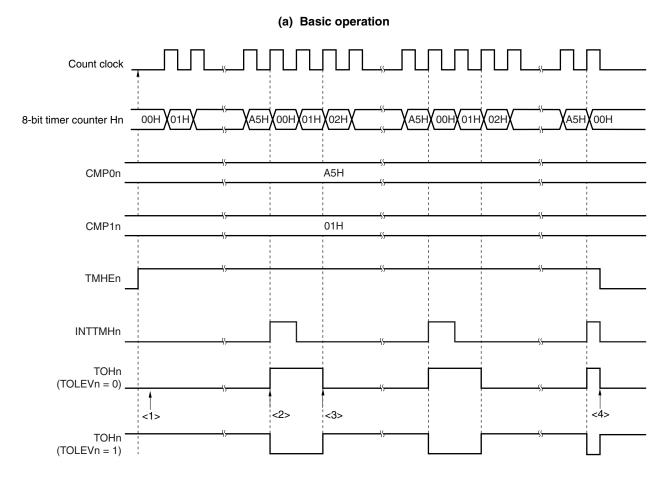
- <4> When 8-bit timer counter Hn and the CMP1n register match, TOHn output becomes inactive and the compare register to be compared with 8-bit timer counter Hn is changed from the CMP1n register to the CMP0n register. At this time, 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- <5> By performing procedures <3> and <4> repeatedly, a pulse with an arbitrary duty ratio can be obtained.
- <6> To stop the count operation, set TMHEn = 0.

If the setting value of the CMP0n register is N, the setting value of the CMP1n register is M, and the count clock frequency is fcNT, the PWM pulse output cycle and duty ratio are as follows.

```
PWM pulse output cycle = (N+1)/f_{CNT}
Duty ratio = Inactive width : Active width = (M+1) : (N-M)
```

- Cautions 1. In PWM mode, three operation clocks (signal selected using the CKSn2 to CKSn0 bits of the TMHMDn register) are required to transfer the CMP1n register value after rewriting the register.
 - 2. Be sure to set the CMP1n register when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to the CMP1n register).

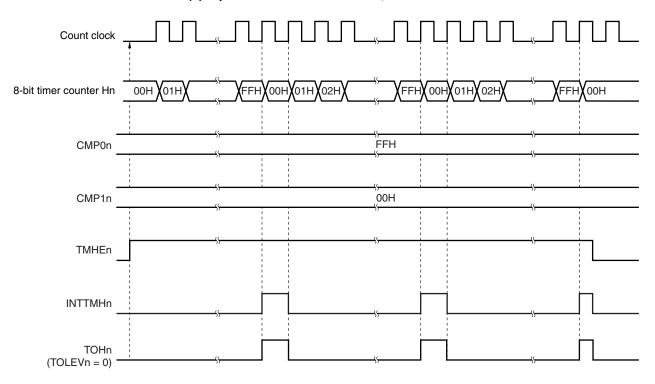
(2) Timing chart


The operation timing in PWM mode is shown below.

Caution Make sure that the CMP1n register setting value (M) and CMP0n register setting value (N) are within the following range.

00H ≤ CMP1n (M) < CMP0n (N) < FFH

Remark n = 0, 1


Figure 8-9. Operation Timing in PWM Pulse Generator Mode (1/4)

- <1> The count operation is enabled by setting the TMHEn bit to 1. Start 8-bit timer counter Hn by masking one count clock to count up. At this time, TOHn output remains inactive (when TOLEVn = 0).
- <2> When the values of 8-bit timer counter Hn and the CMP0n register match, the TOHn output level is inverted, the value of 8-bit timer counter Hn is cleared, and the INTTMHn signal is output.
- <3> When the values of 8-bit timer counter Hn and the CMP1n register match, the level of the TOHn output is returned. At this time, the 8-bit timer counter value is not cleared and the INTTMHn signal is not output.
- <4> Setting the TMHEn bit to 0 during timer Hn operation makes the INTTMHn signal and TOHn output inactive.

Figure 8-9. Operation Timing in PWM Pulse Generator Mode (2/4)

(b) Operation when CMP0n = FFH, CMP1n = 00H

(c) Operation when CMP0n = FFH, CMP1n = FEH

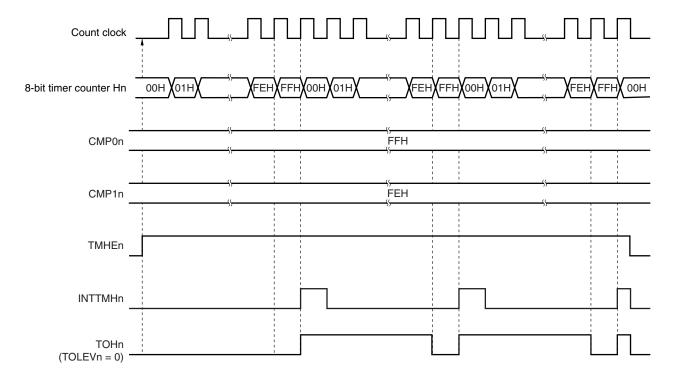


Figure 8-9. Operation Timing in PWM Pulse Generator Mode (3/4)

(d) Operation when CMP0n = 01H, CMP1n = 00H

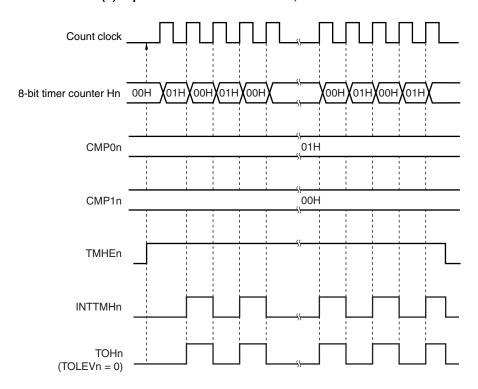
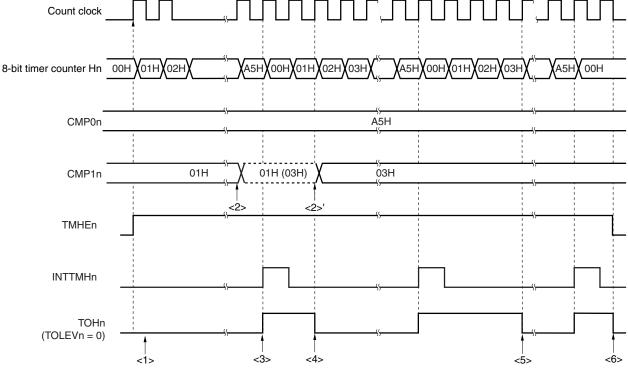



Figure 8-9. Operation Timing in PWM Pulse Generator Mode (4/4)

(e) Operation by changing CMP1n (CMP1n = 01H \rightarrow 03H, CMP0n = A5H)

- <1> The count operation is enabled by setting TMHEn = 1. Start 8-bit timer counter Hn by masking one count clock to count up. At this time, the TOHn output remains inactive (when TOLEVn = 0).
- <2> The CMP1n register value can be changed during timer counter operation. This operation is asynchronous to the count clock.
- <3> When the values of 8-bit timer counter Hn and the CMP0n register match, the value of 8-bit timer counter Hn is cleared, the TOHn output becomes active, and the INTTMHn signal is output.
- <4> If the CMP1n register value is changed, the value is latched and not transferred to the register. When the values of 8-bit timer counter Hn and the CMP1n register before the change match, the value is transferred to the CMP1n register and the CMP1n register value is changed (<2>').
 - However, three count clocks or more are required from when the CMP1n register value is changed to when the value is transferred to the register. If a match signal is generated within three count clocks, the changed value cannot be transferred to the register.
- <5> When the values of 8-bit timer counter Hn and the CMP1n register after the change match, the TOHn output becomes inactive. 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- Setting the TMHEn bit to 0 during timer Hn operation makes the INTTMHn signal and TOHn output inactive.

8.4.3 Carrier generator mode operation (8-bit timer H1 only)

The carrier clock generated by 8-bit timer H1 is output in the cycle set by 8-bit timer/event counter 51.

In carrier generator mode, the output of the 8-bit timer H1 carrier pulse is controlled by 8-bit timer/event counter 51, and the carrier pulse is output from the TOH1 output.

In carrier generator mode, the connection between 8-bit timer H1 and 8-bit timer/event counter 51 is as shown below.

INTTM51

8-bit timer/event counter 51

TMMD10,
TMMD11

INTTM5H1

Selector

INTC

INTTMH1

Prescaler

CPU

TO51

TMMD10,
TMMD11

INTTMH1

O TOH1

Figure 8-10. Example of Connection Between 8-Bit Timer H1 and 8-Bit Timer/Event Counter 51

(1) Carrier generation

In carrier generator mode, 8-bit timer H compare register 01 (CMP01) generates a low-level width carrier pulse waveform and 8-bit timer H compare register 11 (CMP11) generates a high-level width carrier pulse waveform. Rewriting the CMP11 register during 8-bit timer H1 operation is possible but rewriting the CMP01 register is prohibited.

(2) Carrier output control

Carrier output is controlled by the interrupt request signal (INTTM51) of 8-bit timer/event counter 51 and the NRZ1 and RMC1 bits of the 8-bit timer H carrier control register (TMCYC1). The relationship between the outputs is shown below.

RMC1 Bit	NRZ1 Bit	Output	
0 0 Low-level output		Low-level output	
0	1	High-level output	
1	0	Low-level output	
1	1	Carrier pulse output	

To control the carrier pulse output during a count operation, the NRZ1 and NRZB1 bits of the TMCYC1 register have a master and slave bit configuration. The NRZ1 bit is read-only but the NRZB1 bit can be read and written. The INTTM51 signal is synchronized with the 8-bit timer H1 count clock and output as the INTTM5H1 signal. The INTTM5H1 signal becomes the data transfer signal of the NRZ1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit. The timing for transfer from the NRZB1 bit to the NRZ1 bit is as shown below.

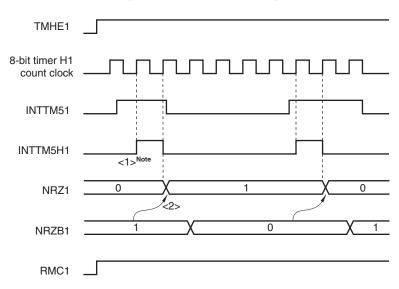


Figure 8-11. Transfer Timing

- <1> The INTTM51 signal is synchronized with the count clock of 8-bit timer H1 and is output as the INTTM5H1 signal.
- <2> The value of the NRZB1 bit is transferred to the NRZ1 bit at the second clock from the rising edge of the INTTM5H1 signal.

Note When 8-bit timer/event counter 51 is used in the carrier generator mode, an interrupt is generated at the timing of <1>. When 8-bit timer/event counter 51 is used in a mode other than the carrier generator mode, the timing of the interrupt generation differs.

Caution Do not rewrite the NRZB1 bit again until at least the second clock after it has been rewritten, or else the transfer from the NRZB1 bit to the NRZ1 bit is not guaranteed.


(3) Usage

Outputs an arbitrary carrier clock from the TOH1 pin.

<1> Set each register.

Figure 8-12. Register Setting in Carrier Generator Mode

(i) Setting 8-bit timer H mode register 1 (TMHMD1)

(ii) CMP01 register setting

· Compare value

(iii) CMP11 register setting

· Compare value

(iv) TMCYC1 register setting

- RMC1 = 1 ... Remote control output enable bit
- NRZB1 = 0/1 ... Carrier output enable bit

(v) TCL51 and TMC51 register setting

- Refer to 7.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51.
- <2> When TMHE1 = 1, 8-bit timer H1 starts counting.
- <3> When TCE51 of 8-bit timer mode control register 51 (TMC51) is set to 1, 8-bit timer/event counter 51 starts counting.
- <4> After the count operation is enabled, the first compare register to be compared is the CMP01 register. When the count value of 8-bit timer counter H1 and the CMP01 register value match, the INTTMH1 signal is generated, 8-bit timer counter H1 is cleared, and at the same time, the compare register to be compared with 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register.
- <5> When the count value of 8-bit timer counter H1 and the CMP11 register value match, the INTTMH1 signal is generated, 8-bit timer counter H1 is cleared, and at the same time, the compare register to be compared with 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register.
- <6> By performing procedures <4> and <5> repeatedly, a carrier clock is generated.
- <7> The INTTM51 signal is synchronized with 8-bit timer H1 and output as the INTTM5H1 signal. The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
- <8> When the NRZ1 bit is high level, a carrier clock is output from the TOH1 pin.
- <9> By performing the procedures above, an arbitrary carrier clock is obtained. To stop the count operation, set TMHE1 to 0.

If the setting value of the CMP01 register is 1, the setting value of the CMP11 register is M, and the count clock frequency is fcNT, the carrier clock output cycle and duty ratio are as follows.

```
Carrier clock output cycle = (1 + M + 2)/fcnt

Duty ratio = High-level width : Low-level width = ( M + 1) : (1 + 1)
```

- Cautions 1. Be sure to set the CMP11 register when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to the CMP11 register).
 - 2. Set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.

(4) Timing chart

The carrier output control timing is shown below.

- Cautions 1. Set the values of the CMP01 and CMP11 registers in a range of 01H to FFH.
 - 2. In the carrier generator mode, three operating clocks (signal selected by CKS12 to CKS10 bits of TMHMD1 register) or more are required from when the CMP11 register value is changed to when the value is transferred to the register.
 - 3. Be sure to set the RMC1 bit before the count operation is started.

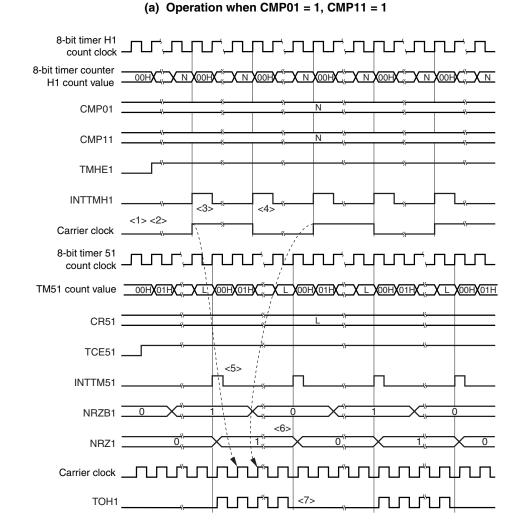
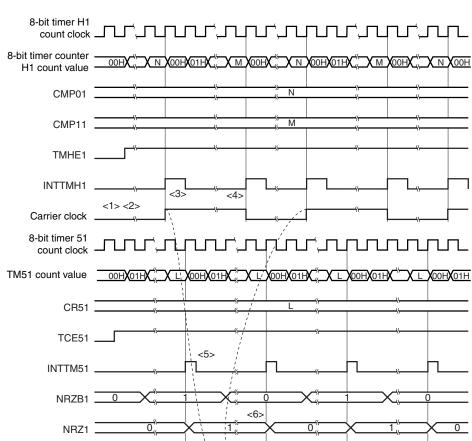



Figure 8-13. Carrier Generator Mode Operation Timing (1/3)

- <1> When TMHE1 = 0 and TCE51 = 0, 8-bit timer H1 operation is stopped.
- <2> When TMHE1 = 1 is set, 8-bit timer H1 starts a count operation. At that time, the carrier clock is held at the inactive level.
- <3> When the count value of 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register. 8-bit timer counter H1 is cleared to 00H.
- <4> When the count value of 8-bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register. 8-bit timer counter H1 is cleared to 00H. By performing procedures <3> and <4> repeatedly, a carrier clock with duty ratio fixed to 50% is generated.
- <5> When the INTTM51 signal is generated, it is synchronized with 8-bit timer H1 count clock and output as the INTTM5H1 signal.
- <6> The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
- <7> When NRZ1 = 0 is set, the TOH1 output becomes low level.

Figure 8-13. Carrier Generator Mode Operation Timing (2/3)

(b) Operation when CMP01 = 1, CMP11 = M (operation when carrier clock phase is asynchronous to NRZ1 phase)

<1> When TMHE1 = 0 and TCE51 = 0, 8-bit timer H1 operation is stopped.

TOH1

- <2> When TMHE1 = 1 is set, 8-bit timer H1 starts a count operation. At that time, the carrier clock is held at the inactive level.
- <3> When the count value of 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register. 8-bit timer counter H1 is cleared to 00H.
- <4> When the count value of 8-bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register. 8-bit timer counter H1 is cleared to 00H. By performing procedures <3> and <4> repeatedly, a carrier clock with duty ratio fixed to other than 50% is generated.
- <5> When the INTTM51 signal is generated, it is synchronized with 8-bit timer H1 count clock and output as the INTTM5H1 signal.
- <6> When the carrier clock phase becomes asynchronous to the NRZ1 bit phase, a carrier signal is output at the first rising edge of the carrier clock if NRZ1 is set to 1.
- <7> When NRZ1 = 0, the TOH1 output is held at the high level and is not changed to low level while the carrier clock is high level (from <6> and <7>, the high-level width of the carrier clock waveform is guaranteed).

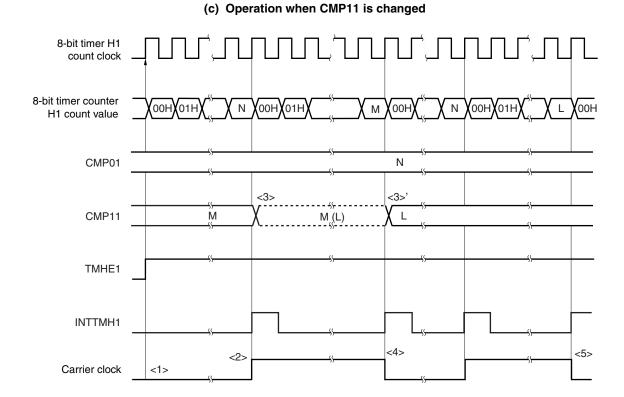
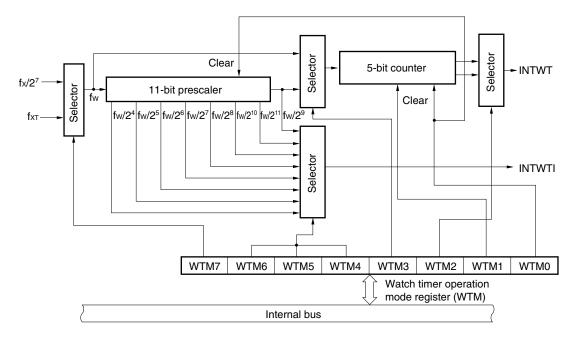


Figure 8-13. Carrier Generator Mode Operation Timing (3/3)

- <1> When TMHE1 = 1 is set, 8-bit timer H1 starts a count operation. At that time, the carrier clock is held at the inactive level.
- <2> When the count value of 8-bit timer counter H1 matches the CMP01 register value, 8-bit timer counter H1 is cleared and the INTTMH1 signal is output.
- <3> The CMP11 register can be rewritten during 8-bit timer H1 operation, however, the changed value (L) is latched. The CMP11 register is changed when the count value of 8-bit timer counter H1 and the CMP11 register value before the change (M) match (<3>').
- <4> When the count value of 8-bit timer counter H1 and the CMP11 register value before the change (M) match, the INTTMH1 signal is output, the carrier signal is inverted, and 8-bit timer counter H1 is cleared to 00H.
- <5> The timing at which the count value of 8-bit timer counter H1 and the CMP11 register value match again is indicated by the value after the change (L).

CHAPTER 9 WATCH TIMER

9.1 Functions of Watch Timer


The watch timer has the following functions.

- Watch timer
- Interval timer

The watch timer and the interval timer can be used simultaneously.

Figure 9-1 shows the watch timer block diagram.

Figure 9-1. Watch Timer Block Diagram

Remark fx: X1 input clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

(1) Watch timer

When the X1 input clock or subsystem clock is used, interrupt requests (INTWT) are generated at preset intervals.

Table 9-1. Watch Timer Interrupt Time

Interrupt Time	When Operated at fxt = 32.768 kHz	When Operated at fx = 10 MHz	
2 ⁴ /fw	488 μs	205 μs	
2 ⁵ /fw	977 μs	410 μs	
2 ¹³ /fw	0.25 s	0.105 s	
2 ¹⁴ /fw	0.5 s	0.210 s	

Remark fx: X1 input clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

(2) Interval timer

Interrupt requests (INTWTI) are generated at preset time intervals.

Table 9-2. Interval Timer Interval Time

Interval Time	When Operated at fxT = 32.768 kHz	When Operated at fx = 10 MHz	
2⁴/fw	488 μs	205 μs	
2 ⁵ /fw	977 μs	410 μs	
2 ⁶ /fw	1.95 ms	820 μs	
2 ⁷ /fw	3.91 ms	1.64 ms	
2°/fw	7.81 ms	3.28 ms	
2°/fw	15.6 ms	6.55 ms	
2 ¹⁰ /fw	31.2 ms	13.1 ms	
2 ¹¹ /fw	62.4 ms	26.2 ms	

Remark fx: X1 input clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

9.2 Configuration of Watch Timer

The watch timer consists of the following hardware.

Table 9-3. Watch Timer Configuration

Item	Configuration
Counter	5 bits × 1
Prescaler	11 bits × 1
Control register	Watch timer operation mode register (WTM)

9.3 Register Controlling Watch Timer

The watch timer is controlled by the watch timer operation mode register (WTM).

• Watch timer operation mode register (WTM)

This register sets the watch timer count clock, enables/disables operation, prescaler interval time, and 5-bit counter operation control.

WTM is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears WTM to 00H.

Figure 9-2. Format of Watch Timer Operation Mode Register (WTM)

Address: FF6FH After reset: 00H R/W 0 Symbol 7 6 5 3 2 1 WTM WTM7 WTM6 WTM5 WTM4 WTM3 WTM2 WTM1 WTM0

WTM7	Watch timer count clock selection		
0	fx/2 ⁷ (78.125 kHz)		
1	fxт (32.768 kHz)		

WTM6	WTM5	WTM4	Prescaler interval time selection
0	0	0	2 ⁴ /fw
0	0	1	2 ⁵ /fw
0	1	0	2 ⁶ /fw
0	1	1	2 ⁷ /fw
1	0	0	2 ⁸ /fw
1	0	1	2°/fw
1	1	0	2 ¹⁰ /fw
1	1	1	2 ¹¹ /fw

WTM3	WTM2	Interrupt time selection
0	0	2 ¹⁴ /fw
0	1	2 ¹³ /fw
1	0	2 ⁵ /fw
1	1	2 ⁴ /fw

	WTM1	5-bit counter operation control
I	0	Clear after operation stop
	1	Start

WTM0	Watch timer operation enable			
0	Operation stop (clear both prescaler and timer)			
1	Operation enable			

Caution Do not change the count clock and interval time (by setting bits 4 to 7 (WTM4 to WTM7) of WTM) during watch timer operation.

Remarks 1. fw: Watch timer clock frequency (fx/2⁷ or fxT)

2. fx: X1 input clock oscillation frequency

3. fxT: Subsystem clock oscillation frequency

4. Figures in parentheses apply to operation with fx = 10 MHz, fxT = 32.768 kHz.

9.4 Watch Timer Operations

9.4.1 Watch timer operation

The watch timer generates an interrupt request (INTWT) at a specific time interval by using the X1 input clock or subsystem clock.

When bit 0 (WTM0) and bit 1 (WTM1) of the watch timer operation mode register (WTM) are set to 1, the count operation starts. When these bits are set to 0, the 5-bit counter is cleared and the count operation stops.

When the interval timer is simultaneously operated, zero-second start can be achieved only for the watch timer by setting WTM1 to 0. In this case, however, the 11-bit prescaler is not cleared. Therefore, an error up to $2^{11} \times 1/\text{fw}$ seconds occurs in the first overflow (INTWT) after zero-second start.

The interrupt request is generated at the following time intervals.

Table 9-4. Watch Timer Interrupt Time

WTM3	WTM2	Interrupt Time Selection	When Operated at fxT = 32.768 kHz (WTM7 = 1)	When Operated at fx = 10 MHz (WTM7 = 0)
0	0	214/fw	0.5 s	0.210 s
0	1	2 ¹³ /fw	0.25 s	0.105 s
1	0	2 ⁵ /fw	977 μs	410 μs
1	1	2 ⁴ /fw	488 μs	205 μs

Remark fx: X1 input clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

9.4.2 Interval timer operation

The watch timer operates as interval timer which generates interrupt requests (INTWTI) repeatedly at an interval of the preset count value.

The interval time can be selected with bits 4 to 6 (WTM4 to WTM6) of the watch timer operation mode register (WTM).

When bit 0 (WTM0) of the WTM is set to 1, the count operation starts. When this bit is set to 0, the count operation stops.

Table 9-5. Interval Timer Interval Time

WTM6	WTM5	WTM4	Interval Time	When Operated at fxr = 32.768 kHz (WTM7 = 1)	When Operated at fx = 10 MHz (WTM7 = 0)
0	0	0	2⁴/fw	488 μs	205 μs
0	0	1	2 ⁵ /fw	977 μs	410 μs
0	1	0	2 ⁶ /fw	1.95 ms	820 μs
0	1	1	2 ⁷ /fw	3.91 ms	1.64 ms
1	0	0	2°/fw	7.81 ms	3.28 ms
1	0	1	2°/fw	15.6 ms	6.55 ms
1	1	0	2 ¹⁰ /fw	31.2 ms	13.1 ms
1	1	1	2 ¹¹ /fw	62.4 ms	26.2 ms

Remark fx: X1 input clock oscillation frequency

fxT: Subsystem clock oscillation frequency

fw: Watch timer clock frequency

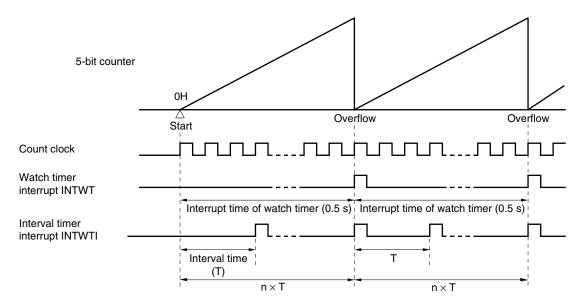


Figure 9-3. Operation Timing of Watch Timer/Interval Timer

Caution When operation of the watch timer and 5-bit counter is enabled by the watch timer mode control register (WTM) (by setting bits 0 (WTM0) and 1 (WTM1) of WTM to 1), the interval until the first interrupt request (INTWT) is generated after the register is set does not exactly match the specification made with bit 3 (WTM3) of WTM. This is because there is a delay of one 11-bit prescaler output cycle until the 5-bit counter starts counting. Subsequently, however, the INTWT

Remark fw: Watch timer clock frequency

n: The number of times of interval timer operations

signal is generated at the specified intervals.

Figures in parentheses are for operation with fw = 32.768 kHz (WTM7 = 1, WTM3, WTM2 = 0, 0)

CHAPTER 10 WATCHDOG TIMER

10.1 Functions of Watchdog Timer

The watchdog timer detects an inadvertent program loop. If a program loop is detected, an internal reset signal (WDTRES) is generated.

When a reset occurs due to the watchdog timer, bit 4 (WDTRF) of the reset control flag register (RESF) is set to 1. For details of RESF, refer to **CHAPTER 19 RESET FUNCTION**.

Table 10-1. Loop Detection Time of Watchdog Timer

Loop Detection Time						
During Ring-OSC Clock Operation	During X1 Input Clock Operation					
f _R /2 ¹¹ (8.53 ms)	fxp/2 ¹³ (819.2 μs)					
f _R /2 ¹² (17.07 ms)	fxp/2 ¹⁴ (1.64 ms)					
f _R /2 ¹³ (34.13 ms)	fxp/2 ¹⁵ (3.28 ms)					
f _R /2 ¹⁴ (68.27 ms)	fxp/2 ¹⁶ (6.55 ms)					
f _R /2 ¹⁵ (136.53 ms)	fxp/2 ¹⁷ (13.11 ms)					
f _R /2 ¹⁶ (273.07 ms)	fxp/2 ¹⁸ (26.21 ms)					
f _R /2 ¹⁷ (546.13 ms)	fxp/2 ¹⁹ (52.43 ms)					
f _R /2 ¹⁸ (1.09 s)	fxp/2 ²⁰ (104.86 ms)					

Remarks 1. fr.: Ring-OSC clock oscillation frequency

2. fxp: X1 input clock oscillation frequency

3. Figures in parentheses apply to operation at $f_R = 240 \text{ kHz}$ (TYP.), $f_{XP} = 10 \text{ MHz}$

The operation mode of the watchdog timer (WDT) is switched according to the mask option setting of the on-chip Ring-OSC as shown in Table 10-2.

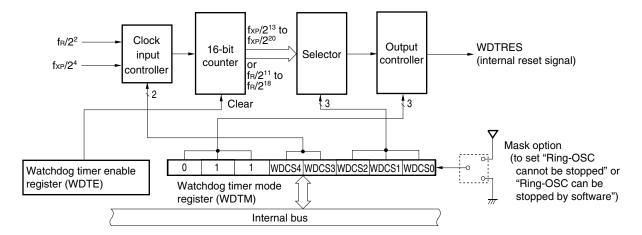
Table 10-2. Mask Option Setting and Watchdog Timer Operation Mode

	Mask Option				
	Ring-OSC Cannot Be Stopped	Ring-OSC Can Be Stopped by Softwa			
Watchdog timer clock source	Fixed to fn ^{Note 1} .	Selectable by software (fxp, fn or stopped) When reset is released: fn			
Operation after reset	Operation starts with the maximum interval ($f_{\text{R}}/2^{18}$).	Operation starts with maximum interval (fr/2 ¹⁸).			
Operation mode selection	The interval can be changed only once.	The clock selection/interval can be changed only once.			
Features	 The watchdog timer cannot be stopped. Current in STOP mode ≅ 10 μA 	The watchdog timer can be stopped in standby mode ^{Note 2} .			

- **Notes 1.** As long as power is being supplied, Ring-OSC oscillation cannot be stopped (except in the reset period).
 - **2.** Clock supply to the watchdog timer is stopped in accordance with the watchdog timer clock source as follows:
 - <1> When the clock source is fxP Clock supply to the watchdog timer is stopped while fxP is stopped, during HALT/STOP instruction execution, and during the oscillation stabilization time.
 - <2> When the clock source is fR
 Clock supply to the watchdog timer is stopped if fR is stopped by software before STOP instruction execution when the CPU clock is fxP and during HALT/STOP instruction execution.

 $\textbf{Remarks 1.} \ \, \textbf{fr:} \ \, \textbf{Ring-OSC clock oscillation frequency}$

2. fxp: X1 input clock oscillation frequency


10.2 Configuration of Watchdog Timer

The watchdog timer consists of following hardware.

Table 10-3. Configuration of Watchdog Timer

Item	Configuration
Control registers	Watchdog timer mode register (WDTM)
	Watchdog timer enable register (WDTE)

Figure 10-1. Block Diagram of Watchdog Timer

10.3 Registers Controlling Watchdog Timer

The watchdog timer is controlled by the following two registers.

- Watchdog timer mode register (WDTM)
- Watchdog timer enable register (WDTE)

(1) Watchdog timer mode register (WDTM)

This register sets the overflow time and operation clock of the watchdog timer.

This register can be set by an 8-bit memory manipulation instruction and can be read many times, but can be written only once after reset is released.

RESET input sets this register to 67H.

Figure 10-2. Format of Watchdog Timer Mode Register (WDTM)

Address: FF98H After reset: 67H		R/W						
Symbol	7	6	5	4	3	2	1	0
WDTM	0	1	1	WDCS4	WDCS3	WDCS2	WDCS1	WDCS0

WDCS4 ^{Note 1}	WDCS3 ^{Note 1}	Operation clock selection		
0	0	Ring-OSC clock (f _R)		
0	1	X1 input clock (fxp)		
1	×	Watchdog timer operation stopped		

WDCS2 ^{Note 2}	WDCS1 ^{Note 2}	WDCS0 ^{Note 2}	Overflow time setting			
			During Ring-OSC clock operation	During X1 input clock operation		
0	0	0	f _R /2 ¹¹ (8.53 ms)	fxp/2 ¹³ (819.2 μs)		
0	0	1	f _R /2 ¹² (17.07 ms)	fxp/2 ¹⁴ (1.64 ms)		
0	1	0	f _R /2 ¹³ (34.13 ms)	fxp/2 ¹⁵ (3.28 ms)		
0	1	1	f _R /2 ¹⁴ (68.27 ms)	fxp/2 ¹⁶ (6.55 ms)		
1	0	0	f _R /2 ¹⁵ (136.53 ms)	fxp/2 ¹⁷ (13.11 ms)		
1	0	1	f _R /2 ¹⁶ (273.07 ms)	fxp/2 ¹⁸ (26.21 ms)		
1	1	0	f _R /2 ¹⁷ (546.13 ms)	fxp/2 ¹⁹ (52.43 ms)		
1	1	1	f _R /2 ¹⁸ (1.09 s)	fxp/2 ²⁰ (104.86 ms)		

- **Notes 1.** If "Ring-OSC cannot be stopped" is specified by a mask option, this cannot be set. The Ring-OSC clock will be selected no matter what value is written.
 - **2.** Reset is released at the maximum cycle (WDCS2, 1, 0 = 1, 1, 1).
- Cautions 1. If data is written to WDTM, a wait cycle is generated. Do not write data to WDTM when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.
 - 2. Set bits 7, 6, and 5 to 0, 1, and 1, respectively (when "Ring-OSC cannot be stopped" is selected by a mask option, other values are ignored).

- Cautions 3. After reset is released, WDTM can be written only once by an 8-bit memory manipulation instruction. If writing attempted a second time, an internal reset signal is generated.
 - 4. WDTM cannot be set by a 1-bit memory manipulation instruction.
- Remarks 1. fr.: Ring-OSC clock oscillation frequency
 - 2. fxp: X1 input clock oscillation frequency
 - 3. x: Don't care
 - 4. Figures in parentheses apply to operation at $f_R = 240 \text{ kHz}$ (TYP.), $f_{XP} = 10 \text{ MHz}$

(2) Watchdog timer enable register (WDTE)

Writing ACH to WDTE clears the watchdog timer counter and starts counting again.

This register can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to 9AH.

Figure 10-3. Format of Watchdog Timer Enable Register (WDTE)

Address:	FF99H	After reset: 9AH	l R/W					
Symbol	7	6	5	4	3	2	1	0
WDTE								

- Cautions 1. If a value other than ACH is written to WDTE, an internal reset signal is generated.
 - 2. If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated (an error occurs in the assembler).
 - 3. The value read from WDTE is 9AH (this differs from the written value (ACH)).

10.4 Operation of Watchdog Timer

10.4.1 Watchdog timer operation when "Ring-OSC cannot be stopped" is selected by mask option

The operation clock of watchdog timer is fixed to the Ring-OSC.

After reset is released, operation is started at the maximum cycle (bits 2, 1, and 0 (WDCS2, WDCS1, WDCS0) of the watchdog timer mode register (WDTM) = 1, 1, 1). The watchdog timer operation cannot be stopped.

The following shows the watchdog timer operation after reset release.

- 1. The status after reset release is as follows.
 - Operation clock: Ring-OSC clock
 - Cycle: $f_R/2^{18}$ (1.09 seconds: At operation with $f_R = 240$ kHz (TYP.))
 - · Counting starts
- 2. The following should be set in the watchdog timer mode register (WDTM) by an 8-bit memory manipulation instruction Notes 1, 2.
 - Cycle: Set using bits 2 to 0 (WDCS2 to WDCS0)
- 3. After the above procedures are executed, writing ACH to WDTE clears the count to 0, enabling recounting.
- **Notes 1.** The operation clock (Ring-OSC clock) cannot be changed. If any value is written to bits 3 and 4 (WDCS3, WDCS4) of WDTM, it is ignored.
 - 2. As soon as WDTM is written, the counter of the watchdog timer is cleared.

Caution In this mode, operation of the watchdog timer absolutely cannot be stopped even during STOP instruction execution. For 8-bit timer H1 (TMH1), a division of the Ring-OSC can be selected as the count source, so clear the watchdog timer using the interrupt request of TMH1 before the watchdog timer overflows. If this processing is not performed, an internal reset signal is generated when the watchdog timer overflows after STOP instruction execution.

10.4.2 Watchdog timer operation when "Ring-OSC can be stopped by software" is selected by mask option

The operation clock of the watchdog timer can be selected as either the Ring-OSC clock or the X1 input clock.

After reset is released, operation is started at the maximum cycle (bits 2, 1, and 0 (WDCS2, WDCS1, WDCS0) of the watchdog timer mode register (WDTM) = 1, 1, 1) of the Ring-OSC clock.

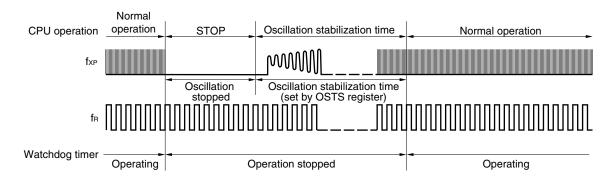
The following shows the watchdog timer operation after reset release.

- 1. The status after reset release is as follows.
 - Operation clock: Ring-OSC clock oscillation frequency (fR)
 - Cycle: $f_R/2^{18}$ (1.09 seconds: At operation with $f_R = 240$ kHz (TYP.))
 - · Counting starts
- 2. The following should be set in the watchdog timer mode register (WDTM) by an 8-bit memory manipulation instruction Notes 1, 2, 3.
 - Operation clock: Any of the following can be selected using bits 3 and 4 (WDCS3 and WDCS4).
 - Ring-OSC clock (fR)
 - X1 input clock (fxp)
 - Watchdog timer operation stopped
 - Cycle: Set using bits 2 to 0 (WDCS2 to WDCS0)
- 3. After the above procedures are executed, writing ACH to WDTE clears the count to 0, enabling recounting.
- Notes 1. As soon as WDTM is written, the counter of the watchdog timer is cleared.
 - 2. Set bits 7, 6, and 5 to 0, 1, 1, respectively. If other values are set, the watchdog timer cannot be operated (an error occurs in the assembler).
 - 3. If the watchdog timer is stopped by setting WDCS4 and WDCS3 to 1 and \times , respectively, an internal reset signal is not generated even if the following processing is performed.
 - WDTM is written a second time.
 - A 1-bit memory manipulation instruction is executed to WDTE.
 - A value other than ACH is written to WDTE.

Caution In this mode, watchdog timer operation is stopped during HALT/STOP instruction execution.

After HALT/STOP mode is released, counting is started again using the operation clock of the watchdog timer set before HALT/STOP instruction execution by WDTM. At this time, the counter is not cleared to 0.

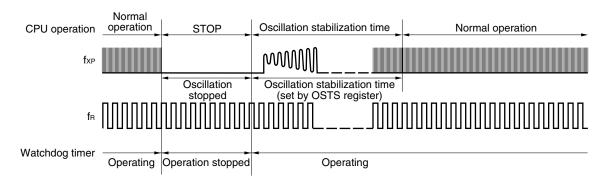
For the watchdog timer operation during STOP mode and HALT mode in each status, refer to **10.4.3 Watchdog** timer operation in STOP mode and **10.4.4 Watchdog** timer operation in HALT mode.


10.4.3 Watchdog timer operation in STOP mode (when "Ring-OSC can be stopped by software" is selected by mask option)

The watchdog timer stops counting during STOP instruction execution regardless of whether the X1 input clock or Ring-OSC clock is being used.

(1) When the CPU clock and the watchdog timer operation clock are the X1 input clock (fxp) when the STOP instruction is executed

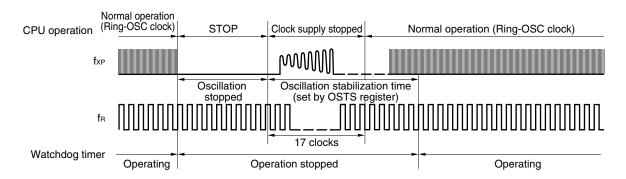
When STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting stops for the oscillation stabilization time set by the oscillation stabilization time select register (OSTS) and then counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0.


Figure 10-4. Operation in STOP Mode (CPU Clock and WDT Operation Clock: X1 Input Clock)

(2) When the CPU clock is the X1 input clock (fxp) and the watchdog timer operation clock is the Ring-OSC clock (fR) when the STOP instruction is executed

When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0.

Figure 10-5. Operation in STOP Mode (CPU Clock: X1 Input Clock, WDT Operation Clock: Ring-OSC Clock)


(3) When the CPU clock is the Ring-OSC clock (fR) and the watchdog timer operation clock is the X1 input clock (fxP) when the STOP instruction is executed

When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting is stopped until the timing of <1> or <2>, whichever is earlier, and then counting is started using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0.

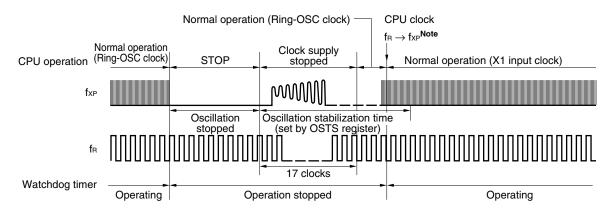

- <1> The oscillation stabilization time set by the oscillation stabilization time select register (OSTS) elapses.
- <2> The CPU clock is switched to the X1 input clock (fxp).

Figure 10-6. Operation in STOP Mode (CPU Clock: Ring-OSC Clock, WDT Operation Clock: X1 Input Clock)

<1> Timing when counting is started after the oscillation stabilization time set by the oscillation stabilization time select register (OSTS) has elapsed

<2> Timing when counting is started after the CPU clock is switched to the X1 input clock (fxp)

Note Confirm the oscillation stabilization time of f_{XP} using the oscillation stabilization time counter status register (OSTC).

(4) When CPU clock and watchdog timer operation clock are the Ring-OSC clocks (f_R) during STOP instruction execution

When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released, counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0.

CPU operation

(Ring-OSC clock)

STOP

Clock supply stopped Normal operation (Ring-OSC clock)

fxp

Oscillation stabilization time (set by OSTS register)

fR

Operating

Operation Operation Stopped

Figure 10-7. Operation in STOP Mode (CPU Clock and WDT Operation Clock: Ring-OSC Clock)

10.4.4 Watchdog timer operation in HALT mode (when "Ring-OSC can be stopped by software" is selected by mask option)

The watchdog timer stops counting during HALT instruction execution regardless of whether the CPU clock is the X1 input clock (fxp), Ring-OSC clock (fn), or subsystem clock (fxt), or whether the operation clock of the watchdog timer is the X1 input clock (fxp) or Ring-OSC clock (fn). After HALT mode is released, counting is started again using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0.

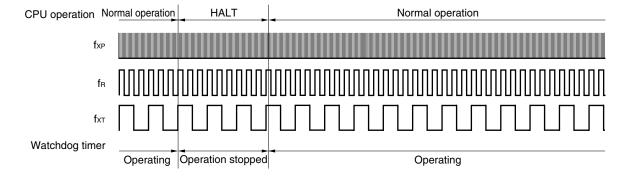


Figure 10-8. Operation in HALT Mode

CHAPTER 11 CLOCK OUTPUT CONTROLLER

11.1 Functions of Clock Output Controller

The clock output controller is intended for carrier output during remote controlled transmission and clock output for supply to peripheral LSIs. The clock selected with the clock output selection register (CKS) is output.

Figure 11-1 shows the block diagram of clock output controller.

Frescaler

8

fx to fx/27

Clock controller

CLOE

CLOE

CCS3

CCS2

CCS1

CCS0

Clock output selection register (CKS)

Internal bus

Figure 11-1. Block Diagram of Clock Output Controller

11.2 Configuration of Clock Output Controller

The clock output controller consists of the following hardware.

Table 11-1. Clock Output Controller Configuration

Item	Configuration
Control registers	Clock output selection register (CKS) Port mode register 14 (PM14) ^{Note}

Note See Figure 4-18 Block Diagram of P140.

11.3 Registers Controlling Clock Output Controller

The following two registers are used to control the clock output controller.

- Clock output selection register (CKS)
- Port mode register 14 (PM14)

(1) Clock output selection register (CKS)

This register sets output enable/disable for clock output (PCL) and sets the output clock.

CKS is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CKS to 00H.

Figure 11-2. Format of Clock Output Selection Register (CKS)

Address: FF40H After reset: 00H R/W 4 Symbol 7 5 3 2 0 CKS 0 0 CLOE CCS3 CCS2 CCS1 CCS0 0

CLOE	PCL output enable/disable specification
0	Clock division circuit operation stopped. PCL fixed to low level.
1	Clock division circuit operation enabled. PCL output enabled.

CCS3	CCS2	CCS1	CCS0	PCL output clock selection
0	0	0	0	fx (10 MHz)
0	0	0	1	fx/2 (5 MHz)
0	0	1	0	fx/2 ² (2.5 MHz)
0	0	1	1	fx/2³ (1.25 MHz)
0	1	0	0	fx/2 ⁴ (625 kHz)
0	1	0	1	fx/2 ⁵ (312.5 kHz)
0	1	1	0	fx/2 ⁶ (156.25 kHz)
0	1	1	1	fx/2 ⁷ (78.125 kHz)
1	0	0	0	fxт (32.768 kHz)
	Other than above			Setting prohibited

Remarks 1. fx: X1 input clock oscillation frequency

2. fxT: Subsystem clock oscillation frequency

3. Figures in parentheses are for operation with fx = 10 MHz or fxT = 32.768 kHz.

(2) Port mode register 14 (PM14)

This register sets port 14 input/output in 1-bit units.

When using the P140/INTP6/PCL pin for clock output, set PM140 and the output latch of P140 to 0.

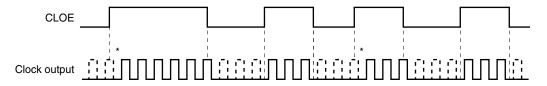
PM14 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM14 to FFH.

Figure 11-3. Format of Port Mode Register 14 (PM14)

Address: FF2EH After reset: FFH		R/W						
Symbol	7	6	5	4	3	2	1	0
PM14	1	1	1	1	1	1	1	PM140

PM140	P140 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)


11.4 Clock Output Controller Operations

The clock pulse is output as the following procedure.

- <1> Select the clock pulse output frequency with bits 0 to 3 (CCS0 to CCS3) of the clock output selection register (CKS) (clock pulse output in disabled status).
- <2> Set bit 4 (CLOE) of CKS to 1 to enable clock output.

Remark The clock output controller is designed not to output pulses with a small width during output enable/disable switching of the clock output. As shown in Figure 11-4, be sure to start output from the low period of the clock (marked with * in the figure). When stopping output, do so after securing high level of the clock.

Figure 11-4. Remote Control Output Application Example

CHAPTER 12 A/D CONVERTER

12.1 Functions of A/D Converter

The A/D converter converts an analog input signal into a digital value, and consists of up to eight channels (ANI0 to ANI7) with a resolution of 10 bits.

The A/D converter has the following two functions.

(1) 10-bit resolution A/D conversion

10-bit resolution A/D conversion is carried out repeatedly for one channel selected from analog inputs ANI0 to ANI7. Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated.

(2) Power-fail detection function

This function is used to detect a voltage drop in a battery. The A/D conversion result (ADCR register value) and power-fail comparison threshold register (PFT) value are compared. INTAD is generated only when a comparative condition has been matched.

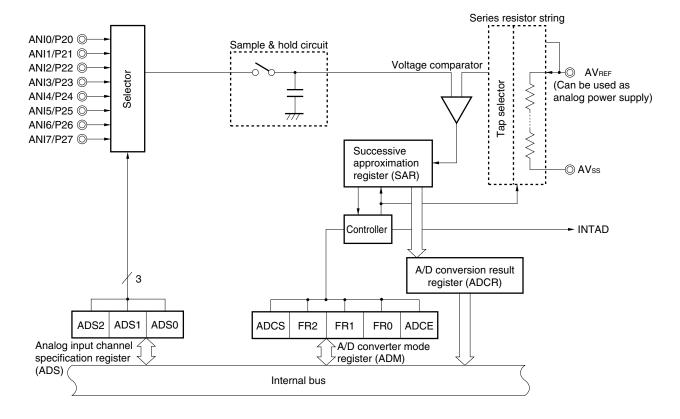


Figure 12-1. Block Diagram of A/D Converter

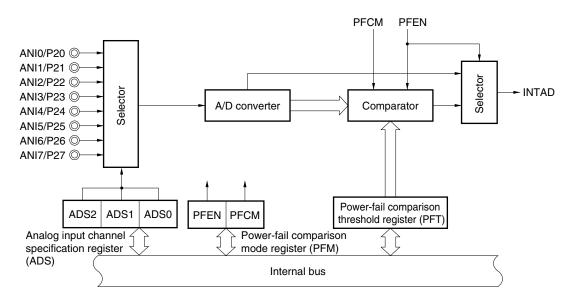


Figure 12-2. Block Diagram of Power-Fail Detection Function

12.2 Configuration of A/D Converter

The A/D converter consists of the following hardware.

Table 12-1. Configuration of A/D Converter

Item	Configuration
Analog input	8 channels (ANI0 to ANI7)
Registers	Successive approximation register (SAR) A/D conversion result register (ADCR)
Control registers	A/D converter mode register (ADM) Analog input channel specification register (ADS) Power-fail comparison mode register (PFM) Power-fail comparison threshold register (PFT)

(1) Successive approximation register (SAR)

This register compares the analog input voltage value with the voltage tap (compare voltage) value applied from the series resistor string, and holds the result starting from the most significant bit (MSB).

When the result up to the least significant bit (LSB) is held (end of A/D conversion), the SAR contents are transferred to the A/D conversion result register.

(2) A/D conversion result register (ADCR)

The ADCR is 16-bit register that stores the A/D conversion result. The lower six bits are fixed to 0. Each time A/D conversion ends, the conversion result is loaded from the successive approximation register, and is stored in ADCR in order starting from the most significant bit (MSB).

ADCR can be read by a 16-bit memory manipulation instruction.

RESET input makes ADCR undefined.

Figure 12-3. Format of A/D Conversion Register (ADCR)

- Cautions 1. When writing to the A/D converter mode register (ADM) and analog input channel specification register (ADS), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM and ADS. Using timing other than the above may cause an incorrect conversion result to be read.
 - 2. If data is read from ADCR, a wait cycle is generated. Do not read data from ADCR when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

(3) Sample & hold circuit

The sample & hold circuit samples each analog input signal sequentially applied from the input circuit, and sends it to the voltage comparator. This circuit holds the sampled analog input voltage value during A/D conversion.

(4) Voltage comparator

The voltage comparator compares the analog input with the series resistor string output voltage.

(5) Series resistor string

The series resistor string is connected between AV_{REF} and AV_{SS}, and generates a voltage to be compared with the analog input.

(6) ANIO to ANI7 pins

These eight-channel analog input pins input analog signals to undergo A/D conversion to the A/D converter. ANI0 to ANI7 are alternate-function pins that can also be used for digital input.

- Cautions 1. Observe the rated range of the ANI0 to ANI7 input voltage. If a voltage of AVREF or higher or a voltage of AVss or lower (even if within the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.
 - 2. The analog input pins (ANI0 to ANI7) are also used as input port pins (P20 to P27). When A/D conversion is performed with any of ANI0 to ANI7 selected, do not execute the input instruction to port 2 while conversion is in progress; otherwise the conversion resolution may be degraded. If a digital pulse is applied to the pins adjacent to the pins currently used for A/D conversion, the expected value of the A/D conversion may not be obtained due to coupling noise. Therefore, do not apply a pulse to the pins adjacent to the pin undergoing A/D conversion.

(7) AVREF pin

The AVREF pin inputs the A/D converter reference voltage.

It converts signals input to ANI0 to ANI7 into digital signals based on a voltage between AVREF and AVss.

In a standby mode, the current flowing into series resistor strings can be reduced by changing the input voltage of the AVREF pin to AVss level.

It can also be used as the analog power supply. When the A/D converter is used, be sure to use the AVREF pin for the power supply.

Caution A series resistor string of several tens of $k\Omega$ is connected between the AVREF and AVss pins. Therefore, if the output impedance of the reference voltage source is high, this will result in series connection to the series resistor string between the AVREF and AVss pins, resulting in a large reference voltage error.

(8) AVss pin

The AVss pin is the GND potential pin for the A/D converter. Always use the AVss pin at the same potential as the Vsso pin, even when the A/D converter is not used.

12.3 Registers Controlling A/D Converter

The following four registers are used to control the A/D converter.

- A/D converter mode register (ADM)
- Analog input channel specification register (ADS)
- Power-fail comparison mode register (PFM)
- Power-fail comparison threshold register (PFT)

(1) A/D converter mode register (ADM)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion.

ADM can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 12-4. Format of A/D Converter Mode Register (ADM)

Address: FF28H		After res	set: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
ADM	ADCS	0	FR2	FR1	FR0	0	0	ADCE

ADCS	A/D conversion operation control
0	Stops conversion operation
1	Enables conversion operation

FR2	FR1	FR0	Conversion time selectionNote 1					
				fx = 2 MHz	fx = 8.38 MHz	fx = 10 MHz		
0	0	0	288/fx	144 μ s ^{Note 1}	34.3 μs	28.8 μs		
0	0	1	240/fx	120 μs ^{Note 1}	28.6 μs	24.0 μs		
0	1	0	192/fx	96 μs	22.9 μs	19.2 <i>μ</i> s		
1	0	0	144/fx	72 μs	17.2 μs	14.4 <i>μ</i> s		
1	0	1	120/fx	60 μs	14.3 μs	12.0 μs ^{Note 1}		
1	1	0	96/fx	48 μs	11.5 μs ^{Note 1}	9.6 μs ^{Note 1}		
Other than above		Setting prohibited						

ADCE	Boost reference voltage generator operation controlNote 2
0	Stops operation of reference voltage generator
1	Enables operation of reference voltage generator

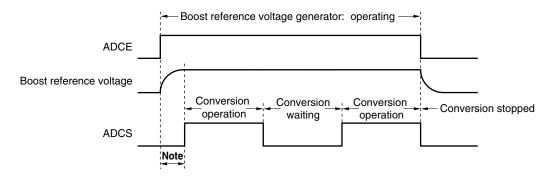

- **Notes 1.** Set so that the A/D conversion time is 14 μ s or longer but less than 100 μ s.
 - 2. A booster circuit is incorporated to realize low-voltage operation. The operation of the circuit that generates the reference voltage for boosting is controlled by ADCE, and it takes 14 μ s from operation start to operation stabilization. Therefore, when ADCS is set to 1 after 14 μ s or more has elapsed from the time ADCE is set to 1, the conversion result at that time has priority over the first conversion result.

Table 12-2. Settings of ADCS and ADCE

ADCS	ADCE	A/D Conversion Operation
0	0	Stop status (DC power consumption path does not exist)
0	1	Conversion waiting mode (only reference voltage generator consumes power)
1	0	Conversion mode (reference voltage generator operation stopped ^{Note})
1	1	Conversion mode (reference voltage generator operates)

Note Data of first conversion cannot be used.

Figure 12-5. Timing Chart When Boost Reference Voltage Generator Is Used

Note 14 μ s or more is required for reference voltage stabilization.

- Cautions 1. A/D conversion must be stopped before rewriting bits FR0 to FR2 to values other than the identical data.
 - 2. For the sampling time of the A/D converter and the A/D conversion start delay time, refer to (11) in 12.6 Cautions for A/D Converter.
 - 3. If data is written to ADM, a wait cycle is generated. Do not write data to ADM when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

Remark fx: X1 input clock oscillation frequency

(2) Analog input channel specification register (ADS)

This register specifies the input port of the analog voltage to be A/D converted.

ADS can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 12-6. Format of Analog Input Channel Specification Register (ADS)

Address: FF29H After reset: 00H		R/W						
Symbol	7	6	5	4	3	2	1	0
ADS	0	0	0	0	0	ADS2	ADS1	ADS0

ADS2	ADS1	ADS0	Analog input channel specification
0	0	0	ANI0
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	ANI5
1	1	0	ANI6
1	1	1	ANI7

Cautions 1. Be sure to set bits 3 to 7 of ADS to 0.

2. If data is written to ADS, a wait cycle is generated. Do not write data to ADS when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

(3) Power-fail comparison mode register (PFM)

The power-fail comparison mode register (PFM) is a register that controls the comparison operation.

PFM can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 12-7. Format of Power-Fail Comparison Mode Register (PFM)

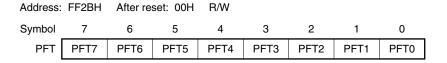
Address: FF2AH		After reset: 00H		R/W				
Symbol	7	6	5	4	3	2	1	0
PFM	PFEN	PFCM	0	0	0	0	0	0

PFEN	Power-fail comparison enable
0	Stops power-fail comparison (used as a normal A/D converter)
1	Enables power-fail comparison (used for power-fail detection)

PFCM		Power-fail comparison mode selection
0	ADCR3 ≥ PFT3	Interrupt request signal (INTAD) generation
	ADCR3 < PFT3	No INTAD generation
1	ADCR3 ≥ PFT3	No INTAD generation
	ADCR3 < PFT3	INTAD generation

Caution If data is written to PFM, a wait cycle is generated. Do not write data to PFM when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

(4) Power-fail comparison threshold register (PFT)


The power-fail comparison threshold register (PFT) is a register that sets the threshold value when comparing the values with the A/D conversion result.

8-bit data in PFT is compared to the higher 8 bits (FF09H) of the 10-bit A/D conversion result.

PFT can be set by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 12-8. Format of Power-Fail Comparison Threshold Register (PFT)

Caution If data is written to PFT, a wait cycle is generated. Do not write data to PFT when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

12.4 A/D Converter Operations

12.4.1 Basic operations of A/D converter

- <1> Select one channel for A/D conversion with analog input channel specification register (ADS).
- <2> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <3> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the input analog voltage is held until the A/D conversion operation is ended.
- <4> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) AVREF by the tap selector.
- <5> The voltage difference between the series resistor string voltage tap and analog input is compared by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB of SAR remains set to 1. If the analog input is smaller than (1/2) AVREF, the MSB is reset to 0.
- <6> Next, bit 8 of SAR is automatically set to 1, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9, as described below.
 - Bit 9 = 1: (3/4) VDD
 - Bit 9 = 0: (1/4) VDD

The voltage tap and analog input voltage are compared and bit 8 of SAR is manipulated as follows.

- Analog input voltage ≥ Voltage tap: Bit 8 = 1
- Analog input voltage < Voltage tap: Bit 8 = 0
- <7> Comparison is continued in this way up to bit 0 of SAR.
- <8> Upon completion of the comparison of 10 bits, an effective digital result value remains in SAR, and the result value is transferred to the A/D conversion result register (ADCR) and then latched.

At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.

Caution The first A/D conversion value immediately after A/D conversion operations start may not fall within the rating.

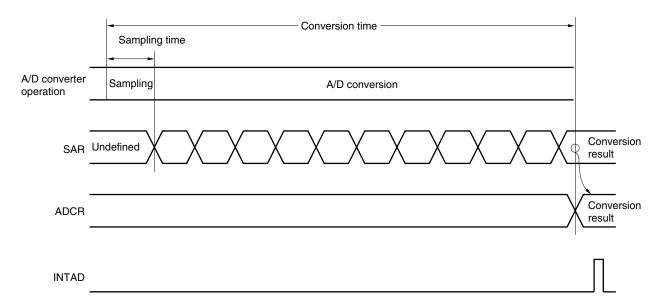


Figure 12-9. Basic Operation of A/D Converter

A/D conversion operations are performed continuously until bit 7 (ADCS) of the A/D converter mode register (ADM) is reset (0) by software.

If a write operation is performed to one of the ADM, analog input channel specification register (ADS), power-fail comparison mode register (PFM), or power-fail comparison threshold register (PFT) during an A/D conversion operation, the conversion operation is initialized, and if the ADCS bit is set (1), conversion starts again from the beginning.

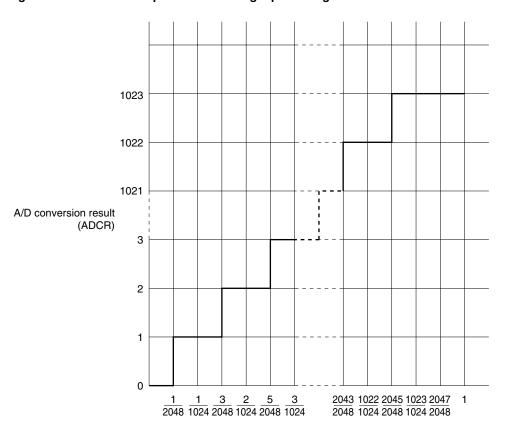
RESET input makes the A/D conversion result register (ADCR) undefined.

12.4.2 Input voltage and conversion results

The relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and the A/D conversion result (stored in the A/D conversion result register (ADCR)) is shown by the following expression.

$$ADCR = INT (\frac{V_{IN}}{AV_{REF}} \times 1024 + 0.5)$$

or $(\text{ADCR} - 0.5) \times \frac{\text{AV}_{\text{REF}}}{1024} - \text{V}_{\text{IN}} < (\text{ADCR} + 0.5) \times \frac{\text{AV}_{\text{REF}}}{1024}$


where, INT(): Function which returns integer part of value in parentheses

Vin: Analog input voltage AVREF: AVREF pin voltage

ADCR: A/D conversion result register (ADCR) value

Figure 12-10 shows the relationship between the analog input voltage and the A/D conversion result.

Figure 12-10. Relationship Between Analog Input Voltage and A/D Conversion Result

Input voltage/AV_{REF}

12.4.3 A/D converter operation mode

The operation mode of the A/D converter is the select mode. One channel of analog input is selected from ANI0 to ANI7 by the analog input channel specification register (ADS) and A/D conversion is executed.

In addition, the following two functions can be selected by setting of bit 7 (PFEN) of the power-fail comparison mode register (PFM).

- Normal 10-bit A/D converter (PFEN = 0)
- Power-fail detection function (PFEN = 1)

(1) A/D conversion operation (when PFEN = 0)

By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1 and bit 7 (PFEN) of the power-fail comparison mode register (PFM) to 0, the A/D conversion operation of the voltage, which is applied to the analog input pin specified by the analog input channel specification register (ADS), is started.

When A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion result register (ADCR), and an interrupt request signal (INTAD) is generated. Once the A/D conversion has started and when one A/D conversion has been completed, the next A/D conversion operation is immediately started. The A/D conversion operations are repeated until new data is written to ADS.

If ADS is rewritten during A/D conversion, the A/D conversion under execution is suspended, and the A/D conversion of the newly selected analog input channel is started.

If 0 is written to ADCS of ADM during A/D conversion, the conversion operation is immediately stopped.

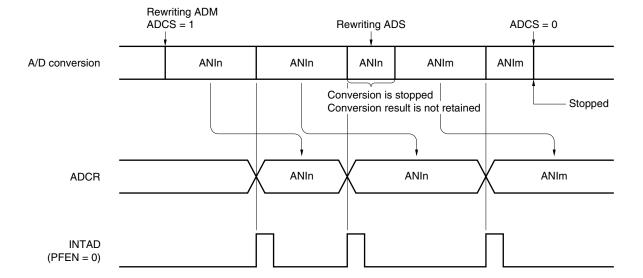


Figure 12-11. A/D Conversion Operation

Remarks 1. n = 0 to 7

2. m = 0 to 7

(2) Power-fail detection function (when PFEN = 1)

By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1 and bit 7 (PFEN) of the power-fail comparison mode register (PFM) to 1, the A/D conversion operation of the voltage applied to the analog input pin specified by the analog input channel specification register (ADS) is started.

When the A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion result register (ADCR), the values are compared with power-fail comparison threshold register (PFT), and an interrupt request signal (INTAD) is generated under the condition specified by bit 6 (PFCM) of PFM.

- <1> When PFEN = 0

 INTAD is generated at the end of each A/D conversion.
- <2> When PFEN = 1 and PFCM = 0
 The ADCR and PFT values are compared when A/D conversion ends and INTAD is only generated when ADCR ≥ PFT.
- <3> When PFEN = 1 and PFCM = 1
 The ADCR and PFT values are compared when A/D conversion ends and INTAD is only generated when ADCR < PFT.</p>

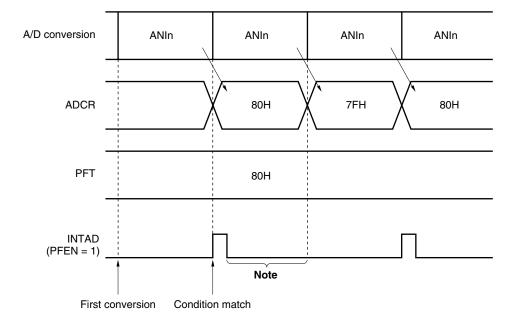


Figure 12-12. Power-Fail Detection (When PFEN = 1 and PFCM = 0)

Note If the conversion result is not read before the end of the next conversion after INTAD is output, the result is replaced by the next conversion result.

Remark n = 0 to 7

The setting methods are described below.

- · When used as A/D conversion operation
 - <1> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.
 - <2> Select the channel and conversion time using bits 2 to 0 (ADS2 to ADS0) of the analog input channel specification register (ADS) and bits 5 to 3 (FR2 to FR0) of ADM.
 - <3> Set bit 7 (ADCS) of ADM to 1.
 - <4> An interrupt request signal (INTAD) is generated.
 - <5> Transfer the A/D conversion data to the A/D conversion result register (ADCR).

<Change the channel>

- <6> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS.
- <7> An interrupt request signal (INTAD) is generated.
- <8> Transfer the A/D conversion data to the A/D conversion result register (ADCR).

<Complete A/D conversion>

- <9> Clear ADCS to 0.
- <10> Clear ADCE to 0.

Cautions 1. Make sure the period of <1> to <3> is 14 μ s or more.

- 2. It is no problem if the order of <1> and <2> is reversed.
- 3. <1> can be omitted. However, do not use the first conversion result after <3> in this
- 4. The period from <4> to <7> differs from the conversion time set using bits 5 to 3 (FR2 to FR0) of ADM. The period from <6> to <7> is the conversion time set using FR2 to FR0.
- When used as power-fail function
 - <1> Set bit 7 (PFEN) of the power-fail comparison mode register (PFM) to 1.
 - <2> Set power-fail comparison condition using bit 6 (PFCM) of PFM.
 - <3> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.
 - <4> Select the channel and conversion time using bits 2 to 0 (ADS2 to ADS0) of the analog input channel specification register (ADS) and bits 5 to 3 (FR2 to FR0) of ADM.
 - <5> Set a threshold value to the power-fail comparison threshold register (PFT).
 - <6> Set bit 7 (ADCS) of ADM to 1.
 - <7> Transfer the A/D conversion data to the A/D conversion result register (ADCR).
 - <8> ADCR and PFT are compared and an interrupt request signal (INTAD) is generated if the conditions match.

<Change the channel>

- <9> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS.
- <10> Transfer the A/D conversion data to the A/D conversion result register (ADCR).
- <11> ADCR and the power-fail comparison threshold register (PFT) are compared and an interrupt request signal (INTAD) is generated if the conditions match.

<Complete A/D conversion>

- <12> Clear ADCS to 0.
- <13> Clear ADCE to 0.

Cautions 1. Make sure the period of <3> to <6> is 14 μ s or more.

- 2. It is no problem if order of <3>, <4>, and <5> is changed.
- 3. <3> can be omitted. However, do not use the first conversion result after <6> in this case.
- 4. The period from <7> to <11> differs from the conversion time set using bits 5 to 3 (FR2 to FR0) of ADM. The period from <9> to <11> is the conversion time set using FR2 to FR0.

12.5 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range).

1LSB is as follows when the resolution is 10 bits.

$$1LSB = 1/2^{10} = 1/1024$$

= 0.098%FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value.

Zero-scale error, full-scale error, integral linearity error, and differential linearity errors that are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided.

Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

Figure 12-13. Overall Error

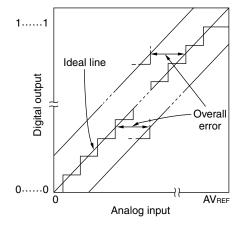
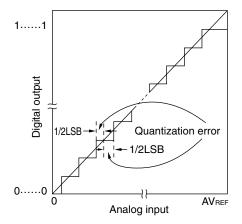



Figure 12-14. Quantization Error

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0......000 to 0......001.

If the actual measurement value is greater than the theoretical value, it shows the difference between the actual measurement value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0.....011 to 0......010.

(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (Full-scale – 3/2LSB) when the digital output changes from 1......110 to 1......111.

(6) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

(7) Differential linearity error

While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

Figure 12-15. Zero-Scale Error

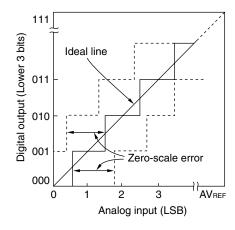


Figure 12-16. Full-Scale Error



Figure 12-17. Integral Linearity Error

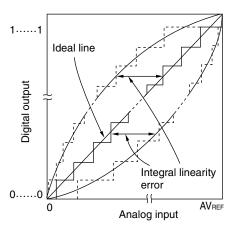
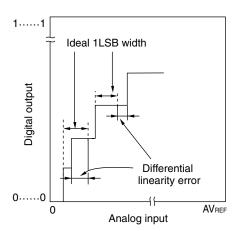



Figure 12-18. Differential Linearity Error

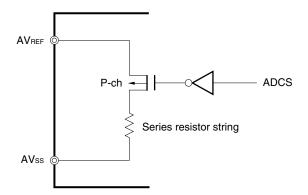
(8) Conversion time

This expresses the time since sampling has been started until digital output is obtained.

The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.



12.6 Cautions for A/D Converter

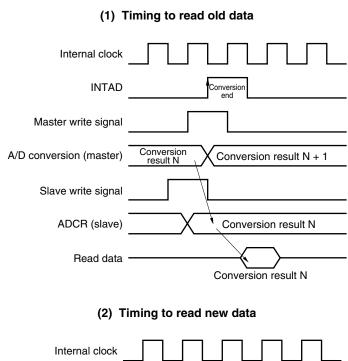
(1) Power consumption in standby mode

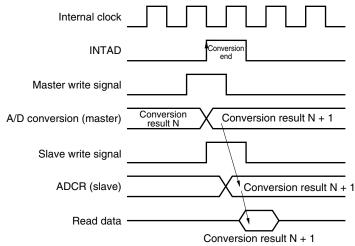
The A/D converter stops operating in the standby mode. At this time, the power consumption can be reduced by stopping the conversion operation (by setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 0). Figure 12-19 shows the circuit configuration of series resistor string.

Figure 12-19. Circuit Configuration of Series Resistor String

(2) Input range of ANI0 to ANI7

Observe the rated range of the ANI0 to ANI7 input voltage. If a voltage of AVREF or higher and AVss or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.


(3) Conflicting operations


<1> Conflict between A/D conversion result register (ADCR) write and ADCR read by instruction upon the end of conversion

ADCR read has priority. After the read operation, the new conversion result is written to ADCR.

Old data can be read from ADCR at the timing of (1) and new data can be read from ADCR at the timing of (2) as shown in Figure 12-20. A master-slave configuration is employed for transferring the A/D conversion result to ADCR.

Figure 12-20. Storing Conversion Result in ADCR and Timing of Data Read from ADCR

<2> Conflict between ADCR write and A/D converter mode register (ADM) write or analog input channel specification register (ADS) write upon the end of conversion

ADM or ADS write has priority. ADCR write is not performed, nor is the conversion end interrupt signal (INTAD) generated.

(4) Noise countermeasures

To maintain the 10-bit resolution, attention must be paid to noise input to the AVREF pin and pins ANI0 to ANI7. Because the effect increases in proportion to the output impedance of the analog input source, it is recommended that a capacitor be connected externally, as shown in Figure 12-21, to reduce noise.

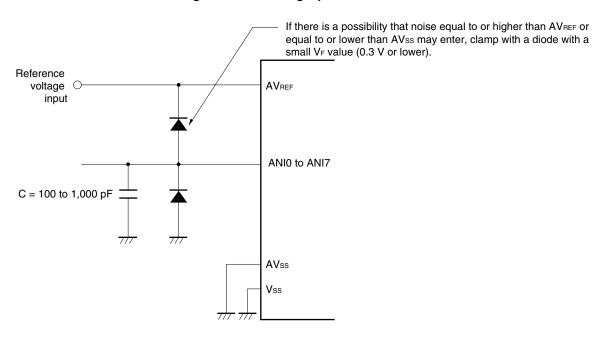


Figure 12-21. Analog Input Pin Connection

(5) ANI0/P20 to ANI7/P27

The analog input pins (ANI0 to ANI7) are also used as input port pins (P20 to P27).

When A/D conversion is performed with any of ANI0 to ANI7 selected, do not execute the input instruction to port 2 while conversion is in progress; otherwise the conversion resolution may be degraded.

If a digital pulse is applied to the pins adjacent to the pins currently used for A/D conversion, the expected value of the A/D conversion may not be obtained due to coupling noise. Therefore, do not apply a pulse to the pins adjacent to the pin undergoing A/D conversion.

(6) Input impedance of ANI0 to ANI7 pins

In this A/D converter, the internal sampling capacitor is charged and sampling is performed for approx. one tenth of the conversion time.

Since only the leakage current flows other than during sampling and the current for charging the capacitor also flows during sampling, the input impedance fluctuates and has no meaning.

To perform sufficient sampling, however, it is recommended to make the output impedance of the analog input source 10 k Ω or lower, or attach a capacitor of around 100 pF to the ANI0 to ANI7 pins (see **Figure 12-21**).

(7) AVREF pin input impedance

A series resistor string of several tens of 10 k Ω is connected between the AV_{REF} and AV_{SS} pins.

Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to the series resistor string between the AVREF and AVss pins, resulting in a large reference voltage error.

(8) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed.

Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and ADIF for the pre-change analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time, when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-change analog input has not ended.

When A/D conversion is stopped and then resumed, clear ADIF before the A/D conversion operation is resumed.

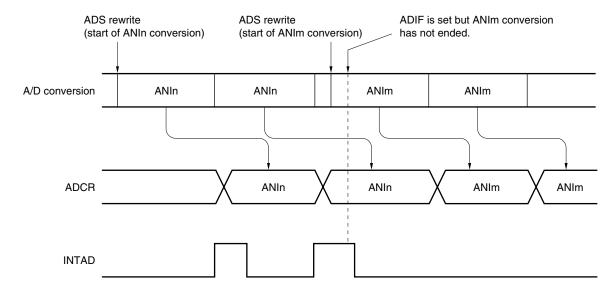


Figure 12-22. Timing of A/D Conversion End Interrupt Request Generation

Remarks 1. n = 0 to 7

2. m = 0 to 7

(9) Conversion results just after A/D conversion start

The first A/D conversion value immediately after A/D conversion starts may not fall within the rating. Take measures such as polling the A/D conversion end interrupt request (INTAD) and removing the first conversion result.

(10) A/D conversion result register (ADCR) read operation

When a write operation is performed to the A/D converter mode register (ADM) and analog input channel specification register (ADS), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM and ADS. Using timing other than the above may cause an incorrect conversion result to be read.

Do not read ADCR when the CPU is operating on the subsystem clock and oscillation of the X1 input clock is stopped.

(11) A/D converter sampling time and A/D conversion start delay time

The A/D converter sampling time differs depending on the set value of the A/D converter mode register (ADM). The delay time exists until actual sampling is started after A/D converter operation is enabled.

When using a set in which the A/D conversion time must be strictly observed, care is required for the contents shown in Figure 12-23 and Table 12-3.

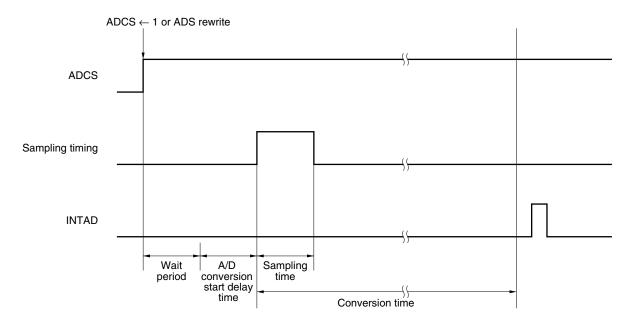


Figure 12-23. Timing of A/D Converter Sampling and A/D Conversion Start Delay

Table 12-3. A/D Converter Sampling Time and A/D Conversion Start Delay Time (ADM Set Value)

FR2	FR1	FR0	Conversion Time	Sampling Time	A/D Conversion Start Delay Time ^N	
					MIN.	MAX.
0	0	0	288/fx	40/fx	32/fx	36/fx
0	0	1	240/fx	32/fx	28/fx	32/fx
0	1	0	192/fx	24/fx	24/fx	28/fx
1	0	0	144/fx	20/fx	16/fx	18/fx
1	0	1	120/fx	16/fx	14/fx	16/fx
1	1	0	96/fx	12/fx	12/fx	14/fx
Other than above		ove	Setting prohibited	_	_	_

Note The A/D conversion start delay time is the time after wait period. For the wait function, refer to CHAPTER 29 CAUTIONS FOR WAIT.

Remark fx: X1 clock oscillation frequency

CHAPTER 13 SERIAL INTERFACE UARTO

13.1 Functions of Serial Interface UARTO

Serial interface UART0 has the following two modes.

(1) Operation stop mode

This mode is used when serial transfer is not executed and can enable a reduction in the power consumption. For details, refer to **13.4.1 Operation stop mode**.

(2) Asynchronous serial interface (UART) mode

The functions of this mode are outlined below.

- Two-pin configuration TxD0: Transmit data output pin
 - RxB0: Receive data input pin
- Length of transfer data can be selected from 7 or 8 bits.
- Dedicated on-chip 5-bit baud rate generator allowing any baud rate to be set
- Transmission and reception can be performed independently.
- Four operating clock inputs selectable
- · Fixed to LSB-first transfer
- Cautions 1. The initial value of the TxD0 pin is high level. Exercise care when using the TxD0 pin as a port pin.
 - 2. If clock supply to serial interface UART0 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART0 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD0 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER0 = 0, RXE0 = 0, and TXE0 = 0.
 - 3. Set POWER0 = 1 and then set TXE0 = 1 (transmission) or RXE0 = 1 (reception) to start communication.
 - 4. TXE0 and RXE0 are synchronized with the base clock (fxclκ) set by BRGC0. Therefore, the transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0 is set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2 clocks after RXE0 = 0 is set.

13.2 Configuration of Serial Interface UART0

Serial interface UART0 consists of the following hardware.

Table 13-1. Configuration of Serial Interface UART0

Item	Configuration			
Registers	Receive buffer register 0 (RXB0) Receive shift register 0 (RXS0) Transmit shift register 0 (TXS0)			
Control registers	Asynchronous serial interface operation mode register 0 (ASIM0) Asynchronous serial interface reception error status register 0 (ASIS0) Baud rate generator control register 0 (BRGC0)			

Filter **◄** ⊚ R_xD0/SI10/P11 Receive shift register 0 (RXS0) Asynchronous serial interface operation mode register 0 (ASIM0) Asynchronous serial interface reception error status register 0 (ASIS0) INTSR0 → Reception control Receive buffer register 0 (RXB0) Baud rate fx/2 generator $fx/2^3$ Reception unit fx/2⁵ -Internal bus TO50/TI50/P17 ©-(TM50 output) Baud rate generator control register 0 (BRGC0) Baud rate generator Transmit shift register 0 TxD0/SCK10/P10 INTST0 ◀ Transmission control (TXS0) Registers Transmission unit

Figure 13-1. Block Diagram of Serial Interface UART0

(1) Receive buffer register 0 (RXB0)

This 8-bit register stores parallel data converted by receive shift register 0 (RXS0).

Each time 1 byte of data has been received, new receive data is transferred to this register from receive shift register 0 (RXS0).

If the data length is set to 7 bits the receive data is transferred to bits 0 to 6 of RXB0 and the MSB of RXB0 is always 0.

If an overrun error (OVE0) occurs, the receive data is not transferred to RXB0.

RESET input or POWER0 = 0 sets this register to FFH.

RXB0 can be read by an 8-bit memory manipulation instruction. No data can be written to this register.

(2) Receive shift register 0 (RXS0)

This register converts the serial data input to the RxD0 pin into parallel data.

RXS0 cannot be directly manipulated by a program.

(3) Transmit shift register 0 (TXS0)

This register is used to set transmit data. Transmission is started when data is written to TXS0, and serial data is transmitted from the TxD0 pins.

RESET input, POWER0 = 0, or TXE0 = 0 sets this register to FFH.

TXS0 can be written by an 8-bit memory manipulation instruction. This register cannot be read.

Caution Do not write the next transmit data to TXS0 before the transmission completion interrupt signal (INTST0) is generated.

13.3 Registers Controlling Serial Interface UART0

Serial interface UART0 is controlled by the following three registers.

- Asynchronous serial interface operation mode register 0 (ASIM0)
- Asynchronous serial interface reception error status register 0 (ASIS0)
- Baud rate generator control register 0 (BRGC0)

(1) Asynchronous serial interface operation mode register 0 (ASIM0)

This 8-bit register controls the serial transfer operations of serial interface UARTO.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Figure 13-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (1/2)

Address: FF70H After reset: 01H R/W

Symbol	7	6	5	4	3	2	1	0
ASIM0	POWER0	TXE0	RXE0	PS01	PS00	CL0	SL0	1

POWER0	Enables/disables operation of internal operation clock				
O ^{Note}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit.				
1	Enables operation of the internal operation clock.				

TXE0	Enables/disables transmission				
0	Disables transmission (synchronously resets the transmission circuit).				
1	Enables transmission.				

RXE0	Enables/disables reception			
0	Disables reception (synchronously resets the reception circuit).			
1	Enables reception.			

Note The input from the RxD0 pin is fixed to high level when POWER0 = 0.

- Cautions 1. At startup, set POWER0 to 1 and then set TXE0 to 1. Clear TXE0 to 0 first, and then clear POWER0 to 0.
 - 2. At startup, set POWER0 to 1 and then set RXE0 to 1. Clear RXE0 to 0 first, and then clear POWER0 to 0.
 - 3. TXE0 and RXE0 are synchronized with the base clock (fxclk) set by BRGC0. Therefore, the transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0 is set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2 clocks after RXE0 = 0 is set.
 - 4. Be sure to set bit 0 to 1.

Figure 13-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (2/2)

PS01	PS00	Transmission operation	Reception operation
0	0	Does not output parity bit.	Reception without parity
0	1	Outputs 0 parity.	Reception as 0 parity ^{Note}
1	0	Outputs odd parity.	Judges as odd parity.
1	1	Outputs even parity.	Judges as even parity.

CL0	Specifies character length of transmit/receive data			
0	Character length of data = 7 bits			
1	Character length of data = 8 bits			

SL0	Specifies number of stop bits of transmit data					
0	Number of stop bits = 1					
1	Number of stop bits = 2					

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PE0) of asynchronous serial interface reception error status register 0 (ASIS0) is not set and the error interrupt does not occur.

Cautions 1. Clear the TXE0 and RXE0 bits to 0 before rewriting the PS01, PS00, and CL0 bits.

2. Make sure that TXE0 = 0 when rewriting the SL0 bit. Reception is always performed with "number of stop bits = 1", and therefore, is not affected by the set value of the SL0 bit.

(2) Asynchronous serial interface reception error status register 0 (ASIS0)

This register indicates an error status on completion of reception by serial interface UARTO. It includes three error flag bits (PE0, FE0, OVE0).

This register can be set by an 8-bit memory manipulation instruction and is read-only.

RESET input clears this register to 00H if bit 7 (POWER0) and bit 5 (RXE0) of ASIM0 = 0. 00H is read when this register is read.

Figure 13-3. Format of Asynchronous Serial Interface Reception Error Status Register 0 (ASIS0)

Address: FF73H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIS0	0	0	0	0	0	PE0	FE0	OVE0

PE0	Status flag indicating parity error						
0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.						
1	If the parity of transmit data does not match the parity bit on completion of reception.						

	FE0	Status flag indicating framing error
Ī	0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.
Ī	1	If the stop bit is not detected on completion of reception.

OVE0	Status flag indicating overrun error
0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.
1	If receive data is set to the RXB register and the next reception operation is completed before the data is read.

Cautions 1. The operation of the PE0 bit differs depending on the set values of the PS01 and PS00 bits of asynchronous serial interface operation mode register 0 (ASIM0).

- 2. Only the first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.
- 3. If an overrun error occurs, the next receive data is not written to receive buffer register 0 (RXB0) but discarded.
- 4. If data is read from ASISO, a wait cycle is generated. Do not read data from ASISO when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

(3) Baud rate generator control register 0 (BRGC0)

This register selects the base clock of serial interface UART0 and controls the baud rate.

BRGC0 can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to 1FH.

Figure 13-4. Format of Baud Rate Generator Control Register 0 (BRGC0)

Address: FF71H After reset: 1FH R/W

Symbol	7	6	5	4	3	2	1	0
BRGC0	TPS01	TPS00	0	MDL04	MDL03	MDL02	MDL01	MDL00

TPS01	TPS00	Base clock (fxclk) selection
0	0	TM50 output (TO50)
0	1	fx/2 (5 MHz)
1	0	fx/2° (1.25 MHz)
1	1	fx/2 ⁵ (312.5 kHz)

MDL04	MDL03	MDL02	MDL01	MDL00	k	Selection of 5-bit counter output clock
0	0	×	×	×	×	Setting prohibited
0	1	0	0	0	8	fxclk/8
0	1	0	0	1	9	fxclk/9
0	1	0	1	0	10	fxclk/10
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
1	1	0	1	0	26	fxclk/26
1	1	0	1	1	27	fxclk/27
1	1	1	0	0	28	fxclk/28
1	1	1	1	0	30	fxclk/30
1	1	1	1	1	31	fxclk/31

Cautions 1. Make sure that bit 6 (TXE0) and bit 5 (RXE0) of the ASIM0 register = 0 when rewriting the MDL04 to MDL00 bits.

2. The baud rate value is the output clock of the 5-bit counter divided by 2.

Remarks 1. fxclk: Frequency of base clock (Clock) selected by the TPS01 and TPS00 bits

- **2.** fx: X1 input clock oscillation frequency
- **3.** k: Value set by the MDL04 to MDL00 bits (k = 8, 9, 10, ..., 31)
- 4. x: Don't care
- **5.** Figures in parentheses apply to operation at fx = 10 MHz

13.4 Operation of Serial Interface UART0

This section explains the two modes of serial interface UARTO.

13.4.1 Operation stop mode

In this mode, serial transfer cannot be executed, thus reducing the power consumption. In addition, the pins can be used as ordinary port pins in this mode.

(1) Register setting

The operation stop mode is set by asynchronous serial interface operation mode register 0 (ASIM0).

ASIMO can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Address: FF70H After reset: 01H R/W

Symbol ASIM0

7	6	5	4	3	2	1	0
POWER0	TXE0	RXE0	PS01	PS00	CL0	SL0	1

POWER0	Enables/disables operation of internal operation clock
O ^{Note}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit.
1	Enables operation of the internal operation clock.

TXE0	Enables/disables transmission						
0	Disables transmission (synchronously resets the transmission circuit).						
1	Enables transmission.						

RXE0	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).
1	Enables reception.

Note The input from the RxD0 pin is fixed to high level when POWER0 = 0.

- Cautions 1. At startup, set POWER0 to 1 and then set TXE0 to 1. Clear TXE0 to 0 first, and then clear POWER0 to 0.
 - 2. At startup, set POWER0 to 1 and then set RXE0 to 1. Clear RXE0 to 0 first, and then clear POWER0 to 0.
 - 3. TXE0 and RXE0 are synchronized with the base clock (fxclk) set by BRGC0. Therefore, the transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0 is set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2 clocks after RXE0 = 0 is set.

13.4.2 Asynchronous serial interface (UART) mode

In this mode, 1-byte data is transmitted/received following a start bit, and a full-duplex operation can be performed. A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of baud rates.

(1) Register setting

The UART mode is set by asynchronous serial interface operation mode register 0 (ASIM0) and asynchronous serial interface reception error status register 0 (ASIS0).

(a) Asynchronous serial interface operation mode register 0 (ASIM0)

This 8-bit register controls the serial transfer operations of serial interface UARTO.

ASIM0 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Address: FF70H After reset: 01H R/W

Symbol	7	6	5	4	3	2	1	0
ASIM0	POWER0	TXE0	RXE0	PS01	PS00	CL0	SL0	1

POWER0	Enables/disables operation of internal operation clock
O ^{Note}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit.
1	Enables operation of the internal operation clock.

TXE0	Enables/disables transmission						
0	Disables transmission (synchronously resets the transmission circuit).						
1	Enables transmission.						

RXE0	Enables/disables reception						
0	Disables reception (synchronously resets the reception circuit).						
1	Enables reception						

Note The input from the RxD0 pin is fixed to high level when POWER0 = 0.

- Cautions 1. At startup, set POWER0 to 1 and then set TXE0 to 1. Clear TXE0 to 0 first, and then clear POWER0 to 0.
 - 2. At startup, set POWER0 to 1 and then set RXE0 to 1. Clear RXE0 to 0 first, and then clear POWER0 to 0.
 - 3. TXE0 and RXE0 are synchronized with the base clock (fxclk) set by BRGC0. Therefore, the transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0 is set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2 clocks after RXE0 = 0 is set.
 - 4. Be sure to set bit 0 to 1.

PS01	PS00	Transmission operation	Reception operation	
0	0	Does not output parity bit.	Reception without parity	
0	1	Outputs 0 parity.	Reception as 0 parity ^{Note}	
1	0	Outputs odd parity.	Judges as odd parity.	
1	1	Outputs even parity.	Judges as even parity.	

CL0	Specifies character length of transmit/receive data						
0	Character length of data = 7 bits						
1	Character length of data = 8 bits						

SL0	Specifies number of stop bits of transmit data					
0	Number of stop bits = 1					
1	Number of stop bits = 2					

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PE0) of asynchronous serial interface reception error status register 0 (ASIS0) is not set and the error interrupt does not occur.

Cautions 1. Clear the TXE0 and RXE0 bits to 0 before rewriting the PS01, PS00, and CL0 bits.

2. Make sure that TXE0 = 0 when rewriting the SL0 bit. Reception is always performed with "number of stop bits = 1", and therefore, is not affected by the set value of the SL0 bit.

(b) Asynchronous serial interface reception error status register 0 (ASIS0)

This register indicates an error status on completion of reception by serial interface UART0. It includes three error flag bits (PE0, FE0, OVE0).

This register can be set by an 8-bit memory manipulation instruction and is read-only.

RESET input clears this register to 00H if bit 7 (POWER0) and bit 5 (RXE0) of ASIM0 = 0. 00H is read when this register is read.

Address: FF73H After reset: 00H R

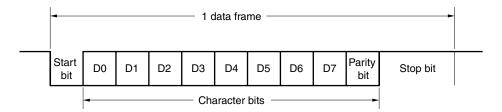
Symbol	7	6	5	4	3	2	1	0
ASIS0	0	0	0	0	0	PE0	FE0	OVE0

PE0	Status flag indicating parity error						
0	OWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.						
1	If the parity of transmit data does not match the parity bit on completion of reception.						

FE0	Status flag indicating framing error				
0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.				
1	If the stop bit is not detected on completion of reception.				

OVE0	Status flag indicating overrun error
0	If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.
1	If receive data is set to the RXB register and the next reception operation is completed before the
	data is read.

Cautions 1. The operation of the PE0 bit differs depending on the set values of the PS01 and PS00 bits of asynchronous serial interface operation mode register 0 (ASIM0).


- 2. Only the first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.
- 3. If an overrun error occurs, the next receive data is not written to receive buffer register 0 (RXB0) but discarded.
- 4. If data is read from ASISO, a wait cycle is generated. Do not read data from ASISO when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

(2) Communication operation

(a) Normal transmit/receive data format

Figure 13-5 shows the format of the transmit/receive data.

Figure 13-5. Format of Normal UART Transmit/Receive Data

One data frame consists of the following bits.

- Start bit ... 1 bit
- Character bits ... 7 or 8 bits (LSB first)
- Parity bit ... Even parity, odd parity, 0 parity, or no parity
- Stop bit ... 1 or 2 bits

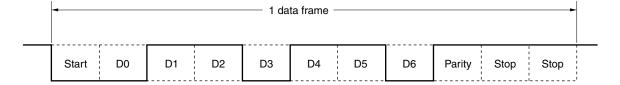

The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial interface mode register 0 (ASIM0).

Figure 13-6. Example of Normal UART Transmit/Receive Data Format

1. Data length: 8 bits, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H

2. Data length: 7 bits, Parity: Odd parity, Stop bit: 2 bits, Transfer data: 36H

3. Data length: 8 bits, Parity: None, Stop bit: 1 bit, Transfer data: 87H

(b) Parity types and operation

The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error can be detected. With zero parity and no parity, an error cannot be detected.

(i) Even parity

Transmission

Transmit data, including the parity bit, is controlled so that the number of bits that are "1" is even. The value of the parity bit is as follows.

If transmit data has an odd number of bits that are "1": 1
If transmit data has an even number of bits that are "1": 0

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is odd, a parity error occurs.

(ii) Odd parity

Transmission

Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that are "1" is odd.

If transmit data has an odd number of bits that are "1": 0
If transmit data has an even number of bits that are "1": 1

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is even, a parity error occurs.

(iii) 0 parity

The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.

The parity bit is not detected when the data is received. Therefore, a parity error does not occur regardless of whether the parity bit is "0" or "1".

(iv) No parity

No parity bit is appended to the transmit data.

Reception is performed assuming that there is no parity bit when data is received. Because there is no parity bit, a parity error does not occur.

(c) Transmission

The TxD0 pin outputs a high level when bit 7 (POWER0) of asynchronous serial interface mode register 0 (ASIM0) is set to 1. If bit 6 (TXE0) of ASIM0 is then set to 1, transmission is enabled. Transmission can be started by writing transmit data to transmit shift register 0 (TXS0). The start bit, parity bit, and stop bit are automatically appended to the data.

When transmission is started, the start bit is output from the TxD0 pin, followed by the rest of the data in order starting from the LSB. When transmission is completed, the parity and stop bits set by ASIM0 are appended and a transmission completion interrupt request (INTST0) is generated.

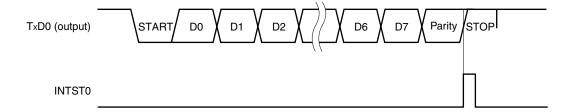

Transmission is stopped until the data to be transmitted next is written to TXS0.

Figure 13-7 shows the timing of the transmission completion interrupt request (INTST0). This interrupt occurs as soon as the last stop bit has been output.

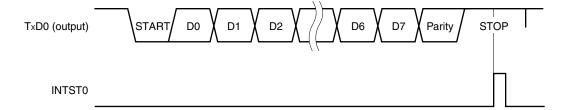

Caution After transmit data is written to TXS0, do not write the next transmit data before the transmission completion interrupt signal (INTST0) is generated.

Figure 13-7. Normal Transmission Completion Interrupt Request Timing

1. Stop bit length: 1

2. Stop bit length: 2

(d) Reception

Reception is enabled and the RxD0 pin input is sampled when bit 7 (POWER0) of asynchronous serial interface operation mode register 0 (ASIM0) is set to 1 and then bit 5 (RXE0) of ASIM0 is set to 1.

The 5-bit counter of the baud rate generator starts counting when the falling edge of the RxD0 pin input is detected. When the set value of baud rate generator control register 0 (BRGC0) has been counted, the RxD0 pin input is sampled again (▽ in Figure 13-8). If the RxD0 pin is low level at this time, it is recognized as a start bit.

When the start bit is detected, reception is started, and serial data is sequentially stored in receive shift register 0 (RXS0) at the set baud rate. When the stop bit has been received, the reception completion interrupt (INTSR0) is generated and the data of RXS0 is written to receive buffer register 0 (RXB0). If an overrun error (OVE0) occurs, however, the receive data is not written to RXB0.

Even if a parity error (PE0) or a framing error (FE0) occurs while reception is in progress, reception continues to the reception position of the stop bit, and an error interrupt (INTSR0) is generated after completion of reception.

 ∇

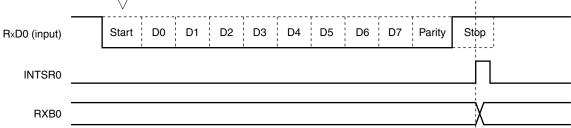


Figure 13-8. Reception Completion Interrupt Request Timing

- Cautions 1. Be sure to read receive buffer register 0 (RXB0) even if a reception error occurs.

 Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.
 - 2. Reception is always performed with the "number of stop bits = 1". The second stop bit is ignored.
 - 3. Be sure to read asynchronous serial interface reception error status register 0 (ASIS0) before reading RXB0.

(e) Reception error

Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error flag of asynchronous serial interface reception error status register 0 (ASIS0) is set as a result of data reception, a reception error interrupt request (INTSR0) is generated.

Which error has occurred during reception can be identified by reading the contents of ASIS0 in the reception error interrupt servicing (INTSR0) (refer to **Table 13-2**).

The contents of ASIS0 are reset to 0 when ASIS0 is read.

Table 13-2. Cause of Reception Error

Reception Error	Cause	Value of ASIS0
Parity error	The parity specified for transmission does not match the parity of the receive data.	04H
Framing error	Stop bit is not detected.	02H
Overrun error	Reception of the next data is completed before data is read from receive buffer register 0 (RXB0).	01H

(f) Noise filter of receive data

The RxD0 signal is sampled using the base clock output by the prescaler block.

If two sampled values are the same, the output of the match detector changes, and the data is sampled as input data.

Because the circuit is configured as shown in Figure 13-9, the internal processing of the reception operation is delayed by two clocks from the external signal status.

Base clock

RxD0/Sl10/P11 ⊚ Internal signal A In Q Internal signal B Match detector

Figure 13-9. Noise Filter Circuit

13.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and a 5-bit programmable counter, and generates a serial clock for transmission/reception of UARTO.

Separate 5-bit counters are provided for transmission and reception.

(1) Configuration of baud rate generator

· Base clock (Clock)

The clock selected by bits 7 and 6 (TPS01 and TPS00) of baud rate generator control register 0 (BRGC0) is supplied to each module when bit 7 (POWER0) of asynchronous serial interface operation mode register 0 (ASIM0) is 1. This clock is called the base clock "Clock" and its frequency is called fxclk. "Clock" is fixed to low level when POWER0 = 0.

· Transmission counter

This counter stops, cleared to 0, when bit 7 (POWER0) or bit 6 (TXE0) of asynchronous serial interface operation mode register 0 (ASIM0) is 0.

It starts counting when POWER0 = 1 and TXE0 = 1.

The counter is cleared to 0 when the first data transmitted is written to transmit shift register 0 (TXS0).

· Reception counter

This counter stops operation, cleared to 0, when bit 7 (POWER0) or bit 5 (RXE0) of asynchronous serial interface operation mode register 0 (ASIM0) is 0.

It starts counting when the start bit has been detected.

The counter stops operation after one frame has been received, until the next start bit is detected.

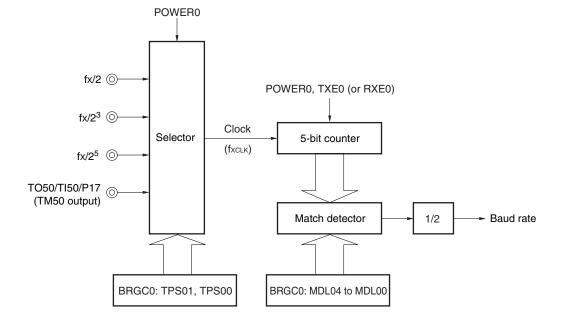


Figure 13-10. Configuration of Baud Rate Generator

Remark POWER0: Bit 7 of asynchronous serial interface operation mode register 0 (ASIM0)

TXE0: Bit 6 of ASIM0 RXE0: Bit 5 of ASIM0

BRGC0: Baud rate generator control register 0

(2) Generation of serial clock

A serial clock can be generated by using baud rate generator control register 0 (BRGC0). Select the clock to be input to the 5-bit counter by using bits 7 and 6 (TPS01 and TPS00) of BRGC0. Bits 4 to 0 (MDL04 to MDL00) of BRGC0 can be used to select the division value of the 5-bit counter.

(a) Baud rate generator control register 0 (BRGC0)

This register selects the base clock of serial interface UART0 and controls the baud rate. BRGC0 can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to 1FH.

Address: FF71H After reset: 1FH R/W

Symbol	7	6	5	4	3	2	1	0
BRGC0	TPS01	TPS00	0	MDL04	MDL03	MDL02	MDL01	MDL00

TPS01	TPS00	Base clock (fxclk) selection
0	0	TM50 output (TO50)
0	1	fx/2 (5 MHz)
1	0	fx/2³ (1.25 MHz)
1	1	fx/2 ⁵ (312.5 kHz)

MDL04	MDL03	MDL02	MDL01	MDL00	k	Selection of 5-bit counter output clock
0	0	×	×	×	×	Setting prohibited
0	1	0	0	0	8	fxclk/8
0	1	0	0	1	9	fxclk/9
0	1	0	1	0	10	fxclk/10
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
1	1	0	1	0	26	fxclk/26
1	1	0	1	1	27	fxclk/27
1	1	1	0	0	28	fxclk/28
1	1	1	1	0	30	fxclk/30
1	1	1	1	1	31	fxclk/31

- Cautions 1. Make sure that bit 6 (TXE0) and bit 5 (RXE0) of the ASIM0 register = 0 when rewriting the MDL04 to MDL00 bits.
 - 2. The baud rate value is the output clock of the 5-bit counter divided by 2.

Remarks 1. fxclk: Frequency of base clock (Clock) selected by the TPS01 and TPS00 bits

- 2. fx: X1 input clock oscillation frequency
- **3.** k: Value set by the MDL04 to MDL00 bits (k = 8, 9, 10, ..., 31)
- 4. x: Don't care
- **5.** Figures in parentheses apply to operation with fx = 10 MHz

(b) Baud rate

The baud rate can be calculated by the following expression.

• Baud rate =
$$\frac{f_{XCLK}}{2 \times k}$$
 [bps]

fxclk: Frequency of base clock (Clock) selected by the TPS01 and TPS00 bits of the BRGC0 register k: Value set by the MDL04 to MDL00 bits of the BRGC0 register (k = 8, 9, 10, ..., 31)

(c) Error of baud rate

The baud rate error can be calculated by the following expression.

• Error (%) =
$$\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (correct baud rate)}} - 1 \times 100 [\%]$$

- Cautions 1. Keep the baud rate error during transmission to within the permissible error range at the reception destination.
 - 2. Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.

Example: Frequency of base clock (Clock) =
$$2.5 \text{ MHz} = 2,500,000 \text{ Hz}$$

Set value of MDL04 to MDL00 bits of BRGC0 register = $10000B \text{ (k} = 16)$
Target baud rate = $76,800 \text{ bps}$
Baud rate = $2.5 \text{ M/(2} \times 16)$
= $2,500,000/(2 \times 16) = 78125 \text{ [bps]}$
Error = $(78,125/76,800 - 1) \times 100$
= 1.725 [\%]

(3) Example of setting baud rate

Table 13-3. Set Data of Baud Rate Generator

Baud Rate	fx = 10.0 MHz				fx = 8.38 MHz				fx = 4.19 MHz			
[bps]	TPS01, TPS00	k	Calculated Value	ERR[%]	TPS01, TPS00	k	Calculated Value	ERR[%]	TPS01, TPS00	k	Calculated Value	ERR[%]
2400	-	-	_	-	1	-	-	-	3	27	2425	1.03
4800	-	ı	_	-	3	27	4850	1.03	3	14	4676	-2.58
9600	3	16	9766	1.73	3	14	9353	-2.58	2	27	9699	1.03
10400	3	15	10417	0.16	3	13	10072	-3.15	2	25	10475	0.72
19200	3	8	19531	1.73	2	27	19398	1.03	2	14	18705	-2.58
31250	2	20	31250	0	2	17	30809	-1.41	-	ı	_	_
38400	2	16	39063	1.73	2	14	38796	-2.58	2	27	38796	1.03
76800	2	8	78125	1.73	1	27	77593	1.03	1	14	74821	-2.58
115200	1	22	113636	-1.36	1	18	116389	1.03	1	9	116389	1.03
153600	1	16	156250	1.73	1	14	149643	-2.58	1	I	_	_
230400	1	11	227273	-1.36	1	9	232778	1.03	-	ı	_	_

Remark TPS01, TPS00: Bits 7 and 6 of baud rate generator control register 0 (BRGC0) (setting of base clock

(fxclk))

k: Value set by the MDL04 to MDL00 bits of BRGC0 (k = 8, 9, 10, ..., 31)

fx: X1 input clock oscillation frequency

ERR: Baud rate error

(4) Permissible baud rate range during reception

The permissible error from the baud rate at the transmission destination during reception is shown below.

Caution Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.

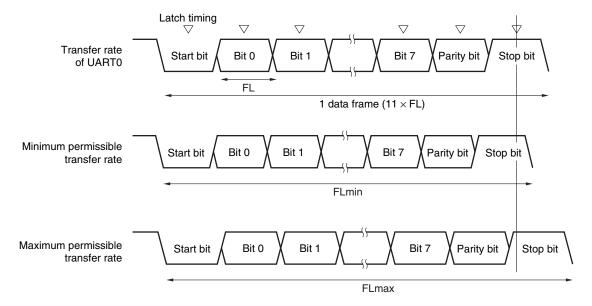


Figure 13-11. Permissible Baud Rate Range During Reception

As shown in Figure 13-11, the latch timing of the receive data is determined by the counter set by baud rate generator control register 0 (BRGC0) after the start bit has been detected. If the last data (stop bit) meets this latch timing, the data can be correctly received.

Assuming that 11-bit data is received, the theoretical values can be calculated as follows.

 $FL = (Brate)^{-1}$

Brate: Baud rate of UART0 k: Set value of BRGC0 FL: 1-bit data length

Margin of latch timing: 2 clocks

Minimum permissible transfer rate: FLmin =
$$11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k}$$
 FL

Therefore, the maximum receivable baud rate at the transmission destination is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, the maximum permissible transfer rate can be calculated as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

$$FLmax = \frac{21k - 2}{20k} FL \times 11$$

Therefore, the minimum receivable baud rate at the transmission destination is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

The permissible baud rate error between UART0 and the transmission destination can be calculated from the above minimum and maximum baud rate expressions, as follows.

Table 13-4. Maximum/Minimum Permissible Baud Rate Error

Division Ratio (k)	Maximum Permissible Baud Rate Error	Minimum Permissible Baud Rate Error			
8	+3.53%	-3.61%			
16	+4.14%	-4.19%			
24	+4.34%	-4.38%			
31	+4.44%	-4.47%			

- **Remarks 1.** The accuracy of reception depends on the number of bits in one frame, input clock frequency, and division ratio (k). The higher the input clock frequency and the higher the division ratio (k), the higher the accuracy.
 - 2. k: Set value of BRGC0

CHAPTER 14 SERIAL INTERFACE UART6

14.1 Functions of Serial Interface UART6

Serial interface UART6 has the following two modes.

(1) Operation stop mode

This mode is used when serial transfer is not executed and can enable a reduction in the power consumption. For details, refer to **14.4.1 Operation stop mode**.

(2) Asynchronous serial interface (UART) mode

This mode supports the LIN (Local Interconnect Network) bus. The functions of this mode are outlined below.

• Two-pin configuration TxD6: Transmit data output pin

RxB6: Receive data input pin

- Data length of transfer data can be selected from 7 or 8 bits.
- Dedicated internal 8-bit baud rate generator allowing any baud rate to be set
- Transmission and reception can be performed independently.
- Twelve operating clock inputs selectable
- MSB- or LSB-first transfer selectable
- Inverted transmission operation
- Tuning break field transmission from 13 to 20 bits
- More than 11 bits can be identified for tuning break field reception (SBF reception flag provided).
- Cautions 1. The initial value of the TxD6 pin is the high level. Exercise care when using the TxD6 pin as a port pin.
 - The TxD6 output inversion function inverts only the transmission side and not the reception side. To use this function, the reception side must be ready for reception of inverted data (it must be able to recognize a low-level start bit).
 - 3. If clock supply to serial interface UART6 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART6 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD6 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER6 = 0, RXE6 = 0, and TXE6 = 0.
 - 4. If data is continuously transmitted, the transfer rate from the stop bit to the next start bit is extended two clocks. However, this does not affect the result of transfer because the reception side initializes the timing when it has detected a start bit. Do not use the continuous transmission function if the interface is incorporated in LIN.

Remark LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol intended to aid the cost reduction of an automotive network.

LIN communication is single-master communication, and up to 15 slaves can be connected to one master.

The LIN slaves are used to control the switches, actuators, and sensors, and these are connected to the LIN master via the LIN network.

Normally, the LIN master is connected to a network such as CAN (Controller Area Network).

In addition, the LIN bus uses a single-wire method and is connected to the nodes via a transceiver that complies with ISO9141.

In the LIN protocol, the master transmits a frame with baud rate information and the slave receives it and corrects the baud rate error. Therefore, communication is possible when the baud rate error in the slave is $\pm 15\%$ or less.

Figures 14-1 and 14-2 outline the transmission and reception operations of LIN.

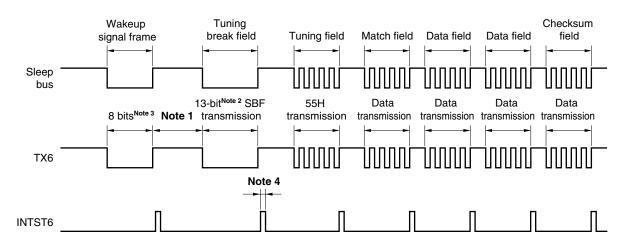


Figure 14-1. LIN Transmission Operation

- **Notes 1.** The interval between each field is controlled by software.
 - 2. The tuning break field is output by hardware. The output width is equal to the bit length set by bits 4 to 2 (SBL62 to SBL60) of asynchronous serial interface control register 6 (ASICL6). If the output width needs to be adjusted more accurately, use baud rate generator control register 6 (BRGC6).
 - 3. The wakeup signal frame is substituted by 80H transfer in the 8-bit mode.
 - **4.** INTST6 is output on completion of each transmission. It is also output when SBF is transmitted.

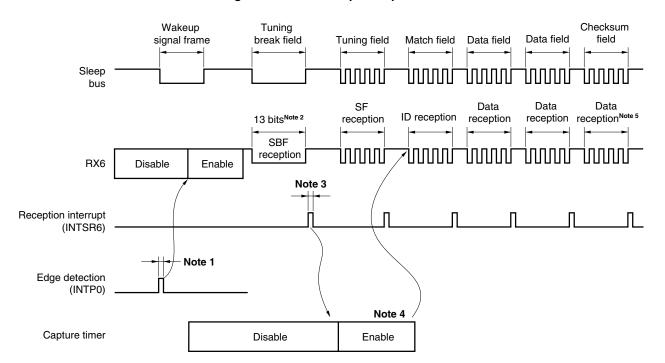


Figure 14-2. LIN Reception Operation

- **Notes 1.** The wakeup signal is detected at the edge of the pin, and enables UART6 and sets the SBF reception mode.
 - 2. Reception continues until the STOP bit is detected. When 11 bits or more of SBF have been detected, it is assumed that SBF reception has been completed correctly, and an interrupt signal is output. If less than 11 bits of SBF have been detected, it is assumed that an SBF reception error has occurred. The interrupt signal is not output and the SBF reception mode is restored.
 - 3. If SBF reception has been completed correctly, an interrupt signal is output. This SBF reception completion interrupt enables the capture timer. Detection of errors OVE6, PE6, and FE6 is suppressed, and error detection processing of UART communication and data transfer of the shift register and RXB6 is not performed. The shift register holds the reset value FFH.
 - **4.** Calculate the baud rate error from the value obtained from the capture timer, disable UART6 after SF reception, and then re-set baud rate generator control register 6 (BRGC6).
 - **5.** Distinguish the checksum field by software. Also perform processing by software to initialize UART6 after reception of the checksum field and to set the SBF reception mode again.

To perform a LIN receive operation, use a configuration like the one shown in Figure 14-3.

The wakeup signal transmitted from the LIN master is received by detecting the edge of the external interrupt (INTP0). The length of the tuning break field transmitted from the LIN master can be measured using the external event capture operation of 16-bit timer/event counter 00, and the baud rate error can be calculated using the time and number of bits of the tuning break field.

The input signal of the reception port input (RxD6) can be input to the external interrupt (INTP0) and 16-bit timer/event counter 00 by port input switch control (ISC0/ISC1), without connecting RxD6 and INTP0/TI000 externally.

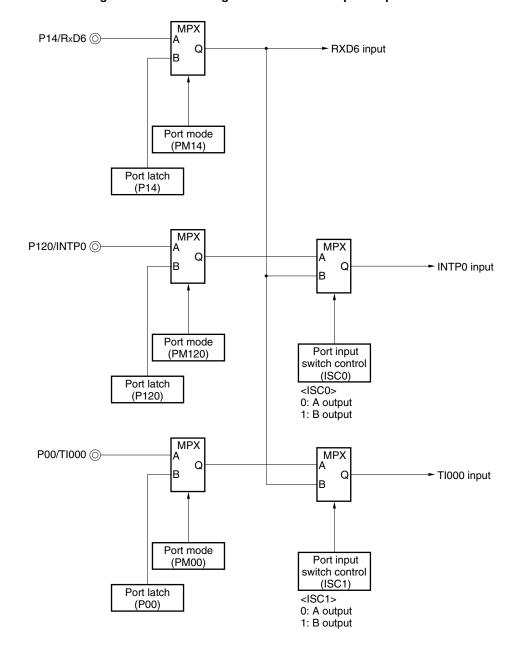


Figure 14-3. Port Configuration for LIN Reception Operation

Remark ISC0, ISC1: Bits 0 and 1 of the input switch control register (ISC) (see Figure 4-21)

The resources used in the LIN communication operation are shown below.

<Resources used>

- External interrupt (INTP0); wakeup signal detection
 - Use: Detects the wakeup signal edges and detects start of communication.
- 16-bit timer/event counter 00 (TI000); baud rate error detection
 - Use: Detects the baud rate error (measures the TI000 input edge interval in the capture mode) by detecting the tuning break field (SBF) length and divides it by the number of bits.
- Serial interface UART6

14.2 Configuration of Serial Interface UART6

Serial interface UART6 consists of the following hardware.

Table 14-1. Configuration of Serial Interface UART6

Item	Configuration					
Registers	Receive buffer register 6 (RXB6) Receive shift register 6 (RXS6) Transmit buffer register 6 (TXB6) Transmit shift register 6 (TXS6)					
Control registers	Asynchronous serial interface operation mode register 6 (ASIM6) Asynchronous serial interface reception error status register 6 (ASIS6) Asynchronous serial interface transmission status register 6 (ASIF6) Clock selection register 6 (CKSR6) Baud rate generator control register 6 (BRGC6) Asynchronous serial interface control register 6 (ASICL6)					

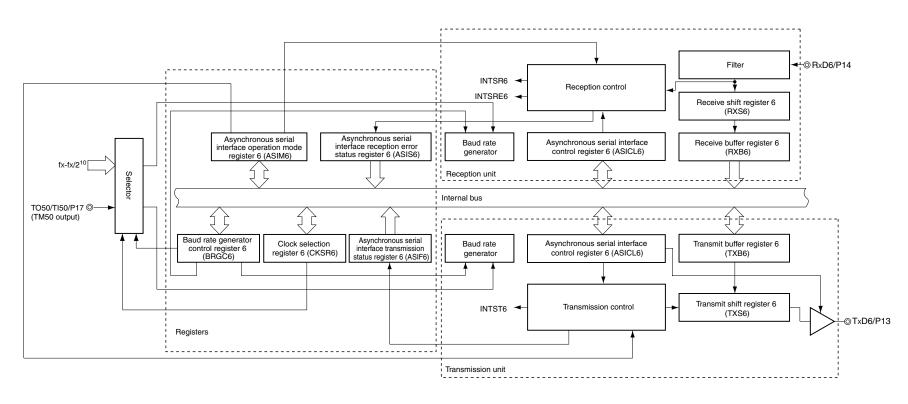


Figure 14-4. Block Diagram of Serial Interface UART6

(1) Receive buffer register 6 (RXB6)

This 8-bit register stores parallel data converted by the receive shift register.

Each time 1 byte of data has been received, new receive data is transferred to this register from receive shift register 6 (RXS6). If the data length is set to 7 bits, data is transferred as follows.

- In LSB-first reception, the receive data is transferred to bits 0 to 6 of RXB6 and the MSB of RXB6 is always 0.
- In MSB-first reception, the receive data is transferred to bits 1 to 7 of RXB6 and the LSB of RXB6 is always 0.

If an overrun error (OVE6) occurs, the receive data is not transferred to RXB6.

RXB6 can be read by an 8-bit memory manipulation instruction. No data can be written to this register.

RESET input sets this register to FFH.

(2) Receive shift register 6 (RXS6)

This register converts the serial data input to the RxD6 pin into parallel data.

RXS6 cannot be directly manipulated by a program.

(3) Transmit buffer register 6 (TXB6)

This buffer register is used to set transmit data. Transmission is started when data is written to TXB6.

This register can be read or written by an 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

- Cautions 1. Do not write data to TXB6 when bit 1 (TXBF6) of asynchronous serial interface transmission status register 6 (ASIF6) is 1.
 - 2. Do not refresh (write the same value to) TXB6 by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) are 1 or when bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 are 1). However, if the same value is continuously transmitted in the transmission mode (POWER6 = 1 and TXE6 = 1), the same value can be written.

(4) Transmit shift register 6 (TXS6)

This register transmits the data transferred from TXB6 from the TxD6 pin as serial data. Data is transferred from TXB6 immediately after TXB6 is written for the first transmission, or immediately before INTST6 occurs after one frame was transmitted for continuous transmission. Data is transferred from TXB6 and transmitted from the TxD6 pin at the falling edge of the internal clock.

TXS6 cannot be directly manipulated by a program.

14.3 Registers Controlling Serial Interface UART6

Serial interface UART6 is controlled by the following six registers.

- Asynchronous serial interface operation mode register 6 (ASIM6)
- Asynchronous serial interface reception error status register 6 (ASIS6)
- Asynchronous serial interface transmission status register 6 (ASIF6)
- Clock selection register 6 (CKSR6)
- Baud rate generator control register 6 (BRGC6)
- Asynchronous serial interface control register 6 (ASICL6)

(1) Asynchronous serial interface operation mode register 6 (ASIM6)

This 8-bit register controls the serial transfer operations of serial interface UART6.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Figure 14-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (1/2)

Address: FF50H After reset: 01H R/W

Symbol ASIM6

	6	5	4	3	2	1	0
POWER6	TXE6	RXE6	PS61	PS60	CL6	SL6	ISRM6

POWER6	Enables/disables operation of internal operation clock
O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit.
1 Note 2	Enables operation of the internal operation clock

TXE6	Enables/disables transmission	
Disables transmission (synchronously resets the transmission circuit).		
1	Enables transmission	

- **Notes 1.** The output of the TxD6 pin goes high and the input from the RxD6 pin is fixed to the high level when POWER6 = 0.
 - 2. Operation of the internal operation clock is enabled at the second input clock after 1 is written to the POWER6 bit.

Caution At startup, set POWER6 to 1 and then set TXE6 to 1. Clear TXE6 to 0 first, and then clear POWER6 to 0.

Figure 14-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (2/2)

RXE6 Enables/disables reception	
0	Disables reception (synchronously resets the reception circuit).
1	Enables reception

PS61	PS60	Transmission operation	Reception operation	
0	0	Does not output parity bit.	Reception without parity	
0	1	Outputs 0 parity.	Reception as 0 parity ^{Note}	
1	0	Outputs odd parity.	Judges as odd parity.	
1	1	Outputs even parity.	Judges as even parity.	

CL6	Specifies character length of transmit/receive data	
0	Character length of data = 7 bits	
1	Character length of data = 8 bits	

SL6	Specifies number of stop bits of transmit data
0	Number of stop bits = 1
1	Number of stop bits = 2

ISRM6	Enables/disables occurrence of reception completion interrupt in case of error	
0	"INTSRE6" occurs in case of error (at this time, INTSR6 does not occur).	
1	"INTSR6" occurs in case of error (at this time, INTSRE6 does not occur).	

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PE6) of asynchronous serial interface reception error status register 6 (ASIS6) is not set and the error interrupt does not occur.

- Cautions 1. At startup, set POWER6 to 1 and then set RXE6 to 1. Clear RXE6 to 0 first, and then clear POWER6 to 0.
 - 2. Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.
 - 3. Fix the PS61 and PS60 bits to 0 when mounting the device on LIN.
 - 4. Make sure that TXE6 = 0 when rewriting the SL6 bit. Reception is always performed with "the number of stop bits = 1", and therefore, is not affected by the set value of the SL6 bit.
 - 5. Make sure that RXE6 = 0 when rewriting the ISRM6 bit.

(2) Asynchronous serial interface reception error status register 6 (ASIS6)

This register indicates an error status on completion of reception by serial interface UART6. It includes three error flag bits (PE6, FE6, OVE6).

This register can be set by an 8-bit memory manipulation instruction and is read-only.

RESET input clears this register to 00H if bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 0. 00H is read when this register is read.

Figure 14-6. Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6)

Address: FF53H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIS6	0	0	0	0	0	PE6	FE6	OVE6

PE6	Status flag indicating parity error	
0	If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read	
1	If the parity of transmit data does not match the parity bit on completion of reception	

	FE6	Status flag indicating framing error
Ī	0	If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read
Ī	1	If the stop bit is not detected on completion of reception

OVE6	Status flag indicating overrun error	
0	If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read	
1	If receive data is set to the RXB register and the next reception operation is completed before the data is read.	

Cautions 1. The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of asynchronous serial interface operation mode register 6 (ASIM6).

- 2. The first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.
- 3. If an overrun error occurs, the next receive data is not written to receive buffer register 6 (RXB6) but discarded.
- 4. If data is read from ASIS6, a wait cycle is generated. Do not read data from ASIS6 when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

(3) Asynchronous serial interface transmission status register 6 (ASIF6)

This register indicates the status of transmission by serial interface UART6. It includes two status flag bits (TXBF6 and TXSF6).

Transmission can be continued without disruption even during an interrupt period, by writing the next data to the TXB6 register after data has been transferred from the TXB6 register to the TXS6 register.

This register can be set by an 8-bit memory manipulation instruction, and is read-only.

RESET input clears this register to 00H if bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 0.

Figure 14-7. Format of Asynchronous Serial Interface Transmission Status Register 6 (ASIF6)

Address: FF55H After reset: 00H R Symbol 7 5 3 2 1 0 ASIF6 0 0 0 0 0 0 TXBF6 TXSF6

TXBF6	Transmit buffer data flag	
0	If POWER6 = 0 or TXE6 = 0, or if data is transferred to transmit shift register 6 (TXS6)	
1	If data is written to transmit buffer register 6 (TXB6) (if data exists in TXB6)	

TXSF6	Transmit shift register data flag	
0	If POWER6 = 0 or TXE6 = 0, or if the next data is not transferred from transmit buffer register 6	
	TXB6) after completion of transfer	
1	If data is transferred from transmit buffer register 6 (TXB6) (if data transmission is in progress)	

- Cautions 1. To continuously transmit data, write the data of the first byte to TXB6, check that the value of the TXBF6 flag is 0, and then write the data of the second byte to TXB6. The operation is not guaranteed if data is written to TXB6 while the TXBF6 flag is 1.
 - 2. While continuous transmission is being executed, check the value of the TXSF6 flag after the transmission completion interrupt to determine the subsequent write processing to TXB6.
 - If TXSF6 is 1: Continuous transmission is in progress. Data of 1 byte can be written.
 - If TXSF6 is 0: Continuous transmission is complete. Data of 2 bytes can be written. When doing so, observe Caution 1 above.
 - 3. While continuous transmission is in progress, check that TXSF6 is 0 after the transmission completion interrupt, and then execute clearing (POWER6 = 0 or TXE6 = 0). If clearing is executed while the TXSF6 flag is 1, the transmit data cannot be guaranteed.

(4) Clock selection register 6 (CKSR6)

This register selects the base clock of serial interface UART6.

CKSR6 can be set by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Remark CKSR6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Figure 14-8. Format of Clock Selection Register 6 (CKSR6)

Address: FF56H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CKSR6	0	0	0	0	TPS63	TPS62	TPS61	TPS60

TPS63	TPS62	TPS61	TPS60	Base clock (fxclk)		
0	0	0	0	fx (10 MHz)		
0	0	0	1	fx/2 (5 MHz)		
0	0	1	0	fx/2 ² (2.5 MHz)		
0	0	1	1	fx/2 ³ (1.25 MHz)		
0	1	0	0	fx/2⁴ (625 kHz)		
0	1	0	1	fx/2 ⁵ (312.5 kHz)		
0	1	1	0	fx/2 ⁶ (156.25 kHz)		
0	1	1	1	fx/2 ⁷ (78.13 kHz)		
1	0	0	0	fx/2 ⁸ (39.06 kHz)		
1	0	0	1	fx/2° (19.53 kHz)		
1	0	1	0	fx/2 ¹⁰ (9.77 kHz)		
1	0	1	1	TM50 output (TO50)		
	Otl	her		Setting prohibited		

Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.

Remarks 1. Figures in parentheses are for operation with fx = 10 MHz

2. fx: X1 input clock oscillation frequency

(5) Baud rate generator control register 6 (BRGC6)

This register selects the base clock of serial interface UART6.

BRGC6 can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Figure 14-9. Format of Baud Rate Generator Control Register 6 (BRGC6)

Address: FF57H After reset: FFH R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 BRGC6
 MDL67
 MDL66
 MDL65
 MDL64
 MDL63
 MDL62
 MDL61
 MDL60

MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60	k	Output clock selection of 8-bit counter
0	0	0	0	0	×	×	×	×	Setting prohibited
0	0	0	0	1	0	0	0	8	fxclk/8
0	0	0	0	1	0	0	1	9	fxclk/9
0	0	0	0	1	0	1	0	10	fxclk/10
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
				•				•	•
1	1	1	1	1	1	0	0	252	fxclk/252
1	1	1	1	1	1	0	1	253	fxclk/253
1	1	1	1	1	1	1	0	254	fxclk/254
1	1	1	1	1	1	1	1	255	fxclk/255

Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the MDL67 to MDL60 bits.

2. The baud rate value is the output clock of the 8-bit counter divided by 2.

Remarks 1. fxclk: Frequency of base clock (Clock) selected by the TPS63 to TPS60 bits of CKSR6 register

2. k: Value set by MDL67 to MDL60 bits (k = 8, 9, 10, ..., 255)

3. x: Don't care

(6) Asynchronous serial interface control register 6 (ASICL6)

This register controls the serial transfer operations of serial interface UART6.

ASICL6 can be set by a 1-bit transfer instruction or an 8-bit memory manipulation instruction.

RESET input sets this register to 16H.

Remark ASICL6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1). However, transfer is started by refresh because bit 6 (SBRT6) and bit 5 (SBTT6) of ASICL6 are cleared to 0 when communication is complete (when an interrupt signal is generated).

Figure 14-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (1/2)

Address: FF	58H After rese	et: 16H R/W ^{Note}	,								
Symbol	7	6	5	4	3	2	1	0			
ASICL6	SBRF6	SBRT6	SBTT6	SBL62	SBL61	SBL60	DIR6	TXDLV6			
	SBRF6		SBF reception status flag								
	0	If POWER6 =	If POWER6 = 0 and RXE6 = 0 or if SBF reception has been completed correctly								
	1	SBF reception	SBF reception in progress								
	SBRT6		SBF reception trigger								
	0	-									
	1	SBF reception	SBF reception trigger								
	SBTT6	SBF transmission trigger									
	0		_								
	1	SBF transmis	sion trigger								

Note Bit 7 is read-only.

Cautions 1. In the case of an SBF reception error, return the mode to the SBF reception mode and hold the status of the SBRF6 flag.

- 2. Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1.
- 3. The read value of the SBRT6 bit is always 0. SBRT6 is automatically cleared to 0 after SBF reception has been correctly completed.
- 4. Before setting the SBTT6 bit to 1, make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1.
- 5. The read value of the SBTT6 bit is always 0. SBTT6 is automatically cleared to 0 at the end of SBF transmission.

Figure 14-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (2/2)

SBL62	SBL61	SBL60	SBF transmission output width control
1	0	1	SBF is output with 13-bit length.
1	1	0	SBF is output with 14-bit length.
1	1	1	SBF is output with 15-bit length.
0	0	0	SBF is output with 16-bit length.
0	0	1	SBF is output with 17-bit length.
0	1	0	SBF is output with 18-bit length.
0	1	1	SBF is output with 19-bit length.
1	0	0	SBF is output with 20-bit length.

DIR6	MSB/LSB-first transfer
0	MSB-first transfer
1	LSB-first transfer

TXDLV6	Enables/disables inverting TxD6 output				
0	ormal output of TxD6				
1	Inverted output of TxD6				

Caution Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.

14.4 Operation of Serial Interface UART6

This section explains the two modes of serial interface UART6.

14.4.1 Operation stop mode

In this mode, serial transfer cannot be executed; therefore, the power consumption can be reduced. In addition, the pins can be used as ordinary port pins in this mode.

(1) Register setting

The operation stop mode is set by asynchronous serial interface operation mode register 6 (ASIM6).

ASIM6 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Address: FF50H After reset: 01H R/W

Symbol ASIM6

7	6	5	4	3	2	1	0
POWER6	TXE6	RXE6	PS61	PS60	CL	SL6	ISRM6

POWER6	Enables/disables operation of internal operation clock					
O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit.					
1 Note 2	Enables operation of the internal operation clock.					

TXE6	Enables/disables transmission					
0	isables transmission operation (synchronously resets the transmission circuit).					
1	Enables transmission					

RXE6	Enables/disables reception						
0	isables reception (synchronously resets the reception circuit).						
1	Enables reception						

- **Notes 1.** The output of the TxD6 pin goes high and the input from the RxD6 pin is fixed to the high level when POWER6 = 0.
 - 2. Operation of the internal operation clock is enabled at the second input clock after 1 is written to the POWER6 bit.
- Cautions 1. At startup, set POWER6 to 1 and then set TXE6 to 1. Clear TXE6 to 0 first, and then clear POWER6 to 0.
 - 2. At startup, set POWER6 to 1 and then set RXE6 to 1. Clear RXE6 to 0 first, and then clear POWER6 to 0.

14.4.2 Asynchronous serial interface (UART) mode

In this mode, data of 1 byte is transmitted/received following a start bit, and a full-duplex operation can be performed.

A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of baud rates.

(1) Register setting

The UART mode is set by asynchronous serial interface operation mode register 6 (ASIM6), asynchronous serial interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6 (ASIF6), and asynchronous serial interface control register 6 (ASICL6).

(a) Asynchronous serial interface operation mode register 6 (ASIM6)

This 8-bit register controls the serial transfer operations of serial interface UART6.

ASIM6 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 01H.

Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Address: FF50H After reset: 01H R/W

Symbol ASIM6

7	6	5	4	3	2	1	0
POWER6	TXE6	RXE6	PS61	PS60	CL6	SL6	ISRM6

POWER6	Enables/disables operation of internal operation clock
O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit.
1 Note 2	Enables operation of the internal operation clock.

	TXE6 Enables/disables transmission			
O Disables transmission (synchronously resets the transmission circuit).				
	1 Enables transmission			

- **Notes 1.** The output of the TxD6 pin goes high and the input from the RxD6 pin is fixed to the high level when POWER6 = 0.
 - 2. Operation of the internal operation clock is enabled at the second input clock after 1 is written to the POWER6 bit.

Caution At startup, set POWER6 to 1 and then set TXE6 to 1. Clear TXE6 to 0 first, and then clear POWER6 to 0.

RXE6	Enables/disables reception			
O Disables reception (synchronously resets the reception circuit).				
1	Enables reception			

PS61	PS60	Transmission operation	Reception operation		
0	0	Does not output parity bit.	Reception without parity		
0	1	Outputs 0 parity.	Reception as 0 parity ^{Note}		
1	0	Outputs odd parity.	Judges as odd parity.		
1	1	Outputs even parity.	Judges as even parity.		

CL6	Specifies character length of transmit/receive data		
0	Character length of data = 7 bits		
1	Character length of data = 8 bits		

	SL6	Specifies number of stop bits of transmit data		
	0	Number of stop bits = 1		
I	1	Number of stop bits = 2		

ISRM6	Enables/disables occurrence of reception completion interrupt in case of error
0	"INTSRE6" occurs in case of error (at this time, INTSR6 does not occur).
1	"INTSR6" occurs in case of error (at this time, INTSRE6 does not occur).

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PE6) of asynchronous serial interface reception error status register 6 (ASIS6) is not set and the error interrupt does not occur.

- Cautions 1. At startup, set POWER6 to 1 and then set RXE6 to 1. Clear RXE6 to 0 first, and then clear POWER6 to 0.
 - 2. Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.
 - 3. Fix the PS61 and PS60 bits to 0 when mounting the device on LIN.
 - 4. Make sure that TXE6 = 0 when rewriting the SL6 bit. Reception is always performed with "the number of stop bits = 1", and therefore, is not affected by the set value of the SL6 bit.
 - 5. Make sure that RXE6 = 0 when rewriting the ISRM6 bit.

(b) Asynchronous serial interface reception error status register 6 (ASIS6)

This register indicates an error status on completion of reception by serial interface UART6. It includes three error flag bits (PE6, FE6, OVE6).

This register can be set by an 8-bit memory manipulation instruction and is read-only.

RESET input clears this register to 00H if bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 0. 00H is read when this register is read.

Address: FF53H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIS6	0	0	0	0	0	PE6	FE6	OVE6

PE6	Status flag indicating parity error			
0	f POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read			
1	If the parity of transmit data does not match the parity bit on completion of reception			

FE6	Status flag indicating framing error			
0	f POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read			
1	If the stop bit is not detected on completion of reception			

OVE6	Status flag indicating overrun error			
0	If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read			
1	If receive data is set to the RXB register and the next reception operation is completed before the data is read.			
	data is read.			

- Cautions 1. The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of asynchronous serial interface operation mode register 6 (ASIM6).
 - 2. The first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.
 - 3. If an overrun error occurs, the next receive data is not written to receive buffer register 6 (RXB6) but discarded.
 - 4. If data is read from ASIS6, a wait cycle is generated. Do not read data from ASIS6 when the CPU is operating on the subsystem clock and the X1 input clock is stopped. For details, refer to CHAPTER 29 CAUTIONS FOR WAIT.

(c) Asynchronous serial interface transmission status register 6 (ASIF6)

This register indicates the status of transmission by serial interface UART6. It includes two status flag bits (TXBF6 and TXSF6).

Transmission can be continued without disruption even during an interrupt period, by writing the next data to the TXB6 register after data has been transferred from the TXB6 register to the TXS6 register.

This register can be set by an 8-bit memory manipulation instruction, and is read-only.

RESET input clears this register to 00H if bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 0.

Address: FF55H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIF6	0	0	0	0	0	0	TXBF6	TXSF6

	TXBF6	Transmit buffer data flag
	0	If POWER6 = 0 or TXE6 = 0, or if data is transferred to transmit shift register 6 (TXS6)
I	1	If data is written to transmit buffer register 6 (TXB6) (if data exists in TXB6)

TXSF6	Transmit shift register data flag
0	If POWER6 = 0 or TXE6 = 0, or if the next data is not transferred from transmit buffer register 6 (TXB6) after completion of transfer
1	If data is transferred from transmit buffer register 6 (TXB6) (if data transmission is in progress)

- Cautions 1. To continuously transmit data, write the data of the first byte to TXB6, check that the value of the TXBF6 flag is 0, and then write the data of the second byte to TXB6. The operation is not guaranteed if data is written to TXB6 while the TXBF6 flag is 1.
 - 2. While continuous transmission is being executed, check the value of the TXSF6 flag after the transmission completion interrupt to determine the subsequent write processing to TXB6.
 - If TXSF6 is 1: Continuous transmission is in progress. Data of 1 byte can be written.
 - If TXSF6 is 0: Continuous transmission is complete. Data of 2 bytes can be written. When doing so, observe Caution 1 above.
 - 3. While continuous transmission is in progress, check that TXSF6 is 0 after the transmission completion interrupt, and then execute clearing (POWER6 = 0 or TXE6 = 0). If clearing is executed while the TXSF6 flag is 1, the transmit data cannot be guaranteed.

(d) Asynchronous serial interface control register 6 (ASICL6)

This register controls the serial transfer operations of serial interface UART6.

ASICL6 can be set by a 1-bit transfer instruction or an 8-bit memory manipulation instruction.

RESET input sets this register to 16H.

Remark ASICL6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1). However, transfer is started by refresh because bit 6 (SBRT6) and bit 5 (SBTT6) of ASICL6 are cleared to 0 when communication is complete (when an interrupt signal is generated).

Address: FF58H After reset: 16H R/WNote

Symbol	7	6	5	4	3	2	1	0
ASICL6	SBRF6	SBRT6	SBTT6	SBL62	SBL61	SBL60	DIR6	TXDLV6

SBRF6	SBF reception status flag		
0	If POWER6 = 0 and RXE6 = 0 or if SBF reception has been completed correctly		
1	SBF reception in progress		

SBRT6	SBF reception trigger	
0	_	
1	SBF reception trigger	

SBTT6	SBF transmission trigger		
0	-		
1	SBF transmission trigger		

Note Bit 7 is read-only.

Cautions 1. In the case of an SBF reception error, return the mode to the SBF reception mode and hold the status of the SBRF6 flag.

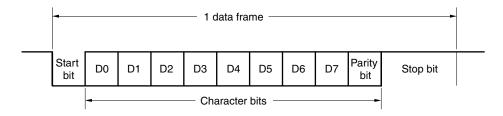
- 2. Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1.
- 3. The read value of the SBRT6 bit is always 0. SBRT6 is automatically cleared to 0 after SBF reception has been correctly completed.
- 4. Before setting the SBTT6 bit to 1, make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1.
- 5. The read value of the SBTT6 bit is always 0. SBTT6 is automatically cleared to 0 at the end of SBF transmission.

SBL62	SBL61	SBL60	SBF transmission output width control
1	0	1	SBF is output with 13-bit length.
1	1	0	SBF is output with 14-bit length.
1	1	1	SBF is output with 15-bit length.
0	0	0	SBF is output with 16-bit length.
0	0	1	SBF is output with 17-bit length.
0	1	0	SBF is output with 18-bit length.
0	1	1	SBF is output with 19-bit length.
1	0	0	SBF is output with 20-bit length.

Ī	DIR6	MSB/LSB-first transfer
	0	MSB-first transfer
	1	LSB-first transfer

	TXDLV6	Enables/disables inverting TxD6 output
I	0	Normal output of TxD6
	1	Inverted output of TxD6

Caution Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.


(2) Communication operation

(a) Normal transmit/receive data format

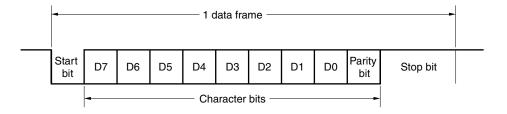

Figure 14-11 shows the format of the transmit/receive data.

Figure 14-11. Format of Normal UART Transmit/Receive Data

1. LSB-first transmission/reception

2. MSB-first transmission/reception

One data frame consists of the following bits.

- Start bit ... 1 bit
- Character bits ... 7 or 8 bits
- Parity bit ... Even parity, odd parity, 0 parity, or no parity
- Stop bit ... 1 or 2 bits


The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial interface mode register 6 (ASIM6).

Whether data is transferred with the LSB or MSB first is specified by bit 1 (DIR6) of asynchronous serial interface control register 6 (ASICL6).

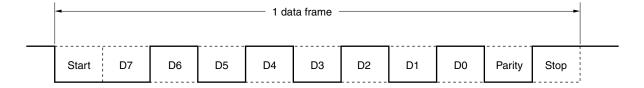
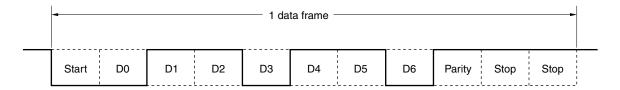
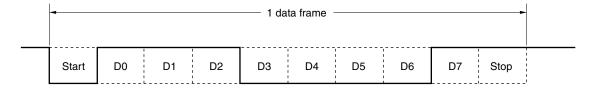

Whether the TxD6 pin outputs normal or inverted data is specified by bit 0 (TXDLV6) of ASICL6.

Figure 14-12. Example of Normal UART Transmit/Receive Data Format

1. Data length: 8 bits, LSB first, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H


2. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H


3. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H, TxD6 pin inverted output

4. Data length: 7 bits, LSB first, Parity: Odd parity, Stop bit: 2 bits, Transfer data: 36H

5. Data length: 8 bits, LSB first, Parity: None, Stop bit: 1 bit, Transfer data: 87H

(b) Parity types and operation

The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error can be detected. With zero parity and no parity, an error cannot be detected.

Caution Fix the PS61 and PS60 bits to 0 when the device is incorporated in LIN.

(i) Even parity

Transmission

Transmit data, including the parity bit, is controlled so that the number of bits that are "1" is even. The value of the parity bit is as follows.

If transmit data has an odd number of bits that are "1": 1
If transmit data has an even number of bits that are "1": 0

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is odd, a parity error occurs.

(ii) Odd parity

Transmission

Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that are "1" is odd.

If transmit data has an odd number of bits that are "1": 0

If transmit data has an even number of bits that are "1": 1

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is even, a parity error occurs.

(iii) 0 parity

The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.

The parity bit is not detected when the data is received. Therefore, a parity error does not occur regardless of whether the parity bit is "0" or "1".

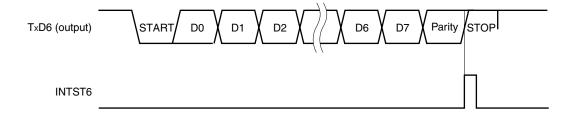
(iv) No parity

No parity bit is appended to the transmit data.

Reception is performed assuming that there is no parity bit when data is received. Because there is no parity bit, a parity error does not occur.

(c) Normal transmission

The TxD6 pin outputs a high level when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1. If bit 6 (TXE6) of ASIM6 is then set to 1, transmission is enabled. Transmission can be started by writing transmit data to transmit buffer register 6 (TXB6). The start bit, parity bit, and stop bit are automatically appended to the data.


When transmission is started, the data in TXB6 is transferred to transmit shift register 6 (TXS6). After that, the data is sequentially output from TXS6 to the TxD6 pin, starting from the LSB. When transmission is completed, a transmission completion interrupt request (INTST6) is generated.

Transmission is stopped until the data to be transmitted next is written to TXB6.

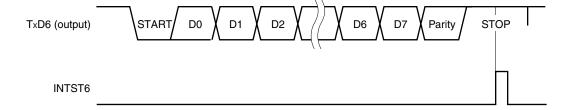

Figure 14-13 shows the timing of the transmission completion interrupt request (INTST6). This interrupt occurs as soon as the last stop bit has been output.

Figure 14-13. Normal Transmission Completion Interrupt Request Timing

1. Stop bit length: 1

2. Stop bit length: 2

(d) Continuous transmission

When transmit shift register 6 (TXS6) has started the shift operation, the next transmit data can be written to transmit buffer register 6 (TXB6). As a result, data can be transmitted without intermission even while an interrupt that has occurred after transmission of one data frame is being serviced, thus realizing an efficient communication rate. To transmit data continuously, however, transmission processing must be executed while referencing bits 1 (TXBF6) and 0 (TXSF6) of asynchronous serial interface transmission status register 6 (ASIF6).

Caution When the device is incorporated in LIN, the continuous transmission function cannot be used. Make sure that asynchronous serial interface transmission status register 6 (ASIF6) is 00H before writing transmit data to transmit buffer register 6 (TXB6).

Table 14-2. Write Processing and Writing to TXB6 During Execution of Continuous Transmissi	Table 14-2	2. Write Processin	a and Writing to	to TXB6 During	Execution of Continuous	Transmissio
--	-------------------	--------------------	------------------	----------------	-------------------------	-------------

TXBF6	TXSF6	Write Processing During Execution of Continuous Transmission	Writing to TXB6 During Execution of Continuous Transmission
0	0	Enables writing 2 bytes or transmission completion processing	Enables writing
0	1	Enables writing 1 byte	Enables writing
1	0	Enables writing 2 bytes or transmission completion processing	Disables writing
1	1	Enables writing 1 byte	Disables writing

- Cautions 1. To continuously transmit data, write the data of the first byte to TXB6, check that the value of the TXBF6 flag is 0, and then write the data of the second byte to TXB6. The operation is not guaranteed if data is written to TXB6 while the TXBF6 flag is 1.
 - While continuous transmission is being executed, check the value of the TXSF6 flag after the transmission completion interrupt to determine the subsequent write processing to TXB6.
 - If TXSF6 is 1: Continuous transmission is in progress. Data of 1 byte can be written.
 - If TXSF6 is 0: Continuous transmission is completed. Data of 2 bytes can be written.

 To do so, observe Caution 1 above.
 - While continuous transmission is in progress, check that TXSF6 is 0 after the transmission completion interrupt, and then execute clearing (POWER6 = 0 or TXE6 = 0). If clearing is executed while the TXSF6 flag is 1, the transmit data cannot be guaranteed.

Set registers. Write transmit data to TXB6 register. Read ASIF6 No register. TXBF6 = 03 Yes Interrupt occurs. Transfer executed Yes necessary number of times? No Read ASIF6 Read ASIF6 No No register. TXSF6 = 1 register. TXSF6 = 0? Yes Yes Write transmit data to TXB6 register.

Figure 14-14 shows the processing flow of continuous transmission.

Figure 14-14. Processing Flow of Continuous Transmission

Remark TXB6: Transmit buffer register 6

ASIF6: Asynchronous serial interface transmission status register 6

Wait for interrupt.

TXBF6: Bit 1 of ASIF6 (transmit buffer data flag)

TXSF6: Bit 0 of ASIF6 (transmit shift register data flag)

Completion of

transmission processing

Figure 14-15 shows the timing of starting continuous transmission, and Figure 14-16 shows the timing of ending continuous transmission.

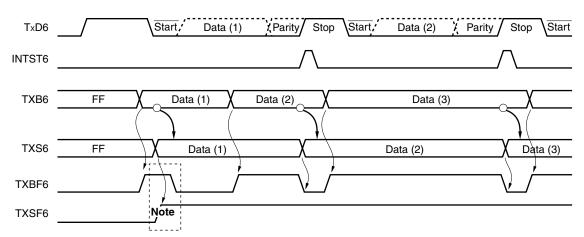


Figure 14-15. Timing of Starting Continuous Transmission

Note When ASIF6 is read, there is a period in which TXBF6 and TXSF6 = 1, 1. Therefore, judge whether writing is enabled using only the TXBF6 bit.

Remark TxD6: TxD6 pin (output)

INTST6: Interrupt request signalTXB6: Transmit buffer register 6TXS6: Transmit shift register 6

ASIF6: Asynchronous serial interface transmission status register 6

TXBF6: Bit 1 of ASIF6 TXSF6: Bit 0 of ASIF6



Figure 14-16. Timing of Ending Continuous Transmission

Remark TxD6: TxD6 pin (output)

INTST6: Interrupt request signal TXB6: Transmit buffer register 6
TXS6: Transmit shift register 6

ASIF6: Asynchronous serial interface transmission status register 6

TXBF6: Bit 1 of ASIF6
TXSF6: Bit 0 of ASIF6

POWER6: Bit 7 of asynchronous serial interface operation mode register (ASIM6) TXE6: Bit 6 of asynchronous serial interface operation mode register (ASIM6)

(e) Normal reception

RXB6

Reception is enabled and the RxD6 pin input is sampled when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1.

The 8-bit counter of the baud rate generator starts counting when the falling edge of the RxD6 pin input is detected. When the set value of baud rate generator control register 6 (BRGC6) has been counted, the RxD6 pin input is sampled again (▽ in Figure 14-17). If the RxD6 pin is low level at this time, it is recognized as a start bit.

When the start bit is detected, reception is started, and serial data is sequentially stored in the receive shift register (RXS6) at the set baud rate. When the stop bit has been received, the reception completion interrupt (INTSR6) is generated and the data of RXS6 is written to receive buffer register 6 (RXB6). If an overrun error (OVE6) occurs, however, the receive data is not written to RXB6.

Even if a parity error (PE6) or a framing error (FE6) occurs while reception is in progress, reception continues to the reception position of the stop bit, and an error interrupt (INTSR6/INTSRE6) is generated on completion of reception.

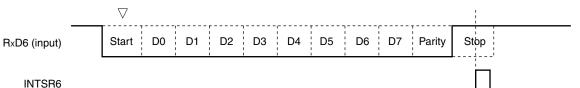


Figure 14-17. Reception Completion Interrupt Request Timing

- Cautions 1. Be sure to read receive buffer register 6 (RXB6) even if a reception error occurs.

 Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.
 - 2. Reception is always performed with the "number of stop bits = 1". The second stop bit is ignored.
 - 3. Be sure to read asynchronous serial interface reception error status register 6 (ASIS6) before reading RXB6.

(f) Reception error

Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error flag of asynchronous serial interface reception error status register 6 (ASIS6) is set as a result of data reception, a reception error interrupt request (INTSR6/INTSRE6) is generated.

Which error has occurred during reception can be identified by reading the contents of ASIS6 in the reception error interrupt servicing (INTSR6/INTSRE6) (refer to **Table 14-3**).

The contents of ASIS6 are reset to 0 when ASIS6 is read.

Table 14-3. Cause of Reception Error

Reception Error	Cause	Value of ASIS6
Parity error	The parity specified for transmission does not match the parity of the receive data.	04H
Framing error	Stop bit is not detected.	02H
Overrun error	Reception of the next data is completed before data is read from receive buffer register 6 (RXB6).	01H

The error interrupt can be separated into INTSR6 and INTSRE6 by clearing bit 0 (ISRM6) of asynchronous serial interface operation mode register 6 (ASIM6) to 0.

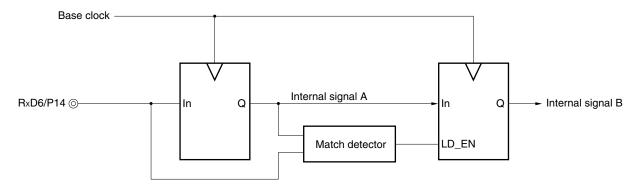
(b) Error during reception

Figure 14-18. Reception Error Interrupt

1. If ISRM6 is cleared to 0 (INTSR6 and INTSRE6 are separated)

(a) No error during reception

INTSR6		INTSR6	
INTSRE6		INTSRE6	
2. If ISRM6 i	s set to 1 (error interrupt is ir	ncluded in INTSR6)	
(a) No	error during reception	(b) Er	ror during reception
(a) No	error during reception	(b) Er	ror during reception


(g) Noise filter of receive data

The RXD6 signal is sampled with the base clock output by the prescaler block.

If two sampled values are the same, the output of the match detector changes, and the data is sampled as input data.

Because the circuit is configured as shown in Figure 14-19, the internal processing of the reception operation is delayed by two clocks from the external signal status.

Figure 14-19. Noise Filter Circuit

(h) SBF transmission

When the device is incorporated in LIN, the SBF (Synchronous Break Field) transmission control function is used for transmission. For the transmission operation of LIN, refer to **Figure 14-1 LIN Transmission Operation**.

The TxD6 pin outputs a high level when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1. Transmission is enabled when bit 6 (TXE6) of ASIM6 is set to 1 next time, and SBF transmission operation is started when bit 5 (SBTT6) of asynchronous serial interface control register 6 (ASICL6) is set to 1.

After transmission has been started, the low levels of bits 13 to 20 (set by bits 4 to 2 (SBL62 to SBL60) of ASICL6) are output. When SBF transmission has been completed, a transmission completion interrupt request (INTST6) is generated, and SBTT6 is automatically cleared. After SBF transmission has been completed, the normal transmission mode is restored.

Transmission is stopped until the data to be transmitted next is written to transmit buffer register 6 (TXB6) or SBTT6 is set to 1.

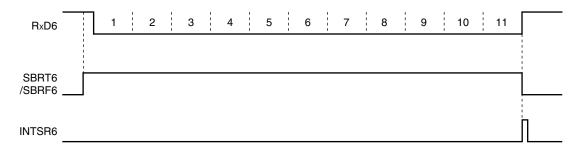
Figure 14-20. SBF Transmission

Remark TxD6: TxD6 pin (output)

INTST6: Transmission completion interrupt request

SBTT6: Bit 5 of asynchronous serial interface control register 6 (ASICL6)

(i) SBF reception


When the device is incorporated in LIN, the SBF (Synchronous Break Field) reception control function is used for reception. For the reception operation of LIN, refer to **Figure 14-2 LIN Reception Operation**.

Reception is enabled when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1. SBF reception is enabled when bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6) is set to 1. In the SBF reception enabled status, the RxD6 pin is sampled and the start bit is detected in the same manner as the normal reception enable status.

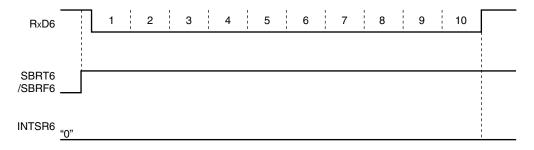

When the start bit has been detected, reception is started, and serial data is sequentially stored in the receive shift register 6 (RXS6) at the set baud rate. When the stop bit is received and if the width of SBF is 11 bits or more, a reception completion interrupt request (INTSR6) is generated as normal processing. At this time, the SBRF6 and SBRT6 bits are automatically cleared, and SBF reception ends. Detection of errors, such as OVE6, PE6, and FE6 (bits 0 to 2 of asynchronous serial interface reception error status register 6 (ASIS6)) is suppressed, and error detection processing of UART communication is not performed. In addition, data transfer between receive shift register 6 (RXS6) and receive buffer register 6 (RXB6) is not performed, and the reset value of FFH is retained. If the width of SBF is 10 bits or less, an interrupt does not occur as error processing after the stop bit has been received, and the SBF reception mode is restored. In this case, the SBRF6 and SBRT6 bits are not cleared.

Figure 14-21. SBF Reception

1. Normal SBF reception (stop bit is detected with a width of more than 10.5 bits)

2. SBF reception error (stop bit is detected with a width of 10.5 bits or less)

Remark RxD6: RxD6 pin (input)

SBRT6: Bit 6 of asynchronous serial interface control register 6 (ASICL6)

SBRF6: Bit 7 of ASICL6

INTSR6: Reception completion interrupt request

14.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and an 8-bit programmable counter, and generates a serial clock for transmission/reception of UART6.

Separate 8-bit counters are provided for transmission and reception.

(1) Configuration of baud rate generator

Base clock (Clock)

The clock selected by bits 3 to 0 (TPS63 to TPS60) of clock selection register 6 (CKSR6) is supplied to each module when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is 1. This clock is called the base clock (Clock) and its frequency is called fxclk. Clock is fixed to the low level when POWER6 = 0.

· Transmission counter

This counter stops, cleared to 0, when bit 7 (POWER6) or bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.

It starts counting when POWER6 = 1 and TXE6 = 1.

The counter is cleared to 0 when the first data transmitted is written to transmit buffer register 6 (TXB6).

If data are continuously transmitted, the counter is cleared to 0 again when one frame of data has been completely transmitted. If there is no data to be transmitted next, the counter is not cleared to 0 and continues counting until POWER6 or TXE6 is cleared to 0.

· Reception counter

This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 5 (RXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0.

It starts counting when the start bit has been detected.

The counter stops operation after one frame has been received, until the next start bit is detected.

POWER6 fx 🗇 fx/2 ① fx/2² ①-POWER6, TXE6 (or RXE6) fx/2³ ① fx/2⁴ ① fx/2⁵ ① Clock Selector 8-bit counter fx/2⁶ ① (fxclk) fx/2⁷ © fx/2⁸ ① fx/2⁹ ① fx/2¹⁰ ①-Match detector - Baud rate 1/2 TO50/TI50/P17 (O) (TM50 output) CKSR6: TPS63 to TPS60 BRGC6: MDL67 to MDL60

Figure 14-22. Configuration of Baud Rate Generator

Remark POWER6: Bit 7 of asynchronous serial interface operation mode register 6 (ASIM6)

TXE6: Bit 6 of ASIM6
RXE6: Bit 5 of ASIM6

CKSR6: Clock selection register 6

BRGC6: Baud rate generator control register 6

(2) Generation of serial clock

A serial clock can be generated by using clock selection register 6 (CKSR6) and baud rate generator control register 6 (BRGC6).

Select the clock to be input to the 8-bit counter by using bits 3 to 0 (TPS63 to TPS60) of CKSR6.

Bits 7 to 0 (MDL67 to MDL60) of BRGC6 can be used to select the division value of the 8-bit counter.

(a) Clock selection register 6 (CKSR6)

This register selects the base clock of serial interface UART6.

CKSR6 can be set by an 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Remark CKSR6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Address: FF56H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0	
CKSR6	0	0	0	0	TPS63	TPS62	TPS61	TPS60	

TPS63	TPS62	TPS61	TPS60	Base clock (fxclk)
0	0	0	0	fx (10 MHz)
0	0	0	1	fx/2 (5 MHz)
0	0	1	0	fx/2 ² (2.5 MHz)
0	0	1	1	fx/2 ³ (1.25 MHz)
0	1	0	0	fx/2 ⁴ (625 kHz)
0	1	0	1	fx/2 ⁵ (312.5 kHz)
0	1	1	0	fx/2 ⁶ (156.25 kHz)
0	1	1	1	fx/2 ⁷ (78.13 kHz)
1	0	0	0	fx/2 ⁸ (39.06 kHz)
1	0	0	1	fx/2 ⁹ (19.53 kHz)
1	0	1	0	fx/2 ¹⁰ (9.77 kHz)
1	0	1	1	TM50 output
	Otl	her		Setting prohibited

Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.

Remarks 1. Figures in parentheses are for operation with fx = 10 MHz

2. fx: X1 input clock oscillation frequency

(b) Baud rate generator control register 6 (BRGC6)

This register selects the base clock of serial interface UART6.

BRGC6 can be set by an 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1).

Address: FF57H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
BRGC6	MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60

MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60	k	Output clock selection of 8-bit counter
0	0	0	0	0	×	×	×	×	Setting prohibited
0	0	0	0	1	0	0	0	8	fxclk/8
0	0	0	0	1	0	0	1	9	fxclk/9
0	0	0	0	1	0	1	0	10	fxclk/10
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
1	1	1	1	1	1	0	0	252	fxclk/252
1	1	1	1	1	1	0	1	253	fxclk/253
1	1	1	1	1	1	1	0	254	fxclk/254
1	1	1	1	1	1	1	1	255	fxclk/255

- Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the MDL67 to MDL60 bits.
 - 2. The baud rate value is the output clock of the 8-bit counter divided by 2.
- Remarks 1. fxclk: Frequency of base clock (Clock) selected by the TPS63 to TPS60 bits of CKSR6 register
 - **2.** k: Value set by MDL67 to MDL60 bits (k = 8, 9, 10, ..., 255)
 - 3. ×: Don't care

(c) Baud rate

The baud rate can be calculated by the following expression.

• Baud rate =
$$\frac{f_{XCLK}}{2 \times k}$$
 [bps]

fxclk: Frequency of base clock (Clock) selected by TPS63 to TPS60 bits of CKSR6 register k: Value set by MDL67 to MDL60 bits of BRGC6 register (k = 8, 9, 10, ..., 255)

(d) Error of baud rate

The baud rate error can be calculated by the following expression.

• Error (%) =
$$\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (correct baud rate)}} - 1 \times 100 [\%]$$

- Cautions 1. Keep the baud rate error during transmission to within the permissible error range at the reception destination.
 - 2. Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.

Baud rate =
$$20 \text{ M/}(2 \times 65)$$

= $20000000/(2 \times 65) = 153846 \text{ [bps]}$

Error =
$$(153846/153600 - 1) \times 100$$

= 0.160 [%]

(3) Example of setting baud rate

Table 14-4. Set Data of Baud Rate Generator

Baud Rate	Baud Rate fx = 10.0 MHz					fx = 8.38 MHz				fx = 4.19 MHz			
[bps]	TPS63 to TPS60	k	Calculated Value	ERR[%]	TPS63 to TPS60	k	Calculated Value	ERR[%]	TPS63 to TPS60	k	Calculated Value	ERR[%]	
600	6H	130	601	0.16	6H	109	601	0.11	5H	109	601	0.11	
1200	5H	130	1202	0.16	5H	109	1201	0.11	4H	109	1201	0.11	
2400	4H	130	2404	0.16	4H	109	2403	0.11	3H	109	2403	0.11	
4800	ЗН	130	4808	0.16	ЗН	109	4805	0.11	2H	109	4805	0.11	
9600	2H	130	9615	0.16	2H	109	9610	0.11	1H	109	9610	0.11	
10400	2H	120	10417	0.16	2H	101	10371	0.28	1H	101	10475	-0.28	
19200	1H	130	19231	0.16	1H	109	19200	0.11	0H	109	19220	0.11	
31250	1H	80	31250	0.00	0H	134	31268	0.06	0H	67	31268	0.06	
38400	OН	130	38462	0.16	0H	109	38440	0.11	0H	55	38090	-0.80	
76800	OН	65	76923	0.16	oН	55	76182	-0.80	0H	27	77593	1.03	
115200	0H	43	116279	0.94	0H	36	116388	1.03	0H	18	116389	1.03	
153600	0H	33	151515	-1.36	0H	27	155185	1.03	0H	14	149643	-2.58	
230400	0H	22	227272	-1.36	0H	18	232777	1.03	0H	9	232778	1.03	

Caution The maximum permissible frequency of the base clock (fxclk) is 25 MHz.

Remark TPS63 to TPS60: Bits 3 to 0 of clock selection register 6 (CKSR6) (setting of base clock (fxclk))

k: Value set by MDL67 to MDL60 bits of baud rate generator control register 6

(BRGC6) (k = 8, 9, 10, ..., 255)

fx: X1 input clock oscillation frequency

ERR: Baud rate error

(4) Permissible baud rate range during reception

The permissible error from the baud rate at the transmission destination during reception is shown below.

Caution Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.

Latch timing ∇ ∇ ∇ ∇ Transfer rate Parity bit Start bit Bit 0 Bit 1 Bit 7 of UART6 FL 1 data frame (11 \times FL) Minimum permissible Bit 0 Bit 1 Bit 7 Start bit Parity bit Stop bit transfer rate **FLmin** Maximum permissible Bit 0 Bit 1 Bit 7 Parity bit Start bit Stop bit transfer rate **FLmax**

Figure 14-23. Permissible Baud Rate Range During Reception

As shown in Figure 14-23, the latch timing of the receive data is determined by the counter set by baud rate generator control register 6 (BRGC6) after the start bit has been detected. If the last data (stop bit) meets this latch timing, the data can be correctly received.

Assuming that 11-bit data is received, the theoretical values can be calculated as follows.

$$FL = (Brate)^{-1}$$

Brate: Baud rate of UART6 k: Set value of BRGC6 FL: 1-bit data length

Margin of latch timing: 2 clocks

 $\mbox{Minimum permissible transfer rate: FLmin = } 11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k} \ FL$

Therefore, the maximum receivable baud rate at the transmission destination is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, the maximum permissible transfer rate can be calculated as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

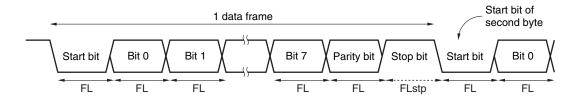
$$FLmax = \frac{21k - 2}{20k} FL \times 11$$

Therefore, the minimum receivable baud rate at the transmission destination is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

The permissible baud rate error between UART6 and the transmission destination can be calculated from the above minimum and maximum baud rate expressions, as follows.

Table 14-5. Maximum/Minimum Permissible Baud Rate Error


Division Ratio (k)	Maximum Permissible Baud Rate Error	Minimum Permissible Baud Rate Error		
8	+3.53%	-3.61%		
20	+4.26%	-4.31%		
50	+4.56%	-4.58%		
100	+4.66%	-4.67%		
255	+4.72%	-4.73%		

- **Remarks 1.** The accuracy of reception depends on the number of bits in one frame, input clock frequency, and division ratio (k). The higher the input clock frequency and the higher the division ratio (k), the higher the accuracy.
 - 2. k: Set value of BRGC6

(5) Transfer rate during continuous transmission

When data is continuously transmitted, the transfer rate from a stop bit to the next start bit is extended by two clocks from the normal value. However, the result of transfer is not affected because the timing is initialized on the reception side when the start bit is detected.

Figure 14-24. Transfer Rate During Continuous Transmission

Where the 1-bit data length is FL, the stop bit length is FLstp, and base clock frequency is fxclk, the following expression is satisfied.

$$FLstp = FL + 2/fxclk$$

Therefore, the transfer rate during continuous transmission is:

Transfer rate = $11 \times FL + 2/fxclk$

CHAPTER 15 SERIAL INTERFACE CSI10

15.1 Functions of Serial Interface CSI10

Serial interface CSI10 has the following two modes.

- Operation stop mode
- 3-wire serial I/O mode

(1) Operation stop mode

This mode is used when serial transfer is not performed and can enable a reduction in the power consumption.

(2) 3-wire serial I/O mode (MSB/LSB-first selectable)

This mode is used to transfer 8-bit data using three lines: a serial clock line (SCK10) and two serial data lines (SI10 and SO10).

The processing time of data transfer can be shortened in the 3-wire serial I/O mode because transmission and reception can be simultaneously executed.

In addition, whether 8-bit data is transferred with the MSB or LSB first can be specified, so this interface can be connected to any device.

The 3-wire serial I/O mode is useful for connecting peripheral ICs and display controllers with a clocked serial interface.

15.2 Configuration of Serial Interface CSI10

Serial interface CSI10 consists of the following hardware.

Table 15-1. Configuration of Serial Interface CSI10

Item	Configuration
Registers	Transmit buffer register 10 (SOTB10) Serial I/O shift register 10 (SIO10)
Control registers	Serial operation mode register 10 (CSIM10) Serial clock selection register 10 (CSIC10)

Internal bus 8 8 E--Serial I/O shift Transmit buffer Output SI10/P11/RxD0 @ SO10/P12 register 10 (SIO10) register 10 (SOTB10) selector Transmit data Output latch controller Transmit controller fx/2 to $fx/2^7$ Clock start/stop controller & Selector - INTCSI10 clock phase controller SCK10/P10/TxD0 ⊚

Figure 15-1. Block Diagram of Serial Interface CSI10

(1) Transmit buffer register 10 (SOTB10)

This register sets the transmit data.

Transmission/reception is started by writing data to SOTB10 when bit 6 (TRMD10) of serial operation mode register 10 (CSIM10) is 1.

The data written to SOTB10 is converted from parallel data into serial data by serial I/O shift register 10, and output to the serial output pin (SO10).

SOTB10 can be written or read by an 8-bit memory manipulation instruction.

RESET input makes this register undefined.

Caution Do not access SOTB10 when CSOT10 = 1 (during serial communication).

(2) Serial I/O shift register 10 (SIO10)

This is an 8-bit register that converts data from parallel data into serial data and vice versa.

This register can be read by an 8-bit memory manipulation instruction.

Reception is started by reading data from SIO10 if bit 6 (TRMD10) of serial operation mode register 10 (CSIM10) is 0.

During reception, the data is read from the serial input pin (SI10) to SIO10.

RESET input clears this register to 00H.

Caution Do not access SIO10 when CSOT10 = 1 (during serial communication).

15.3 Registers Controlling Serial Interface CSI10

Serial interface CSI10 is controlled by the following two registers.

- Serial operation mode register 10 (CSIM10)
- Serial clock selection register 10 (CSIC10)

(1) Serial operation mode register 10 (CSIM10)

CSIM10 is used to select the operation mode and enable or disable operation.

CSIM10 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 15-2. Format of Serial Operation Mode Register 10 (CSIM10)

Address: FF80H After reset: 00H R/WNote 1

Symbol	7	6	5	4	3	2	1	0
CSIM10	CSIE10	TRMD10	0	DIR10	0	0	0	CSOT10

CSIE10	Operation control in 3-wire serial I/O mode
0	Stops operation (SI10/P11/RxD0, SO10/P12, and SCK10/P10/TxD0 pins can be used as general-purpose port pins).
1	Enables operation (SI10/P11/RxD0, SO10/P12, and SCK10/P10/TxD0 pins are at active level).

TRMD10 ^{Note 2}	Transmit/receive mode control				
O ^{Note 3}	Receive mode (transmission disabled)				
1	Transmit/receive mode				

DIR10 ^{Note 4}	First bit specification
0	MSB
1	LSB

CSOT10 ^{Note 5}	Operation mode flag				
0	Communication is stopped.				
1	Communication is in progress.				

Notes 1. Bit 0 is read-only.

- 2. Do not rewrite TRMD10 when CSOT10 = 1 (during serial communication).
- **3.** The SO10 pin is fixed to the low level when TRMD10 is 0. Reception is started when data is read from SIO10.
- **4.** Do not rewrite DIR10 when CSOT10 = 1 (during serial communication).
- 5. CSOT10 is cleared if CSIE10 is set to 0 (operation stopped).

Caution Be sure to set bit 5 to 0.

(2) Serial clock selection register 10 (CSIC10)

CSIC10 is used to select the phase of the data clock and set the count clock.

CSIC10 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 15-3. Format of Serial Clock Selection Register 10 (CSIC10)

Address: FF81H After reset: 00H R/W 2 0 Symbol 7 6 5 4 3 1 CSIC10 0 DAP10 CKS102 CKS101 0 0 CKP10 CKS100

CKP10	DAP10	Data clock phase selection	Туре
0	0	SCK10	1
0	1	SCK10	2
1	0	SCK10	3
1	1	SCK10SCK10SO10 \(\frac{\text{D7}\text{D6}\text{D5}\text{D4}\text{D3}\text{D2}\text{D1}\text{D0} \) SI10 input timing	4

CKS102	CKS101	CKS100	CSI10 count clock selection
0	0	0	fx/2 (5 MHz)
0	0	1	$fx/2^2$ (2.5 MHz)
0	1	0	fx/2³ (1.25 MHz)
0	1	1	fx/2⁴ (625 kHz)
1	0	0	fx/2 ⁵ (312.5 kHz)
1	0	1	fx/2 ⁶ (156.25 kHz)
1	1	0	fx/2 ⁷ (78.13 kHz)
1	1	1	External clock input to SCK10

Cautions 1. Do not write CSIC10 during a communication operation or when using P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 as general-purpose port pins.

2. The phase type of the data clock is type 1 after reset.

Remarks 1. Figures in parentheses are for operation with fx = 10 MHz

2. fx: X1 input clock oscillation frequency

15.4 Operation of Serial Interface CSI10

Serial interface CSI10 can be used in the following two modes.

- · Operation stop mode
- 3-wire serial I/O mode

15.4.1 Operation stop mode

Serial transfer is not executed in this mode. Therefore, the power consumption can be reduced. In addition, the P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 pins can be used as ordinary I/O port pins in this mode.

(1) Register setting

The operation stop mode is set by serial operation mode register 10 (CSIM10).

(a) Serial operation mode register 10 (CSIM10)

CSIM10 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CSIM10 to 00H.

Address: FF80H After reset: 00H R/W

Symbol CSIM10

7	6	5	4	3	2	1	0
CSIE10	TRMD10	0	DIR10	0	0	0	CSOT10

CSIE10	Operation control in 3-wire serial I/O mode
0	Stops operation (SI10/P11/RxD0, SO10/P12, and SCK10/P10/TxD0 pins can be used as general-purpose port pins).
1	Enables operation (SI10/P11/RxD0, SO10/P12, and SCK10/P10/TxD0 pins are at active level).

15.4.2 3-wire serial I/O mode

The 3-wire serial I/O mode is useful for connecting peripheral ICs and display controllers that have a clocked serial interface.

In this mode, communication is executed by using three lines: the serial clock (SCK10), serial output (SO10), and serial input (SI10) lines.

(1) Register setting

The 3-wire serial I/O mode is set by serial operation mode register 10 (CSIM10) and serial clock selection register 10 (CSIC10).

(a) Serial operation mode register 10 (CSIM10)

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Address: FF80H After reset: 00H R/WNote 1

Symbol	7	6	5	4	3	2	1	0
CSIM10	CSIE10	TRMD10	0	DIR10	0	0	0	CSOT10

CSIE10	Operation control in 3-wire serial I/O mode
0	Stops operation (SI10/P11/RxD0, SO10/P12, and \$\overline{SCK10}/P10/TxD0 pins can be used as general-purpose port pins).
1	Enables operation (SI10/P11/RxD0, SO10/P12, and SCK10/P10/TxD0 pins are at active level).

TRMD10 ^{Note 2}	Transmit/receive mode control		
O ^{Note 3}	Receive mode (transmission disabled)		
1	Transmit/receive mode		

DIR10 ^{Note 4}	First bit specification
0	MSB
1	LSB

CSOT10 ^{Note 5}	Operation mode flag			
0	Communication is stopped.			
1	Communication is in progress.			

Notes 1. Bit 0 is read-only.

- **2.** Do not rewrite TRMD10 when CSOT10 = 1 (during serial communication).
- **3.** The SO10 pin is fixed to the low level when TRMD10 is 0. Reception is started when data is read from SIO10.
- **4.** Do not rewrite DIR10 when CSOT10 = 1 (during serial communication).
- **5.** CSOT10 is cleared if CSIE10 is set to 0 (operation stopped).

Caution Be sure to set bit 5 to 0.

(b) Serial clock selection register 10 (CSIC10)

CSIC10 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Address: FF81H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CSIC10	0	0	0	CKP10	DAP10	CKS102	CKS101	CKS100

CKP10	DAP10	Data clock phase selection	Туре
0	0	SCK10	1
0	1	SCK10	2
1	0	SCK10	3
1	1	SCK10	4

CKS102	CKS101	CKS100	CSI10 count clock selection
0	0	0	fx/2 (5 MHz)
0	0	1	fx/2² (2.5 MHz)
0	1	0	fx/2³ (1.25 MHz)
0	1	1	fx/2 ⁴ (625 kHz)
1	0	0	fx/2 ⁵ (312.5 kHz)
1	0	1	fx/2 ⁶ (156.25 kHz)
1	1	0	fx/2 ⁷ (78.13 kHz)
1	1	1	External clock input to SCK10

Cautions 1. Do not write CSIC10 during a communication operation or when using P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 as general-purpose port pins.

2. The phase type of the data clock is type 1 after reset.

Remarks 1. Figures in parentheses are for operation with fx = 10 MHz

2. fx: X1 input clock oscillation frequency

(2) Setting of ports

<1> Transmit/receive mode

(a) To use externally input clock as system clock (SCK10)

```
Bit 1 (PM11) of port mode register 1: Set to 1
Bit 2 (PM12) of port mode register 1: Cleared to 0
Bit 0 (PM10) of port mode register 1: Set to 1
Bit 2 (P12) of port 1: Cleared to 0
```

(b) To use internal clock as system clock (SCK10)

```
Bit 1 (PM11) of port mode register 1: Set to 1
Bit 2 (PM12) of port mode register 1: Cleared to 0
Bit 0 (PM10) of port mode register 1: Cleared to 0
Bit 2 (P12) of port 1: Cleared to 0
Bit 0 (P10) of port 1: Set to 1
```

<2> Receive mode (with transmission disabled)

(a) To use externally input clock as system clock (SCK10)

```
Bit 1 (PM11) of port mode register 1: Set to 1
Bit 0 (PM10) of port mode register 1: Set to 1
```

(b) To use internal clock as system clock (SCK10)

```
Bit 1 (PM11) of port mode register 1: Set to 1
Bit 0 (PM10) of port mode register 1: Cleared to 0
Bit 0 (P10) of port 1: Set to 1
```

Remark The transmit/receive mode or receive mode is selected by using bit 6 (TRMD10) of serial operation mode register 10 (CSIM10).

(3) Communication operation

In the 3-wire serial I/O mode, data is transmitted or received in 8-bit units. Each bit of the data is transmitted or received in synchronization with the serial clock.

Data can be transmitted or received if bit 6 (TRMD10) of serial operation mode register 10 (CSIM10) is 1. Transmission/reception is started when a value is written to transmit buffer register 10 (SOTB10). In addition, data can be received when bit 6 (TRMD10) of serial operation mode register 10 (CSIM10) is 0.

Reception is started when data is read from serial I/O shift register 10 (SIO10).

After communication has been started, bit 0 (CSOT10) of CSIM10 is set to 1. When communication of 8-bit data has been completed, a communication completion interrupt request flag (CSIIF10) is set, and CSOT10 is cleared to 0. Then the next communication is enabled.

Caution Do not access the control register and data register when CSOT10 = 1 (during serial communication).

Figure 15-4. Timing in 3-Wire Serial I/O Mode (1/2)

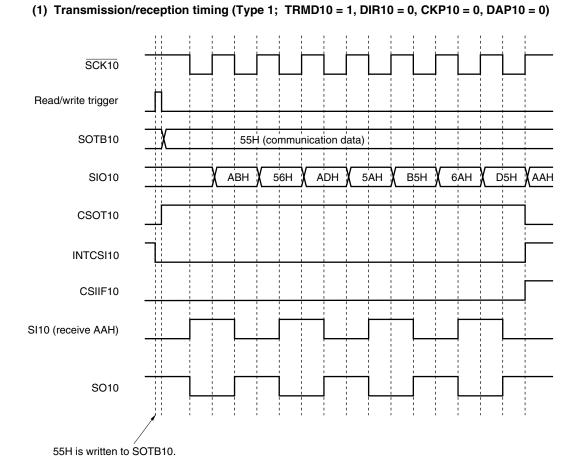


Figure 15-4. Timing in 3-Wire Serial I/O Mode (2/2)

(2) Transmission/reception timing (Type 2; TRMD10 = 1, DIR10 = 0, CKP10 = 0, DAP10 = 1)

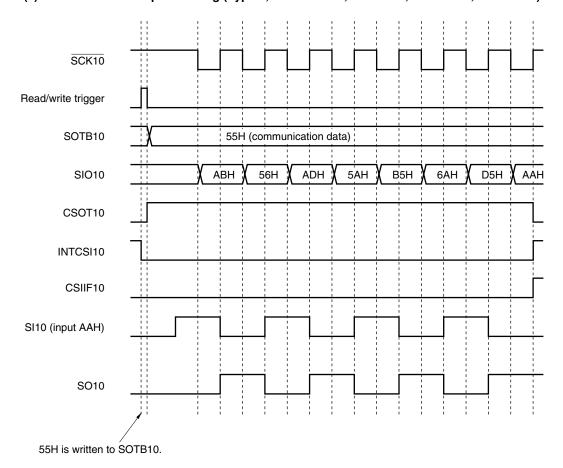
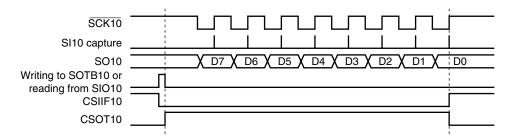
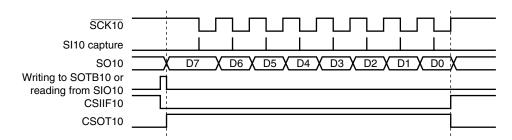
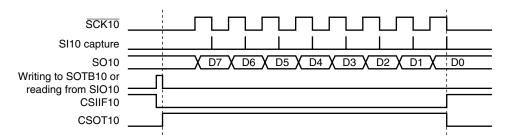
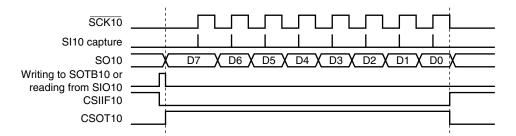
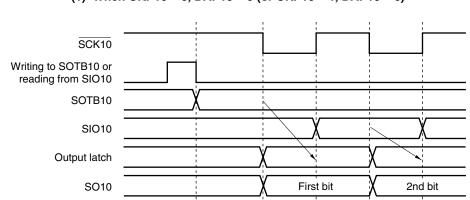




Figure 15-5. Timing of Clock/Data Phase


(a) Type 1; CKP10 = 0, DAP10 = 0

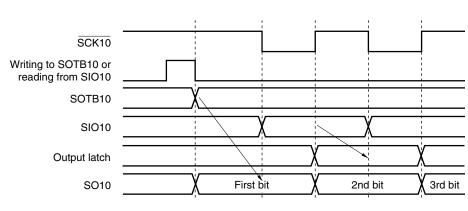

(b) Type 2; CKP10 = 0, DAP10 = 1

(c) Type 3; CKP10 = 1, DAP10 = 0


(d) Type 4; CKP10 = 1, DAP10 = 1

(4) Timing of output to SO10 pin (first bit)

When communication is started, the value of transmit buffer register 10 (SOTB10) is output from the SO10 pin. The output operation of the first bit at this time is described below.

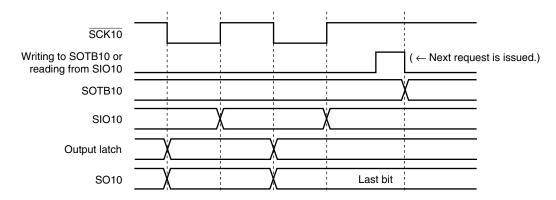

Figure 15-6. Output Operation of First Bit

(1) When CKP10 = 0, DAP10 = 0 (or CKP10 = 1, DAP10 = 0)

The first bit is directly latched by the SOTB10 register to the output latch at the falling (or rising) edge of SCK10, and output from the SO10 pin via an output selector. Then, the value of the SOTB10 register is transferred to the SIO10 register at the next rising (or falling) edge of SCK10, and shifted one bit. At the same time, the first bit of the receive data is stored in the SIO10 register via the SI10 pin.

The second and subsequent bits are latched by the SIO10 register to the output latch at the next falling (or rising) edge of SCK10, and the data is output from the SO10 pin.

(2) When CKP10 = 0, DAP10 = 1 (or CKP10 = 1, DAP10 = 1)


The first bit is directly latched by the SOTB10 register at the falling edge of the write signal of the SOTB10 register or the read signal of the SIO10 register, and output from the SO10 pin via an output selector. Then, the value of the SOTB10 register is transferred to the SIO10 register at the next falling (or rising) edge of $\overline{SCK10}$, and shifted one bit. At the same time, the first bit of the receive data is stored in the SIO10 register via the SI10 pin. The second and subsequent bits are latched by the SIO10 register to the output latch at the next rising (or falling) edge of $\overline{SCK10}$, and the data is output from the SO10 pin.

(5) Output value of SO10 pin (last bit)

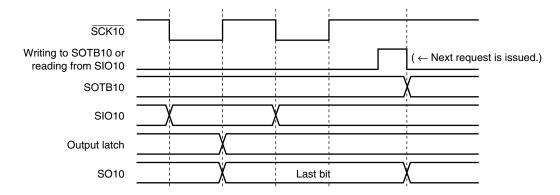

After communication has been completed, the SO10 pin holds the output value of the last bit.

Figure 15-7. Output Value of SO10 Pin (Last Bit)

(1) Type 1; when CKP10 = 0 and DAP10 = 0 (or CKP10 = 1, DAP10 = 0)

(2) Type 2; when CKP10 = 0 and DAP10 = 1 (or CKP10 = 1, DAP10 = 1)

CHAPTER 16 INTERRUPT FUNCTIONS

16.1 Interrupt Function Types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into a high interrupt priority group and a low interrupt priority group by setting the priority specification flag registers (PR0L, PR0H, PR1L).

Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupts with the same priority are generated simultaneously, each interrupt is serviced according to its predetermined priority (see **Table 16-1**).

A standby release signal is generated.

Eight external interrupt requests and 15 internal interrupt requests are provided as maskable interrupts.

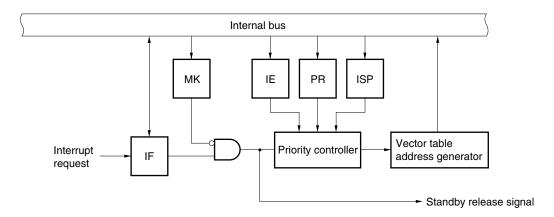
(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

16.2 Interrupt Sources and Configuration

A total of 24 interrupt sources exist for maskable and software interrupts (see Table 16-1).

Table 16-1. Interrupt Source List


Interrupt	Default		Interrupt Source	Internal/	Vector	Basic
Туре	Priority ^{Note 1}	Name	Trigger	External	Table Address	Configuration Type ^{Note 2}
Maskable	0	INTLVI	Low-voltage detection	Internal	0004H	(A)
=	1	INTP0	Pin input edge detection	External	0006H	(B)
=	2	INTP1			0008H	
=	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTSRE6	UART6 reception error generation	Internal	0012H	(A)
	8	INTSR6	End of UART6 reception		0014H	
-	9	INTST6	End of UART6 transmission		0016H	
	10	INTCSI10/ INTST0	End of CSI10 transfer/end of UART0 transmission		0018H	
	11	INTTMH1	Match between TMH1 and CRH1 (when compare register is specified)		001AH	
	12	INTTMH0	Match between TMH0 and CRH0 (when compare register is specified)		001CH	
	13	INTTM50	Match between TM50 and CR50 (when compare register is specified)		001EH	
	14	INTTM000	Match between TM00 and CR000 (when compare register is specified), TI010 pin valid edge detection (when capture register is specified)		0020H	
	15	INTTM010	Match between TM00 and CR010 (when compare register is specified), TI000 pin valid edge detection (when capture register is specified)		0022H	
•	16	INTAD	End of A/D conversion		0024H	
	17	INTSR0	End of UART0 reception or reception error generation		0026H	
•	18	INTWTI	Watch timer reference time interval signal		0028H	
	19	INTTM51	Match between TM51 and CR51 (when compare register is specified)		002AH	
ļ	20	INTKR	Key interrupt detection	External	002CH	(C)
•	21	INTWT	Watch timer overflow	Internal	002EH	(A)
-	22	INTP6	Pin input edge detection	External	0030H	(B)
Software	-	BRK	BRK instruction execution	-	003EH	(D)
Reset	-	RESET	Reset input	_	0000H	-
		POC	Power-on reset			
		LVI	Low-voltage detection			
		Clock monitor	X1 oscillation stop detection			
		WDT	WDT overflow			

Notes 1. The default priority is the priority applicable when two or more maskable interrupts are generated simultaneously. 0 is the highest priority, and 22 is the lowest.

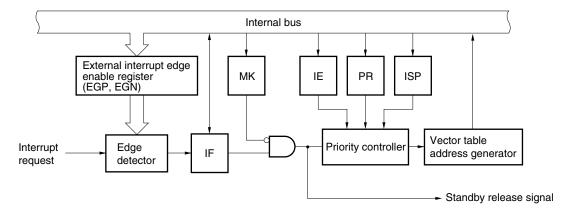
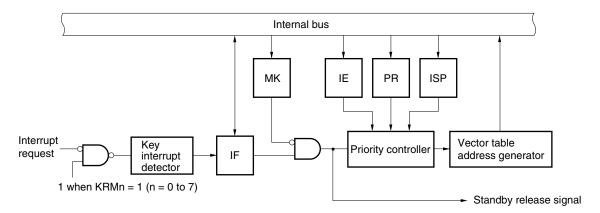

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 16-1.

Figure 16-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal maskable interrupt


(B) External maskable interrupt (INTP0 to INTP6)

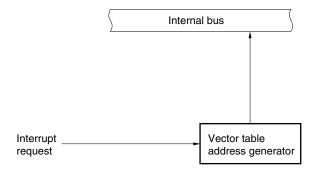

IF: Interrupt request flagIE: Interrupt enable flagISP: In-service priority flagMK: Interrupt mask flagPR: Priority specification flag

Figure 16-1. Basic Configuration of Interrupt Function (2/2)

(C) External maskable interrupt (INTKR)

(D) Software interrupt

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specification flag
KRM: Key return mode register

16.3 Registers Controlling Interrupt Functions

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag register (IF0L, IF0H, IF1L)
- Interrupt mask flag register (MK0L, MK0H, MK1L)
- Priority specification flag register (PR0L, PR0H, PR1L)
- External interrupt rising edge enable register (EGP)
- External interrupt falling edge enable register (EGN)
- Program status word (PSW)

Table 16-2 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Table 16-2. Flags Corresponding to Interrupt Request Sources

Interrupt Source	Interrupt Request Flag		Interrupt I	Mask Flag	Priority Specification Flag	
		Register		Register		Register
INTLVI	LVIIF	IF0L	LVIMK	MK0L	LVIPR	PR0L
INTP0	PIF0		PMK0		PPR0	
INTP1	PIF1		PMK1		PPR1	
INTP2	PIF2		PMK2		PPR2	
INTP3	PIF3		РМК3		PPR3	
INTP4	PIF4		PMK4		PPR4	
INTP5	PIF5		PMK5		PPR5	
INTSRE6	SREIF6		SREMK6		SREPR6	
INTSR6	SRIF6	IF0H	SRMK6	МКОН	SRPR6	PR0H
INTST6	STIF6		STMK6		STPR6	
INTCSI10	DUALIF0 ^{Note}		DUALMK0		DUALPR0	
INTST0						
INTTMH1	TMIFH1		TMMKH1		TMPRH1	
INTTMH0	TMIFH0		TMMKH0		TMPRH0	
INTTM50	TMIF50		TMMK50		TMPR50	
INTTM000	TMIF000		TMMK000		TMPR000	
INTTM010	TMIF010		TMMK010		TMPR010	
INTAD	ADIF	IF1L	ADMK	MK1L	ADPR	PR1L
INTSR0	SRIF0		SRMK0		SRPR0	
INTWTI	WTIIF		WTIMK		WTIPR	
INTTM51	TMIF51		TMMK51		TMPR51	
INTKR	KRIF		KRMK		KRPR	
INTWT	WTIF		WTMK]	WTPR	
INTP6	PIF6		PMK6		PPR6	

Note If either of the two types of interrupt sources is generated, these flags are set (1).

(1) Interrupt request flag registers (IF0L, IF0H, IF1L)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon RESET input.

IF0L, IF0H, and IF1L are set by a 1-bit or 8-bit memory manipulation instruction. When IF0L and IF0H are combined to form 16-bit register IF0, they are set by a 16-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Figure 16-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L)

Address: FF	Address: FFE0H After reset: 00H R/W							
Symbol	7	6	5	4	3	2	1	0
IF0L	SREIF6	PIF5	PIF4	PIF3	PIF2	PIF1	PIF0	LVIIF
Address: FF	E1H After r	eset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
IF0H	TMIF010	TMIF000	TMIF50	TMIFH0	TMIFH1	DUALIF0	STIF6	SRIF6
Address: FF	E2H After r	eset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
IF1L	O ^{Note}	PIF6	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF
	XXIFX		Interrupt request flag					
	0	No interrupt	No interrupt request signal is generated					
	1	Interrupt req	uest is genera	ated, interrupt	request statu	s		

Note Be sure to set bit 7 of IF1L to 0.

- Cautions 1. When operating a timer, serial interface, or A/D converter after standby release, operate it once after clearing the interrupt request flag. An interrupt request flag may be set by noise.
 - 2. When an interrupt is acknowledged, the interrupt request flag is automatically cleared and then the interrupt routine is entered.

(2) Interrupt mask flag registers (MK0L, MK0H, MK1L)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing. MK0L, MK0H, and MK1L are set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H are combined to form 16-bit register MK0, they are set by a 16-bit memory manipulation instruction. RESET input sets these registers to FFH.

Figure 16-3. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L)

Address: FF	E4H After re	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
MK0L	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK
Address: FF	E5H After re	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
MK0H	TMMK010	TMMK000	TMMK50	TMMKH0	TMMKH1	DUALMK0	STMK6	SRMK6
Address: FF	E6H After re	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
MK1L	1 Note	PMK6	WTMK	KRMK	TMMK51	WTIMK	SRMK0	ADMK
	XXMKX		Interrupt servicing control					
	0	Interrupt ser	Interrupt servicing enabled					
	1	Interrupt ser	nterrupt servicing disabled					

Note Be sure to set bit 7 of MK1L to 1.

(3) Priority specification flag registers (PR0L, PR0H, PR1L)

The priority specification flag registers are used to set the corresponding maskable interrupt priority order. PR0L, PR0H, and PR1L are set by a 1-bit or 8-bit memory manipulation instruction. If PR0L and PR0H are combined to form 16-bit register PR0, they are set by a 16-bit memory manipulation instruction.

RESET input sets these registers to FFH.

Figure 16-4. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L)

Address: FF	E8H After re	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PR0L	SREPR6	PPR5	PPR4	PPR3	PPR2	PPR1	PPR0	LVIPR
Address: FF	E9H After re	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PR0H	TMPR010	TMPR000	TMPR50	TMPRH0	TMPRH1	DUALPRO	STPR6	SRPR6
Address: FF	EAH After r	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PR1L	1 Note	PPR6	WTPR	KRPR	TMPR51	WTIPR	SRPR0	ADPR
	XXPRX		Priority level selection					
	0	High priority	High priority level					
	1	Low priority	ow priority level					

Note Be sure to set bit 7 of PR1L to 1.

(4) External interrupt rising edge enable register (EGP), external interrupt falling edge enable register (EGN)

These registers specify the valid edge for INTP0 to INTP6.

EGP and EGN are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears these registers to 00H.

Figure 16-5. Format of External Interrupt Rising Edge Enable Register (EGP) and External Interrupt Falling Edge Enable Register (EGN)

Address: FF4	48H After r	eset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
EGP	0	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0
Address: FF4	Address: FF49H After reset: 00H R/W							
Symbol	7	6	5	4	3	2	1	0
EGN	0	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

EGPn	EGNn	INTPn pin valid edge selection (n = 0 to 6)
0	0	Interrupt disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Table 16-3 shows the ports corresponding to EGPn and EGNn.

Table 16-3. Ports Corresponding to EGPn and EGNn

Detection Enable Register		Edge Detection Port	Interrupt Request Signal
EGP0	EGN0	P120	INTP0
EGP1	EGN1	P30	INTP1
EGP2	EGN2	P31	INTP2
EGP3	EGN3	P32	INTP3
EGP4	EGN4	P33	INTP4
EGP5	EGN5	P16	INTP5
EGP6	EGN6	P140	INTP6

(5) Program status word (PSW)

The program status word is a register used to hold the instruction execution result and the current status for an interrupt request. The IE flag that sets maskable interrupt enable/disable and the ISP flag that controls multiple interrupt servicing are mapped to the PSW.

Besides 8-bit read/write, this register can carry out operations using bit manipulation instructions and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, if the BRK instruction is executed, the contents of the PSW are automatically saved into a stack and the IE flag is reset to 0. If a maskable interrupt request is acknowledged, the contents of the priority specification flag of the acknowledged interrupt are transferred to the ISP flag. The PSW contents are also saved into the stack with the PUSH PSW instruction. They are restored from the stack with the RETI, RETB, and POP PSW instructions.

RESET input sets PSW to 02H.

After reset 7 6 5 4 3 1 PSW ΙE Z RBS1 AC RBS0 0 ISP CY 02H Used when normal instruction is executed ISP Priority of interrupt currently being serviced High-priority interrupt servicing (low-priority interrupt disabled) Interrupt request not acknowledged, or lowpriority interrupt servicing (all maskable interrupts enabled) ΙE Interrupt request acknowledgement enable/disable

0

1

Disabled

Enabled

Figure 16-6. Format of Program Status Word

16.4 Interrupt Servicing Operations

16.4.1 Maskable interrupt request acknowledgement

A maskable interrupt request becomes acknowledgeable when the interrupt request flag is set to 1 and the mask (MK) flag corresponding to that interrupt request is cleared to 0. A vectored interrupt request is acknowledged if interrupts are in the interrupt enabled state (when the IE flag is set to 1). However, a low-priority interrupt request is not acknowledged during servicing of a higher priority interrupt request (when the ISP flag is reset to 0).

The times from generation of a maskable interrupt request until interrupt servicing is performed are listed in Table 16-4 below.

For the interrupt request acknowledgement timing, see Figures 16-8 and 16-9.

Table 16-4. Time from Generation of Maskable Interrupt Request Until Servicing

	Minimum Time	Maximum Time ^{Note}
When ××PR = 0	7 clocks	32 clocks
When ××PR = 1	8 clocks	33 clocks

Note If an interrupt request is generated just before a divide instruction, the wait time becomes longer.

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

If two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level specified in the priority specification flag is acknowledged first. If two or more interrupt requests have the same priority level, the request with the highest default priority is acknowledged first.

An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.

Figure 16-7 shows the interrupt request acknowledgement algorithm.

If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged interrupt are transferred to the ISP flag. The vector table data determined for each interrupt request is loaded into the PC and branched.

Restoring from an interrupt is possible by using the RETI instruction.

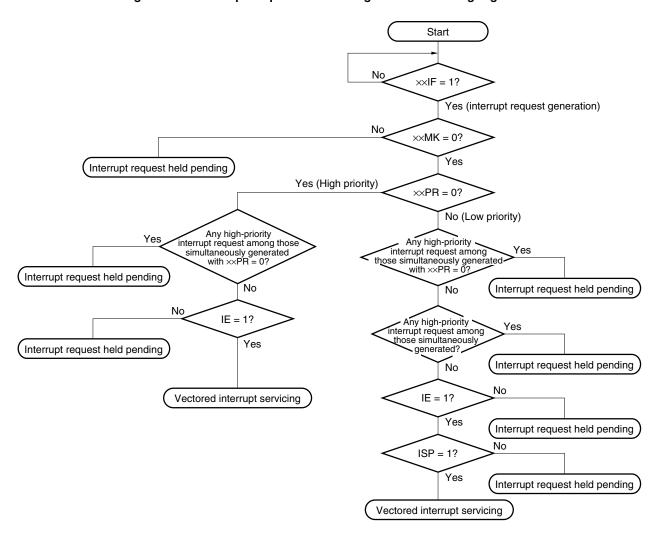


Figure 16-7. Interrupt Request Acknowledgement Processing Algorithm

xxIF: Interrupt request flagxxMK: Interrupt mask flagxxPR: Priority specification flag

IE: Flag that controls acknowledgement of maskable interrupt request (1 = Enable, 0 = Disable)

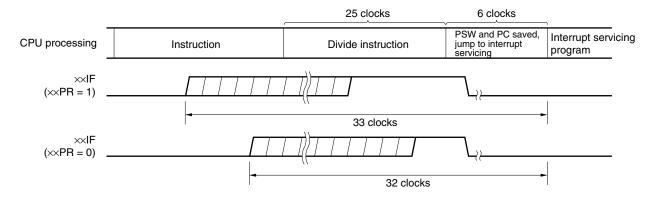

ISP: Flag that indicates the priority level of the interrupt currently being serviced (0 = High-priority interrupt servicing, 1 = No interrupt request acknowledged, or low-priority interrupt servicing)

Figure 16-8. Interrupt Request Acknowledgement Timing (Minimum Time)

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

Figure 16-9. Interrupt Request Acknowledgement Timing (Maximum Time)

7 clocks

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

16.4.2 Software interrupt request acknowledgement

A software interrupt request is acknowledged by BRK instruction execution. Software interrupts cannot be disabled.

If a software interrupt request is acknowledged, the contents are saved into the stacks in the order of the program status word (PSW), then program counter (PC), the IE flag is reset (0), and the contents of the vector table (003EH, 003FH) are loaded into the PC and branched.

Restoring from a software interrupt is possible by using the RETB instruction.

Caution Do not use the RETI instruction for restoring from the software interrupt.

16.4.3 Multiple interrupt servicing

Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt. Multiple interrupt servicing does not occur unless the interrupt request acknowledgement enabled state is selected (IE = 1). Also, when an interrupt request is acknowledged, interrupt request acknowledgement becomes disabled (IE = 0). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the EI instruction during interrupt servicing to enable interrupt acknowledgement.

Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control. Programmable priority control is used for multiple interrupt servicing.

In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for multiple interrupt servicing.

Interrupt requests that are not enabled because interrupts are in the interrupt disabled state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the pending interrupt request is acknowledged following execution of at least one main processing instruction execution.

Table 16-5 shows interrupt requests enabled for multiple interrupt servicing and Figure 16-10 shows multiple interrupt servicing examples.

Table 16-5. Interrupt Request Enabled for Multiple Interrupt Servicing During Interrupt Servicing

Multiple Interru	Maskable Interrupt Request				
		PR	= 0	PR	= 1
Interrupt Being Serviced		IE = 1	IE = 0	IE = 1	IE = 0
Maskable interrupt	ISP = 0	0	×	×	×
	ISP = 1	0	×	0	×
Software interrupt		0	×	0	×

Remarks 1. O: Multiple interrupt servicing enabled

2. x: Multiple interrupt servicing disabled

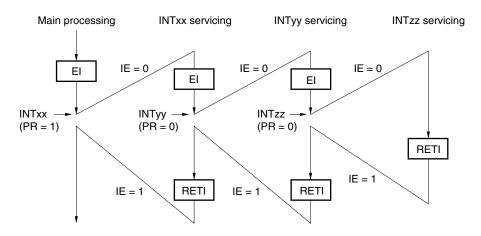
3. ISP and IE are flags contained in the PSW.

ISP = 0: An interrupt with higher priority is being serviced.

ISP = 1: No interrupt request has been acknowledged, or an interrupt with a lower priority is being serviced.

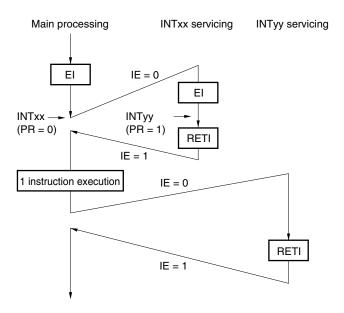
IE = 0: Interrupt request acknowledgement is disabled.

IE = 1: Interrupt request acknowledgement is enabled.


4. PR is a flag contained in PR0L, PR0H, and PR1L.

PR = 0: Higher priority level

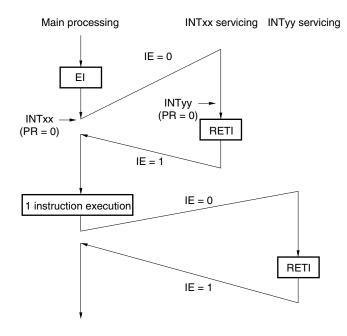
PR = 1: Lower priority level


Figure 16-10. Examples of Multiple Interrupt Servicing (1/2)

Example 1. Multiple interrupt servicing occurs twice

During servicing of interrupt INTxx, two interrupt requests, INTyy and INTzz, are acknowledged, and multiple interrupt servicing takes place. Before each interrupt request is acknowledged, the EI instruction must always be issued to enable interrupt request acknowledgement.

Example 2. Multiple interrupt servicing does not occur due to priority control


Interrupt request INTyy issued during servicing of interrupt INTxx is not acknowledged because its priority is lower than that of INTxx, and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

PR = 0: Higher priority level PR = 1: Lower priority level

IE = 0: Interrupt request acknowledgement disabled

Figure 16-10. Examples of Multiple Interrupt Servicing (2/2)

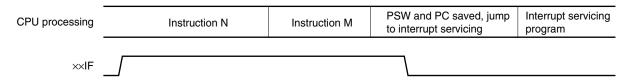
Example 3. Multiple interrupt servicing does not occur because interrupts are not enabled

Interrupts are not enabled during servicing of interrupt INTxx (EI instruction is not issued), therefore, interrupt request INTyy is not acknowledged and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

PR = 0: Higher priority level

IE = 0: Interrupt request acknowledgement disabled

16.4.4 Interrupt request hold


There are instructions where, even if an interrupt request is issued for them while another instruction is being executed, request acknowledgement is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, #byte
- MOV A, PSW
- MOV PSW, A
- MOV1 PSW. bit, CY
- MOV1 CY, PSW. bit
- AND1 CY, PSW. bit
- OR1 CY, PSW. bit
- . XOR1 CY, PSW. bit
- SET1 PSW. bit
- · CLR1 PSW. bit
- RETB
- RETI
- PUSH PSW
- POP PSW
- BT PSW. bit, \$addr16
- BF PSW. bit, \$addr16
- · BTCLR PSW. bit, \$addr16
- EI
- DI
- Manipulation instructions for the IF0L, IF0H, IF1L, MK0L, MK0H, MK1L, PR0L, PR0H, and PR1L registers

Caution The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared to 0. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged.

Figure 16-11 shows the timing at which interrupt requests are held pending.

Figure 16-11. Interrupt Request Hold

Remarks 1. Instruction N: Interrupt request hold instruction

- 2. Instruction M: Instruction other than interrupt request hold instruction
- 3. The xxPR (priority level) values do not affect the operation of xxIF (interrupt request).

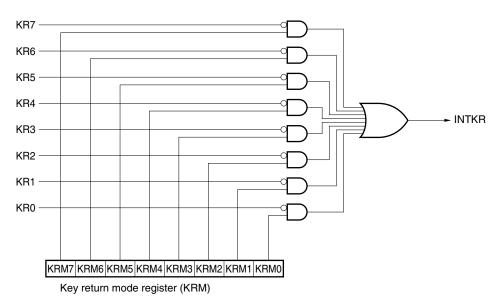
CHAPTER 17 KEY INTERRUPT FUNCTION

17.1 Functions of Key Interrupt

A key interrupt (INTKR) can be generated by setting the key return mode register (KRM) and inputting a falling edge to the key interrupt input pins (KR0 to KR7).

Table 17-1. Assignment of Key Interrupt Detection Pins

Flag	Description
KRM0	Controls KR0 signal in 1-bit units.
KRM1	Controls KR1 signal in 1-bit units.
KRM2	Controls KR2 signal in 1-bit units.
KRM3	Controls KR3 signal in 1-bit units.
KRM4	Controls KR4 signal in 1-bit units.
KRM5	Controls KR5 signal in 1-bit units.
KRM6	Controls KR6 signal in 1-bit units.
KRM7	Controls KR7 signal in 1-bit units.


17.2 Configuration of Key Interrupt

The key interrupt consists of the following hardware.

Table 17-2. Configuration of Key Interrupt

Item	Configuration
Control register	Key return mode register (KRM)

Figure 17-1. Block Diagram of Key Interrupt

17.3 Register Controlling Key Interrupt

(1) Key return mode register (KRM)

This register controls the KRM0 to KRM7 bits using the KR0 to KR7 signals, respectively.

This register is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 17-2. Format of Key Return Mode Register (KRM)

 Address:
 FF6EH
 After reset:
 00H
 R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 KRM
 KRM7
 KRM6
 KRM5
 KRM4
 KRM3
 KRM2
 KRM1
 KRM0

KRMn	Key interrupt mode control				
0	Does not detect key interrupt signal				
1	Detects key interrupt signal				

- Cautions 1. If any of the KRM0 to KRM7 bits used is set to 1, set bits 0 to 7 (PU70 to PU77) of the corresponding pull-up resistor register 7 (PU7) to 1.
 - 2. If KRM is changed, the interrupt request flag may be set. Therefore, disable interrupts and then change the KRM register. Clear the interrupt request flag and enable interrupts.
 - 3. The bits not used in the key interrupt mode can be used as normal ports.

CHAPTER 18 STANDBY FUNCTION

18.1 Standby Function and Configuration

18.1.1 Standby function

Table 18-1. Relationship Between HALT Mode, STOP Mode, and Clock

	X1 Input Clock	Ring-OSC Clock	Subsystem Clock	CPU Clock
HALT mode	Oscillation continues	Oscillation continues	Oscillation continues	Operation stopped
STOP mode	Oscillation stopped	Oscillation continues	Oscillation continues	Operation stopped

The standby function is designed to reduce the power consumption of the system. The following two modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. In the HALT mode, the CPU operation clock is stopped, but the system clock oscillator continues oscillating. In this mode, power consumption is not decreased as much as in the STOP mode, but the HALT mode is effective for restarting operation immediately upon interrupt request generation and carrying out intermittent operations.

(2) STOP mode

STOP instruction execution sets the STOP mode. In the STOP mode, the X1 input clock oscillator stops, stopping the whole system, thereby considerably reducing the CPU power consumption.

Because this mode can be cleared by an interrupt request, it enables intermittent operations to be carried out. However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is released, select the HALT mode if it is necessary to start processing immediately upon interrupt request generation.

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set are held. The I/O port output latches and output buffer statuses are also held.

- Cautions 1. STOP mode can be used only when operating on the X1 input clock or Ring-OSC clock.

 HALT mode can be used when operating on the X1 input clock, Ring-OSC clock, or subsystem clock. However, when the STOP instruction is executed during Ring-OSC clock operation, the X1 oscillator stops, but Ring-OSC oscillator does not stop.
 - 2. When shifting to the STOP mode, be sure to stop the peripheral hardware operation before executing STOP instruction.
 - 3. The following sequence is recommended for power consumption reduction of the A/D converter when the standby function is used: First clear bit 7 (ADCS) of the A/D converter mode register (ADM) to 0 to stop the A/D conversion operation, and then execute the HALT or STOP instruction.
 - 4. Ring-OSC clock oscillation cannot be stopped in the STOP mode. However, when the Ring-OSC clock is used as the CPU clock, the CPU operation is stopped for 17/f_R (s) after STOP mode is released.

Figure 18-1. Operation Timing When STOP Mode Is Released

18.1.2 Registers controlling standby function

The standby function is controlled by the following two registers.

- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

(1) Oscillation stabilization time counter status register (OSTC)

This is the status register of the X1 input clock oscillation stabilization time counter. If the Ring-OSC clock is used as the CPU clock, the X1 input clock oscillation stabilization time can be checked.

OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.

When reset is released (reset by RESET input, POC, LVI, clock monitor, and WDT), STOP instruction, MSTOP = 1, and MCC = 1 clear OSTC to 00H.

Figure 18-2. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

Address: FFA	A3H After r	eset: 00H	R					
Symbol	7	6	5	4	3	2	1	0
OSTC	0	0	0	MOST11	MOST13	MOST14	MOST15	MOST16

MOST11	MOST13	MOST14	MOST15	MOST16	Oscillation stabilization time status
1	0	0	0	0	2 ¹¹ /fx min. (204.8 μs min.)
1	1	0	0	0	2 ¹³ /fx min. (819.2 μs min.)
1	1	1	0	0	2 ¹⁴ /fx min. (1.64 ms min.)
1	1	1	1	0	2 ¹⁵ /fx min. (3.27 ms min.)
1	1	1	1	1	2 ¹⁶ /fx min. (6.55 ms min.)

Caution After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.

Remarks 1. Values in parentheses are for operation with fx = 10 MHz.

2. fx: X1 input clock oscillation frequency

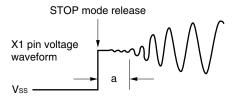
(2) Oscillation stabilization time select register (OSTS)

This register is used to select the X1 oscillation stabilization wait time when STOP mode is released. The wait time set by OSTS is valid only after STOP mode is released when the X1 input clock is selected as the CPU clock. After STOP mode is released when the Ring-OSC clock is selected, check the oscillation stabilization time using OSTC.

OSTS can be set by an 8-bit memory manipulation instruction.

RESET input sets OSTS to 05H.

Figure 18-3. Format of Oscillation Stabilization Time Select Register (OSTS)


Address: FFA	A4H After r	eset: 05H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0

OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection
0	0	1	2 ¹¹ /fx (204.8 μs)
0	1	0	2 ¹³ /fx (819.2 μs)
0	1	1	2 ¹⁴ /fx (1.64 ms)
1	0	0	2 ¹⁵ /f _x (3.27 ms)
1	0	1	2 ¹⁶ /f _X (6.55 ms)
0	Other than above		Setting prohibited

- Cautions 1. If the STOP mode is entered and then released while the Ring-OSC clock is being used as the CPU clock, set the oscillation stabilization time as follows.
 - Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS

The X1 oscillation stabilization time counter counts only during the oscillation stabilization time set by OSTS. Therefore, note that only the statuses during the oscillation stabilization time set by OSTS are set to OSTC after STOP mode has been released.

2. The wait time when STOP mode is released does not include the time after STOP mode release until clock oscillation starts ("a" below) regardless of whether STOP mode is released by RESET input or interrupt generation.

Remarks 1. Values in parentheses are for operation with fx = 10 MHz.

2. fx: X1 input clock oscillation frequency

18.2 Standby Function Operation

18.2.1 HALT mode

(1) HALT mode

The HALT mode is set by executing the HALT instruction. HALT mode can be set regardless of whether the CPU clock before the setting was the X1 input clock, Ring-OSC clock, or subsystem clock.

The operating statuses in the HALT mode are shown below.

Table 18-2. Operating Statuses in HALT Mode (1/2)

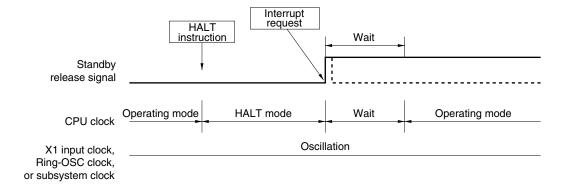
	HALT Mode Setting	When HALT Instruction Is Executed While CPU Is Operating on X1 Input Clock				When HALT Instruction Is Executed While CPU Is Operating on Ring-OSC Clock			
				When Ri Oscillation		When X1 Input Clock Oscillation Continues		When X1 Input Clock Oscillation Stopped	
Item		When Subsystem Clock Used	When Subsystem Clock Not Used	When Subsystem Clock Used	When Subsystem Clock Not Used	When Subsystem Clock Used	When Subsystem Clock Not Used	When Subsystem Clock Used	When Subsystem Clock Not Used
System cloc	k	The X1 oscill CPU is stopp	. •	oscillator, and	d subsystem cl	ock oscillator a	re able to oscil	late. Clock su	pply to the
CPU		Operation sto	ppped						
Port (latch)		Status before	HALT mode v	vas set is retair	ned				
16-bit timer/	event counter 00	Operable				Operation sto	pped		
8-bit timer/e	vent counter 50	Operable				Operable only	when TI50 is	selected as the	e count clock
8-bit timer/e	vent counter 51	Operable				Operable only	when TI51 is	selected as the	e count clock
8-bit timer H	0	Operable					y when TO50 is 3-bit timer/ever		
8-bit timer H	1	Operable				Operable only	when f _R /2 ⁷ is	selected as the	count clock
Watch timer		Operable	Operable ^{Note 2}	Operable	Operable ^{Note 2}	Operable ^{Note 3}	Not operable	Operable ^{Note 3}	Not operable
Watchdog timer	Ring-OSC cannot be stopped ^{Note 4}	Operable			-	Operable			
	Ring-OSC can be stopped ^{Note 4}	Operation sto	pped						
A/D converte	er	Operable				Not operable			
Serial	UART0	Operable				Operable only	y when TO50 is	s selected as th	ne serial
interface	UART6	Operable				clock during TM50 operation			
	CSI10	Operable Operable only when external SCK10 is selected serial clock			ected as the				
Clock monite	or	Operable Operation stopped Operable Operation stopped			pped				
Power-on-cl	ear function ^{Note 5}	Operable							
Low-voltage	detection function	Operable							
External inte	errupt	Operable							

- **Notes 1.** When "Stopped by software" is selected for Ring-OSC by a mask option and Ring-OSC is stopped by software (for mask options, see **CHAPTER 24 MASK OPTIONS**).
 - 2. Operable when the X1 input clock is selected.
 - 3. Operable when the subsystem clock is selected.
 - **4.** "Ring-OSC cannot be stopped" or "Ring-OSC can be stopped by software" can be selected by a mask option.
 - 5. When "POC used" is selected by a mask option.

Table 18-2. Operating Statuses in HALT Mode (2/2)

	HALT Mode Setting	When HAL	Γ Instruction Is Executed Whi	le CPU Is Operating on Subsystem Clock			
		When X1 Input Clock	Oscillation Continues	When X1 Input Clock Oscillation Stopped			
Item		When Ring-OSC Oscillation Continues	When Ring-OSC Oscillation Stopped ^{Note 1}	When Ring-OSC Oscillation Continues	When Ring-OSC Oscillation Stopped ^{Note 1}		
System cloc	k	The X1 oscillator, Ring-OSC CPU is stopped.	C oscillator, and subsystem c	lock oscillator are able to osci	illate. Clock supply to the		
CPU		Operation stopped					
Port (latch)		Status before HALT mode v	vas set is retained				
16-bit timer/	event counter 00	Operable		Operation stopped			
8-bit timer/e	vent counter 50	Operable		Operable only when TI50 is	selected as the count clock		
8-bit timer/e	vent counter 51	Operable		Operable only when TI51 is	selected as the count clock		
8-bit timer H0		Operable		Operable only when TO50 is selected as the count clock during 8-bit timer/event counter 50 operation			
8-bit timer H1		Operable	Operable only when the X1 input clock is selected as the count clock	Operable only when f _F /2 ⁷ is selected as the count clock	Operation stopped		
Watch timer		Operable		Operable only when subsystem clock is selected			
Watchdog timer	Ring-OSC cannot be stopped ^{Note 2}	Operable	-	Operable	-		
	Ring-OSC can be stopped ^{Note 2}	Operation stopped					
A/D convert	er	Operable		Not operable			
Serial	UART0	Operable		Operable only when TO50 is selected as the serial			
interface	UART6	Operable		clock during TM50 operation			
CSI10 Operable		Operable only when external clock is selected as the serial clock					
Clock monite	or	Operable	Operation stopped	•			
Power-on-cl	ear function ^{Note 3}	Operable	•				
Low-voltage	detection function	Operable					
External inte	errupt	Operable					

- **Notes 1.** When "Stopped by software" is selected for Ring-OSC by a mask option and Ring-OSC is stopped by software (for mask options, see **CHAPTER 24 MASK OPTIONS**).
 - **2.** "Ring-OSC cannot be stopped" or "Ring-OSC can be stopped by software" can be selected by a mask option.
 - **3.** When "POC used" is selected by a mask option.


(2) HALT mode release

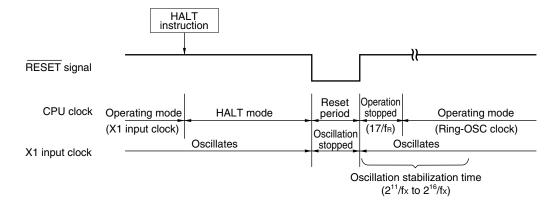
The HALT mode can be released by the following two sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledgement is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgement is disabled, the next address instruction is executed.

Figure 18-4. HALT Mode Release by Interrupt Request Generation

Remarks 1. The broken lines indicate the case when the interrupt request which has released the standby mode is acknowledged.


- 2. The wait time is as follows:
 - When vectored interrupt servicing is carried out: 8 or 9 clocks
 - When vectored interrupt servicing is not carried out: 2 or 3 clocks

(b) Release by RESET input

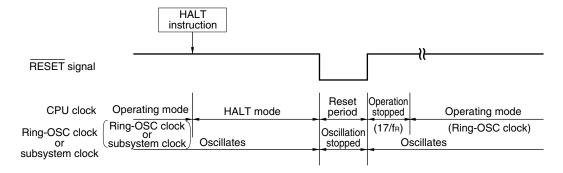

When the RESET signal is input, HALT mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 18-5. HALT Mode Release by RESET Input

(1) When X1 input clock is used as CPU clock

(2) When Ring-OSC clock or subsystem clock is used as CPU clock

Remarks 1. fx: X1 input clock oscillation frequency

2. fr.: Ring-OSC clock oscillation frequency

Table 18-3. Operation After HALT Mode Release

Release Source	MK××	PR××	ΙE	ISP	Operation
Maskable interrupt request	0	0	0	×	Next address instruction execution
	0	0	1	×	Interrupt servicing execution
	0	1	0	1	Next address
	0	1	×	0	instruction execution
	0	1	1	1	Interrupt servicing execution
	1	×	×	×	HALT mode held
RESET input	_	_	×	×	Reset processing

×: Don't care

18.2.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set only when the CPU clock before the setting was the X1 input clock or Ring-OSC clock.

Caution Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.

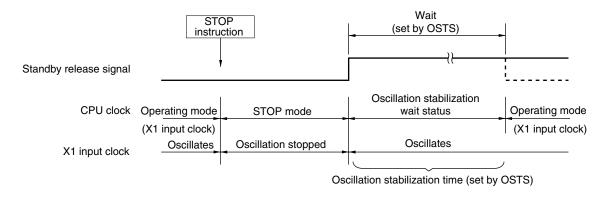
The operating statuses in the STOP mode are shown below.

STOP Mode Setting When STOP Instruction Is Executed While CPU Is Operating on X1 Input Clock When STOP Instruction Is Executed While CPU Is Operating on Ring-When Ring-OSC Oscillation When Ring-OSC Oscillation OSC Clock Stopped^{Note 1} Continues When Subsystem | When Subsystem | When Subsystem | When Subsystem | When Subsystem When Subsystem Item Clock Used Clock Not Used Clock Used Clock Not Used Clock Used Clock Not Used System clock Only X1 oscillator oscillation is stopped. Clock supply to the CPU is stopped. CPU Operation stopped Port (latch) Status before STOP mode was set is retained 16-bit timer/event counter 00 Operation stopped 8-bit timer/event counter 50 Operable only when TI50 is selected as the count clock 8-bit timer/event counter 51 Operable only when TI51 is selected as the count clock 8-bit timer H0 Operable only when TO50 is selected as the count clock during 8-bit timer/event counter 50 operation Operable^{Note 2} Operable Note 2 8-bit timer H1 Operation stopped Operable^{Note 3} Operable^{Note 3} Operable^{Note 3} Watch timer Operation stopped Operation stopped Operation stopped Watchdog Ring-OSC cannot Operable Operable be stopped^{Note 4} timer Ring-OSC can be Operation stopped stopped^{Note} A/D converter Operation stopped Serial interface UARTO Operable only when TO50 is selected as the serial clock during TM50 operation **UART6** CSI10 Operable only when external SCK10 is selected as the serial clock Clock monitor Operation stopped Power-on-clear function Note 5 Operable Low-voltage detection function Operable External interrupt Operable

Table 18-4. Operating Statuses in STOP Mode

- **Notes 1.** When "Stopped by software" is selected for Ring-OSC by a mask option and Ring-OSC is stopped by software (for mask options, see **CHAPTER 24 MASK OPTIONS**).
 - **2.** Operation continues only when $f_R/2^7$ is selected as the count clock.
 - 3. Operable when the subsystem clock is selected.
 - **4.** "Ring-OSC cannot be stopped" or "Ring-OSC can be stopped by software" can be selected by a mask option.
 - **5.** When "POC used" is selected by a mask option.

(2) STOP mode release


The STOP mode can be released by the following two sources.

(a) Release by unmasked interrupt request

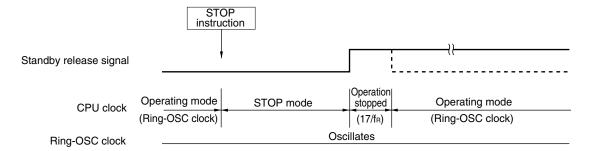
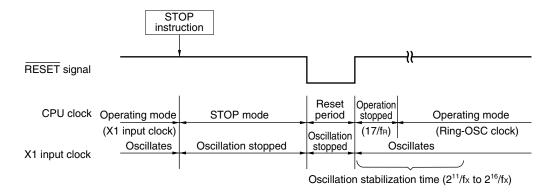

When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation stabilization time has elapsed, if interrupt acknowledgement is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgement is disabled, the next address instruction is executed.

Figure 18-6. STOP Mode Release by Interrupt Request Generation

(1) When X1 input clock is used as CPU clock

(2) When Ring-OSC clock is used as CPU clock


Remark The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

(b) Release by RESET input

When the $\overline{\text{RESET}}$ signal is input, STOP mode is released and a reset operation is performed after the oscillation stabilization time has elapsed.

Figure 18-7. STOP Mode Release by RESET Input

(1) When X1 input clock is used as CPU clock

(2) When Ring-OSC clock is used as CPU clock

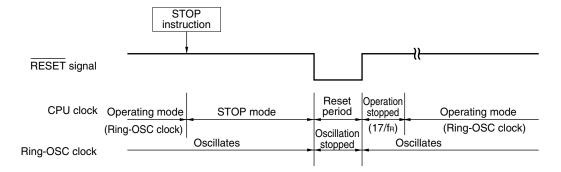


Table 18-5. Operation After STOP Mode Release

Release Source	MK××	PR××	ΙE	ISP	Operation
Maskable interrupt request	0	0	0	×	Next address instruction execution
	0	0	1	×	Interrupt servicing execution
	0	1	0	1	Next address
	0	1	×	0	instruction execution
	0	1	1	1	Interrupt servicing execution
	1	×	×	×	STOP mode held
RESET input	_		×	×	Reset processing

x: Don't care

CHAPTER 19 RESET FUNCTION

The following five operations are available to generate a reset signal.

- (1) External reset input via RESET pin
- (2) Internal reset by watchdog timer program loop detection
- (3) Internal reset by clock monitor X1 clock oscillation stop detection
- (4) Internal reset by comparison of supply voltage and detection voltage of power-on-clear (POC) circuit
- (5) Internal reset by comparison of supply voltage and detection voltage of low-power-supply detector (LVI)

External and internal resets have no functional differences. In both cases, program execution starts at the address at 0000H and 0001H when the reset signal is input.

A reset is applied when a low level is input to the RESET pin, the watchdog timer overflows, X1 clock oscillation stop is detected by the clock monitor, or by POC and LVI circuit voltage detection, and each item of hardware is set to the status shown in Table 19-1. Each pin is high impedance during reset input or during the oscillation stabilization time just after reset release, except for P130, which is low-level output.

When a high level is input to the RESET pin, the reset is released and program execution starts using the Ring-OSC clock after the CPU clock operation has stopped for 17/f_R (s). A reset generated by the watchdog timer and clock monitor sources is automatically released after the reset, and program execution starts using the Ring-OSC clock after the CPU clock operation has stopped for 17/f_R (s) (see **Figures 19-2** to **19-4**). Reset by POC and LVI circuit power supply detection is automatically released when V_{DD} > V_{POC} or V_{DD} > V_{LVI} after the reset, and program execution starts using the Ring-OSC clock after the CPU clock operation has stopped for 17/f_R (s) (see **CHAPTER 21 POWER-ON-CLEAR CIRCUIT** and **CHAPTER 22 LOW-VOLTAGE DETECTOR**).

- Cautions 1. For an external reset, input a low level for 10 μ s or more to the RESET pin.
 - 2. During reset input, the X1 input clock and Ring-OSC clock stop oscillating.
 - When the STOP mode is released by a reset, the STOP mode contents are held during reset input. However, the port pins become high-impedance, except for P130, which is set to lowlevel output.

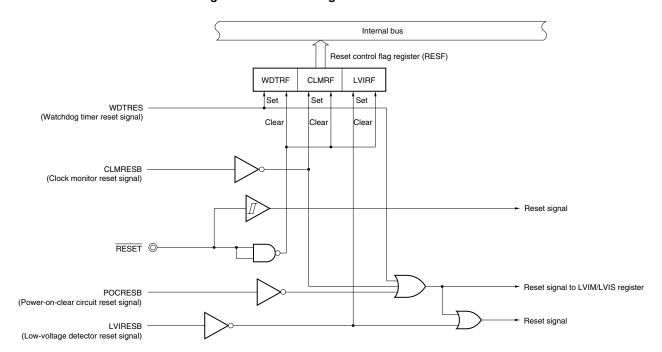


Figure 19-1. Block Diagram of Reset Function

Caution An LVI circuit internal reset does not reset the LVI circuit.

Remarks 1. LVIM: Low-voltage detection register

2. LVIS: Low-voltage detection level selection register

Figure 19-2. Timing of Reset by RESET Input

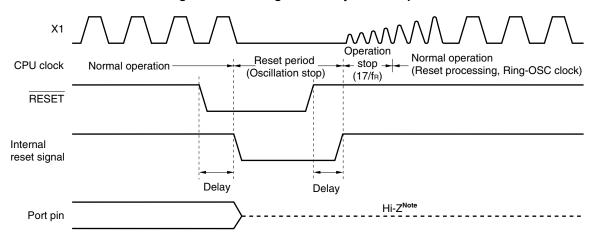
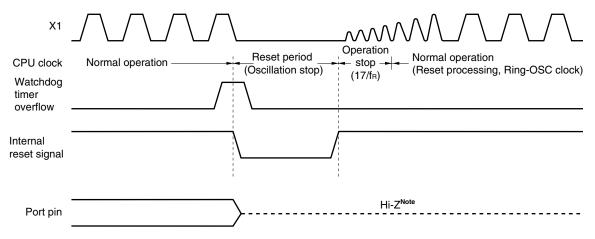
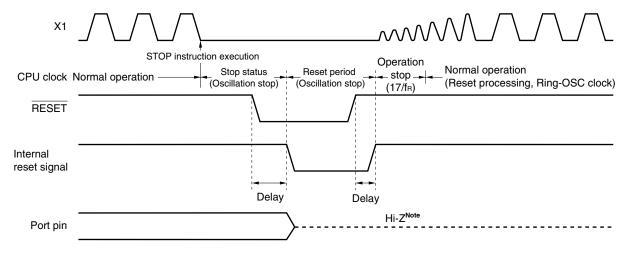




Figure 19-3. Timing of Reset Due to Watchdog Timer Overflow

Caution A watchdog timer internal reset resets the watchdog timer.

Figure 19-4. Timing of Reset in STOP Mode by RESET Input

Note The port pins become high impedance, except for P130, which is set to low-level output.

Remark For the reset timing of the power-on-clear circuit and low-voltage detector, see CHAPTER 21 POWER-ON-CLEAR CIRCUIT and CHAPTER 22 LOW-VOLTAGE DETECTOR.

Table 19-1. Hardware Statuses After Reset (1/2)

_	Hardware	Status After Reset			
Program counter (PC)	Program counter (PC) ^{Note 1}				
Stack pointer (SP)		Undefined			
Program status word ((PSW)	02H			
RAM	Data memory	Undefined ^{Note 2}			
	General-purpose registers	Undefined ^{Note 2}			
Ports (P0 to P3, P6, P	7, P12 to P14) (output latches)	00H			
Port mode registers (F	PM0, PM1, PM3, PM6, PM7, PM12, PM14)	FFH			
Pull-up resistor option	registers (PU0, PU1, PU3, PU7, PU12, PU14)	00H			
Input switch control re	gister (ISC)	00H			
Internal memory size	switching register (IMS)	CFH			
Processor clock contro	ol register (PCC)	00H			
Ring-OSC mode regis	ter (RCM)	00H			
Main clock mode regis	ster (MCM)	00H			
Main OSC control regi	ister (MOC)	00H			
Oscillation stabilization	n time select register (OSTS)	05H			
Oscillation stabilization	n time counter status register (OSTC)	00H			
16-bit timer/event	Timer counter 00 (TM00)	0000H			
counter 00	Capture/compare registers 000, 010 (CR000, CR010)	0000H			
	Mode control register 00 (TMC00)	00H			
	Prescaler mode register 00 (PRM00)	00H			
	Capture/compare control register 00 (CRC00)	00H			
	Timer output control register 00 (TOC00)	00H			
8-bit timer/event	Timer counters 50, 51 (TM50, TM51)	00H			
counters 50, 51	Compare registers 50, 51 (CR50, CR51)	00H			
	Timer clock selection registers 50, 51 (TCL50, TCL51)	00H			
	Mode control registers 50, 51 (TMC50, TMC51)	00H			
8-bit timers H0, H1	Compare registers 00, 10, 01, 11 (CMP00, CMP10, CMP01, CMP11)	00H			
	Mode registers (TMHMD0, TMHMD1)	00H			
	Carrier control register 1 (TMCYC1) ^{Note 3}	00H			
Watch timer	Operation mode register (WTM)	00H			
Clock output controller	Clock output selection register (CKS)	00H			

- **Notes 1.** During reset input or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
 - 2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.
 - 3. 8-bit timer H1 only.

Table 19-1. Hardware Statuses After Reset (2/2)

	Hardware	Status After Reset
Watchdog timer	Mode register (WDTM)	67H
	Enable register (WDTE)	9AH
A/D converter	Conversion result register (ADCR)	Undefined
AVD CONVENCE	Mode register (ADM)	00H
	Analog input channel specification register (ADS)	00H
	Power-fail comparison mode register (PFM)	00H
	Power-fail comparison threshold register (PFT)	00H
Serial interface UART0	Receive buffer register 0 (RXB0)	FFH
	Transmit shift register 0 (TXS0)	FFH
	Asynchronous serial interface operation mode register 0 (ASIM0)	01H
	Baud rate generator control register 0 (BRGC0)	1FH
Serial interface UART6	Receive buffer register 6 (RXB6)	FFH
	Transmit buffer register 6 (TXB6)	FFH
	Asynchronous serial interface operation mode register 6 (ASIM6)	01H
	Asynchronous serial interface reception error status register 6 (ASIS6)	00H
	Asynchronous serial interface transmission status register 6 (ASIF6)	00H
	Clock selection register 6 (CKSR6)	00H
	Baud rate generator control register 6 (BRGC6)	FFH
	Asynchronous serial interface control register 6 (ASICL6)	16H
Serial interface CSI10	Transmit buffer register 10 (SOTB10)	Undefined
	Serial I/O shift register 10 (SIO10)	00H
	Serial operation mode register 10 (CSIM10)	00H
	Serial clock selection register 10 (CSIC10)	00H
Key interrupt	Key return mode register (KRM)	00H
Clock monitor	Mode register (CLM)	00H
Reset function	Reset control flag register (RESF)	00H ^{Note}
Low-voltage detector	Low-voltage detection register (LVIM)	00H ^{Note}
	Low-voltage detection level selection register (LVIS)	00H ^{Note}
Interrupt	Request flag registers 0L, 0H, 1L (IF0L, IF0H, IF1L)	00H
	Mask flag registers 0L, 0H, 1L (MK0L, MK0H, MK1L)	FFH
	Priority specification flag registers 0L, 0H, 1L (PR0L, PR0H, PR1L)	FFH
	External interrupt rising edge enable register (EGP)	00H
	External interrupt falling edge enable register (EGN)	00H

Note These values vary depending on the reset source.

Reset Source	RESET Input	Reset by POC	Reset by WDT	Reset by CLM	Reset by LVI
Register					
RESF	See Table 19-2.				
LVIM	Cleared (00H)	Cleared (00H)	Cleared (00H)	Cleared (00H)	Held
LVIS					

19.1 Register for Confirming Reset Source

Many internal reset generation sources exist in the 78K0/KD1 Series. The reset control flag register (RESF) is used to store which source has generated the reset request.

RESF can be read by an 8-bit memory manipulation instruction.

RESET input, reset input by power-on-clear (POC) circuit, and reading RESF clear RESF to 00H.

Figure 19-5. Format of Reset Control Flag Register (RESF)

Address: FFA	ACH After	reset: 00H ^{Note}	R					
Symbol	7	6	5	4	3	2	1	0
RESF	0	0	0	WDTRF	0	0	CLMRF	LVIRF

WDTRF	Internal reset request by watchdog timer (WDT)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

CLMRF	Internal reset request by clock monitor (CLM)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

LVIRF	Internal reset request by low-voltage detector (LVI)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

Note The value after reset varies depending on the reset source.

Caution Do not read data by a 1-bit memory manipulation instruction.

The status of RESF when a reset request is generated is shown in Table 19-2.

Table 19-2. RESF Status When Reset Request Is Generated

Reset Source Flag	RESET input	Reset by POC	Reset by WDT	Reset by CLM	Reset by LVI
WDTRF	Cleared (0)	Cleared (0)	Set (1)	Held	Held
CLMRF			Held	Set (1)	Held
LVIRF			Held	Held	Set (1)

CHAPTER 20 CLOCK MONITOR

20.1 Functions of Clock Monitor

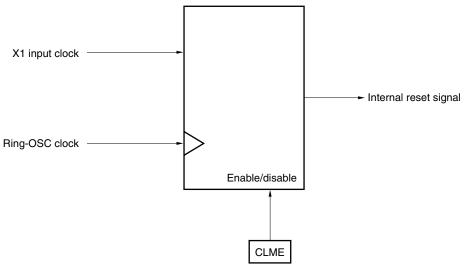
The clock monitor samples the X1 input clock using the on-chip Ring-OSC, and generates an internal reset signal when the X1 input clock is stopped.

When a reset signal is generated by the clock monitor, bit 1 (CLMRF) of the reset control flag register (RESF) is set to 1. For details of RESF, refer to **CHAPTER 19 RESET FUNCTION**.

The clock monitor automatically stops under the following conditions.

- In STOP mode and during the oscillation stabilization time
- When the X1 input clock is stopped by software (when MSTOP = 1 or MCC = 1)
- · During the oscillation stabilization time after reset is released
- When the Ring-OSC clock is stopped

Remark MSTOP: Bit 7 of the main OSC control register (MOC)


20.2 Configuration of Clock Monitor

Clock monitor consists of the following hardware.

Table 20-1. Configuration of Clock Monitor

Item	Configuration	
Control register	Clock monitor mode register (CLM)	

Figure 20-1. Block Diagram of Clock Monitor

Clock monitor mode register (CLM)

20.3 Register Controlling Clock Monitor

Clock monitor is controlled by the clock monitor mode register (CLM).

(1) Clock monitor mode register (CLM)

This register sets the operation mode of the clock monitor.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears this register to 00H.

Figure 20-2. Format of Clock Monitor Mode Register (CLM)

CLME	Enables/disables clock monitor operation
0	Disables clock monitor operation
1	Enables clock monitor operation

- Cautions 1. Once bit 0 (CLME) is set to 1, it cannot be cleared to 0 except by RESET input or the internal reset signal.
 - 2. If the reset signal is generated by the clock monitor, CLME is cleared to 0 and bit 1 (CLMRF) of the reset control flag register (RESF) is set to 1. CLMRF is read by software and then automatically cleared to 0. CLMRF is cleared under the following conditions.
 - RESET input
 - Internal reset signal generation by POC
 - After read by software

20.4 Operation of Clock Monitor

This section explains the functions of the clock monitor. The start and stop conditions are as follows.

<Start condition>

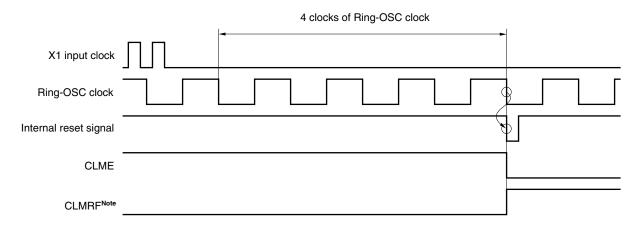
When bit 0 (CLME) of the clock monitor mode register (CLM) is set to operation enabled (1).

<Stop condition>

- In STOP mode and during the oscillation stabilization time
- During the oscillation stabilization time after reset is released
- When the X1 input clock is stopped by software (when MSTOP = 1 or MCC = 1)
- When the Ring-OSC clock is stopped

Remark MSTOP: Bit 7 of the main OSC control register (MOC)

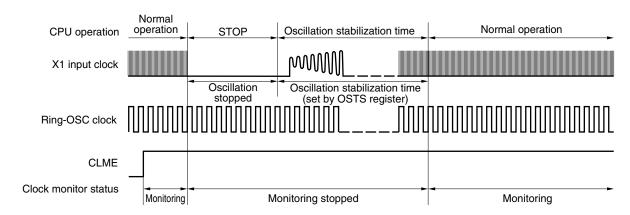
Table 20-2. Operation Status of Clock Monitor (When CLME = 1)


CPU Operation Clock	Operation Mode	X1 Input Clock Status	Ring-OSC Clock Status	Clock Monitor Status
X1 input clock	1 input clock STOP mode Stopped Oscillating		Oscillating	Stopped
			Stopped ^{Note}	
	RESET input		Oscillating	
			Stopped ^{Note}	
	HALT mode	Oscillating	Oscillating	Operating
			Stopped ^{Note}	Stopped
Ring-OSC clock	STOP mode	Stopped	Oscillating	Stopped
	RESET input			
	HALT mode	Oscillating		Operating
		Stopped		Stopped

Note The Ring-OSC clock is stopped only when the "Ring-OSC can be stopped by software" is selected by a mask option. If "Ring-OSC cannot be stopped" is selected, the Ring-OSC clock cannot be stopped.

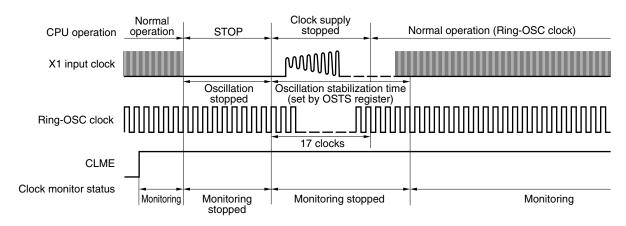
The clock monitor timing is as shown in Figure 20-3.

Figure 20-3. Timing of Clock Monitor (1/3)


(1) When internal reset is executed by oscillation stop of X1 input clock

Note CLMRF is read by software and then automatically cleared to 0. CLMRF is cleared under the following conditions.

- RESET input
- · Internal reset signal generation by POC
- After read by software

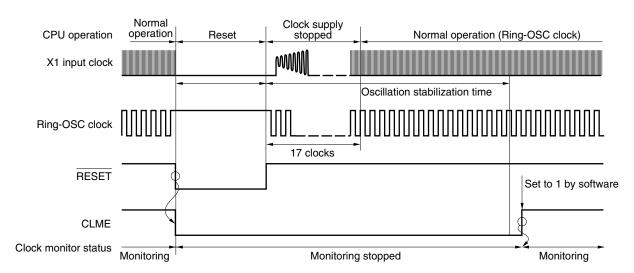

(2) Clock monitor status after STOP mode is released (CLME = 1 is set when CPU clock operates on X1 input clock and before entering STOP mode)

When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before entering STOP mode, monitoring automatically starts at the end of the X1 input clock oscillation stabilization time. Monitoring is stopped in STOP mode and during the oscillation stabilization time.

Figure 20-3. Timing of Clock Monitor (2/3)

(3) Clock monitor status after STOP mode is released (CLME = 1 is set when CPU clock operates on Ring-OSC clock and before entering STOP mode)

When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before entering STOP mode, monitoring automatically starts at the end of the X1 input clock oscillation stabilization time. Monitoring is stopped in STOP mode and during the oscillation stabilization time.


(4) Clock monitor status after RESET input
(CLME = 1 is set after RESET input and during X1 input clock oscillation stabilization time)

RESET input clears bit 0 (CLME) of the clock monitor mode register (CLM) to 0 and stops the clock monitor operation. Even if CLME is set to 1 by software during the oscillation stabilization time of the X1 input clock, monitoring is not performed until the oscillation stabilization time of the X1 input clock ends. Monitoring is automatically started at the end of the oscillation stabilization time.

Figure 20-3. Timing of Clock Monitor (3/3)

(5) Clock monitor status after RESET input (CLME = 1 is set after RESET input and at the end of X1 input clock oscillation stabilization time)

RESET input clears bit 0 (CLME) of the clock monitor mode register (CLM) to 0 and stops the clock monitor operation. When CLME is set to 1 by software at the end of the oscillation stabilization time of the X1 input clock, monitoring is started.

CHAPTER 21 POWER-ON-CLEAR CIRCUIT

21.1 Functions of Power-on-Clear Circuit

The power-on-clear circuit (POC) has the following functions.

- Generates internal reset signal at power on.
- Compares supply voltage (VDD) and detection voltage (VPOC), and generates internal reset signal when VDD
 VPOC.
- The following can be selected by a mask option.
 - · POC disabled
 - POC used (detection voltage: $V_{POC} = 2.85 \text{ V} \pm 0.15 \text{ V}$)
 - POC used (detection voltage: $V_{POC} = 3.5 \text{ V} \pm 0.2 \text{ V}$)

Caution If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is cleared to 00H.

Remark This product incorporates multiple hardware functions that generate an internal reset signal. A flag that indicates the reset cause is located in the reset control flag register (RESF) for when an internal reset signal is generated by the watchdog timer (WDT), low-voltage-detection (LVI) circuit, or clock monitor.

RESF is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by WDT, LVI, or the clock monitor.

For details of the RESF, refer to CHAPTER 19 RESET FUNCTION.

21.2 Configuration of Power-on-Clear Circuit

The block diagram of the power-on-clear circuit is shown in Figure 21-1.

Vod Vod

Internal reset signal

Detection voltage source (VPoc)

Figure 21-1. Block Diagram of Power-on-Clear Circuit

21.3 Operation of Power-on-Clear Circuit

In the power-on-clear circuit, the supply voltage (V_{DD}) and detection voltage (V_{POC}) are compared, and when $V_{DD} < V_{POC}$, an internal reset signal is generated.

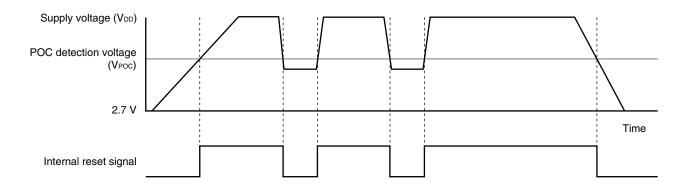
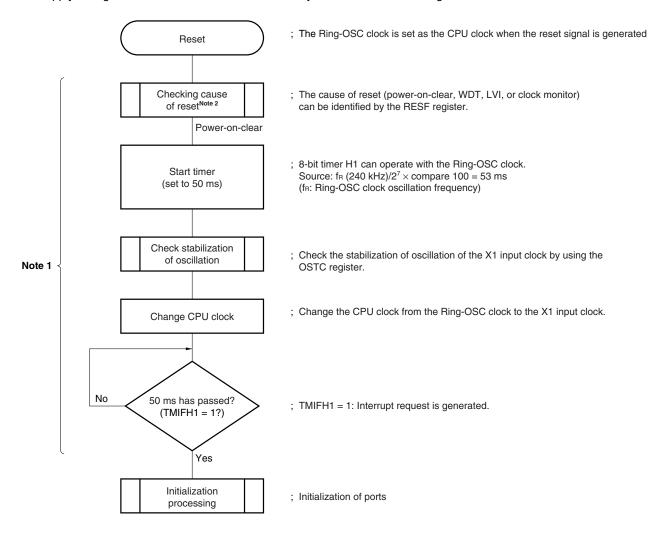


Figure 21-2. Timing of Internal Reset Signal Generation in Power-on-Clear Circuit

21.4 Cautions for Power-on-Clear Circuit

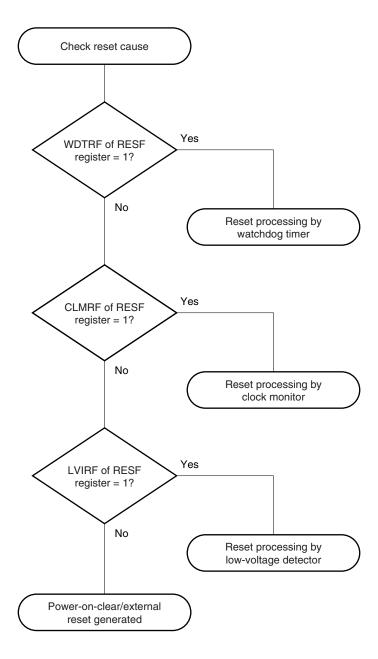

In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the POC detection voltage (VPOC), the system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.

<Action>

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports.

Figure 21-3. Example of Software Processing After Release of Reset (1/2)

• If supply voltage fluctuation is 50 ms or less in vicinity of POC detection voltage



Notes 1. If reset is generated again during this period, initialization processing is not started.

2. A flowchart is shown on the next page.

Figure 21-3. Example of Software Processing After Release of Reset (2/2)

• Checking reset cause

CHAPTER 22 LOW-VOLTAGE DETECTOR

22.1 Functions of Low-Voltage Detector

The low-voltage detector (LVI) has following functions.

- Compares supply voltage (VDD) and detection voltage (VLVI), and generates an internal interrupt signal or internal reset signal when VDD < VLVI.
- Detection levels (seven levels) of supply voltage can be changed by software.
- Interrupt or reset function can be selected by software.
- Operable in STOP mode.

When the low-voltage detector is used to reset, bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of RESF, refer to **CHAPTER 19 RESET FUNCTION**.

22.2 Configuration of Low-Voltage Detector

The block diagram of the low-voltage detector is shown below.

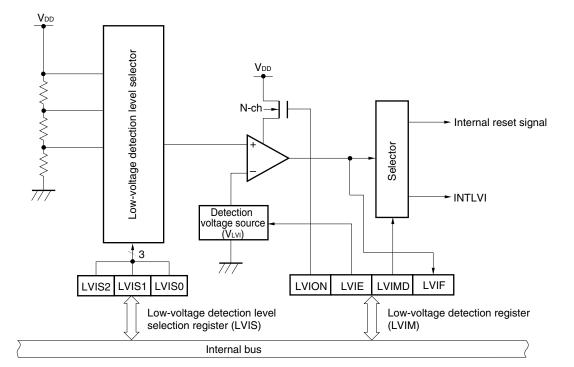


Figure 22-1. Block Diagram of Low-Voltage Detector

22.3 Registers Controlling Low-Voltage Detector

The low-voltage detector is controlled by the following registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level selection register (LVIS)

(1) Low-voltage detection register (LVIM)

This register sets low-voltage detection and the operation mode.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input clears LVIM to 00H.

Figure 22-2. Format of Low-Voltage Detection Register (LVIM)

Address: FFBEH Aft		ter reset: 00H	I R/W ^{Note 1}					
Symbol	7	6	5	4	3	2	1	0
LVIM	LVION	0	0	LVIE	0	0	LVIMD	LVIF

LVION ^{Notes 2, 3}	Enables low-voltage detection operation
0	Disables operation
1	Enables operation

Ľ	VIE ^{Notes 2, 4, 5}	Specifies reference voltage generator
	0	Disables operation
	1	Enables operation

LVIMD ^{Note 2}	Low-voltage detection operation mode selection
0	Generates interrupt signal when supply voltage (VDD) < detection voltage (VLVI)
1	Generates internal reset signal when supply voltage (VDD) < detection voltage (VLVI)

LVIF ^{Note 6} Low-voltage detection flag		Low-voltage detection flag
	0	Supply voltage (V _{DD}) > detection voltage (V _{LVI}), or when operation is disabled
	1	Supply voltage (V _{DD}) < detection voltage (V _{LVI})

Notes 1. Bit 0 is read-only.

- 2. LVION, LVIE, and LVIMD are cleared to 0 at a reset other than an LVI reset. These are not cleared to 0 at an LVI reset.
- 3. When LVION is set to 1, operation of the comparator in the LVI circuit is started. Use software to instigate a wait of at least 0.2 ms from when LVION is set to 1 until the voltage is confirmed at LVIF.
- 4. When LVIE is set to 1, a reference voltage generator operation in the LVI circuit is started.

 Use software to instigate a wait of at least 2 ms from when LVIE is set to 1 until LVION is set to 1.
- 5. If "use POC" is selected by a mask option, leave LVIE as 0. A wait time (2 ms) until LVION is set to 1 is not necessary.
- **6.** The value of LVIF is output as the interrupt request signal INTLVI when LVION = 1 and LVIMD = 0.

Caution To stop LVI, follow either of the procedures below.

- When using 8-bit manipulation instruction: Write 00H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVION to 0 first and then clear LVIE to 0.

(2) Low-voltage detection level selection register (LVIS)

This register selects the low-voltage detection level.

This register can be set by an 8-bit memory manipulation instruction.

RESET input clears LVIS to 00H.

Figure 22-3. Format of Low-Voltage Detection Level Selection Register (LVIS)

Address: FFBFH		After reset: 00H	l R/W					
Symbol	7	6	5	4	3	2	1	0
LVIS	0	0	0	0	0	LVIS2	LVIS1	LVIS0

LVIS2	LVIS1	LVIS0	Detection level
0	0	0	VLVI0 (4.3 V ±0.2 V)
0	0	1	V _{LVI1} (4.1 V ±0.2 V)
0	1	0	V _{LVI2} (3.9 V ±0.2 V)
0	1	1	VLVI3 (3.7 V ±0.2 V)
1	0	0	V _{LVI4} (3.5 V ±0.2 V) ^{Note}
1	0	1	VLVI5 (3.3 V ±0.15 V) ^{Note}
1	1	0	V _{LVI6} (3.1 V ±0.15 V) ^{Note}
1	1	1	Setting prohibited

Note When the detection voltage of the POC circuit is specified as $V_{POC} = 3.5 \text{ V} \pm 0.2 \text{ V}$ by a mask option, do not select V_{LVI4} to V_{LVI6} as the LVI detection voltage. Even if V_{LVI4} to V_{LVI6} are selected, POC circuit has priority.

22.4 Operation of Low-Voltage Detector

The low-voltage detector can be used in the following two modes.

Used as reset

Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an internal reset signal when $V_{DD} < V_{LVI}$.

· Used as interrupt

Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an interrupt signal (INTLVI) when $V_{DD} < V_{LVI}$.

The operation is set as follows.

(1) When used as reset

- · When starting operation
- <1> Mask the LVI interrupt (LVIMK = 1).
- <2> Set the detection voltage using bits 2 to 0 (LVIS2 to LVIS0) of the low-voltage detection level selection register (LVIS).
- <3> Set bit 4 (LVIE) of the low-voltage detection register (LVIM) to 1 (enables reference voltage generator operation).
- <4> Use software to instigate a wait of at least 2 ms.
- <5> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
- <6> Use software to instigate a wait of at least 0.2 ms.
- <7> Confirm that "supply voltage (VDD) > detection voltage (VLVI)" at bit 0 (LVIF) of LVIM.
- <8> Set bit 1 (LVIMD) of LVIM to 1 (generates internal reset signal when supply voltage (VDD) < detection voltage (VLVI)).</p>
- Cautions 1. <1> must always be executed. When LVIMK = 0, an interrupt may occur immediately after the processing in <5>.
 - 2. If "use POC" is selected by a mask option, procedures <3> and <4> are not required.
 - 3. If supply voltage (V_{DD}) > detection voltage (V_{LVI}) when LVIM is set to 1, an internal reset signal is not generated.
- When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction:
 - Write 00H to LVIM.
- When using 1-bit memory manipulation instruction:

Clear LVIMD to 0, LVION to 0, and LVIE to 0 in that order.

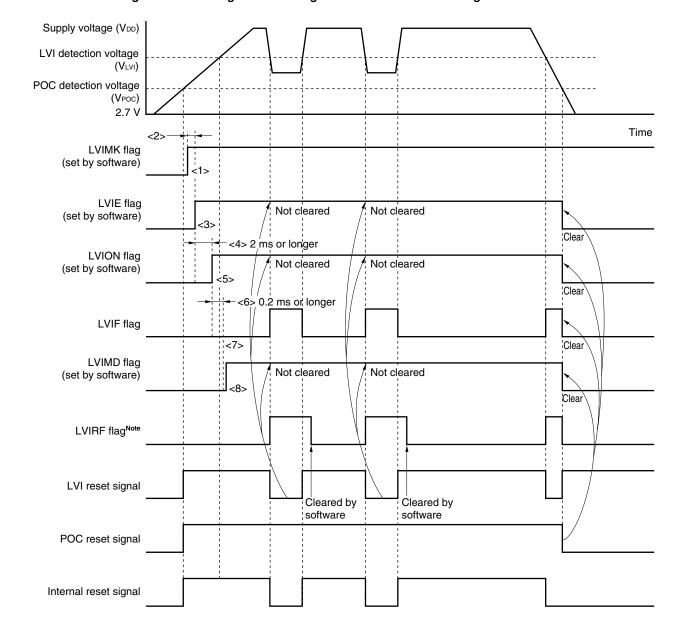


Figure 22-4. Timing of Low-Voltage Detector Internal Reset Signal Generation

Note LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, refer to **CHAPTER 19 RESET FUNCTION**.

Remark <1> to <8> in Figure 22-4 above correspond to <1> to <8> in the description of "when starting operation" in 22.4 (1) When used as reset.

(2) When used as interrupt

- · When starting operation
- <1> Mask the LVI interrupt (LVIMK = 1).
- <2> Set the detection voltage using bits 2 to 0 (LVIS2 to LVIS0) of the low-voltage detection level selection register (LVIS).
- <3> Set bit 4 (LVIE) of the low-voltage detection register (LVIM) to 1 (enables reference voltage generator operation).
- <4> Use software to instigate a wait of at least 2 ms.
- <5> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
- <6> Use software to instigate a wait of at least 0.2 ms.
- <7> Confirm that "supply voltage (VDD) > detection voltage (VLVI)" at bit 0 (LVIF) of LVIM.
- <8> Clear the interrupt request flag of LVI (LVIIF) to 0.
- <9> Release the interrupt mask flag of LVI (LVIMK).
- <10> Execute the El instruction (when vector interrupts are used).

Caution If "use POC" is selected by a mask option, procedures <3> and <4> are not required.

• When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction: Write 00H to LVIM.
- When using 1-bit memory manipulation instruction:
 Clear LVION to 0 first, and then clear LVIE to 0.

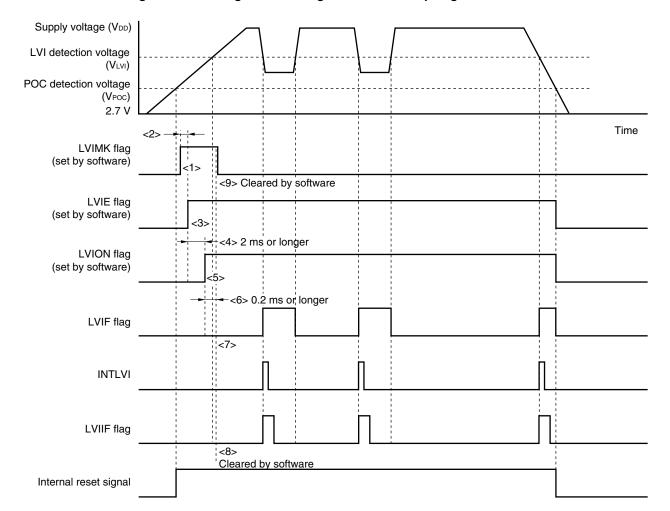


Figure 22-5. Timing of Low-Voltage Detector Interrupt Signal Generation

Remark <1> to <9> in Figure 22-5 above correspond to <1> to <9> in the description of "when starting operation" in 22.4 (2) When used as interrupt.

22.5 Cautions for Low-Voltage Detector

In a system where the supply voltage (V_{DD}) fluctuates for a certain period in the vicinity of the LVI detection voltage (V_{LVI}), the operation is as follows depending on how the low-voltage detector is used.

(1) When used as reset

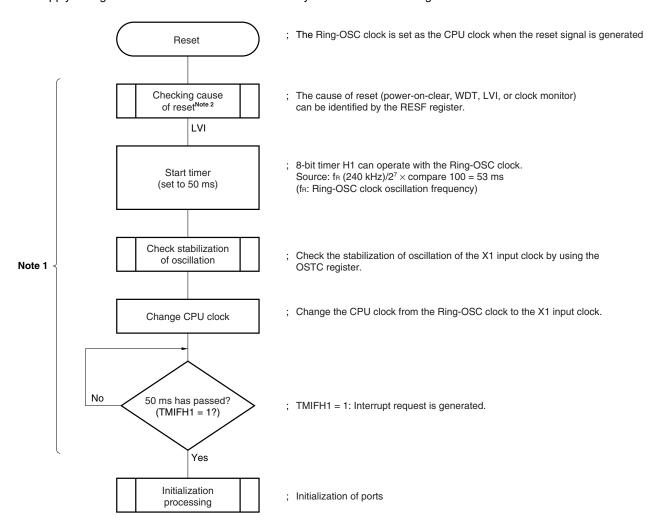
The system may be repeatedly reset and released from the reset status.

In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking action (1) below.

(2) When used as interrupt

Interrupt requests may be frequently generated. Take action (2) below.

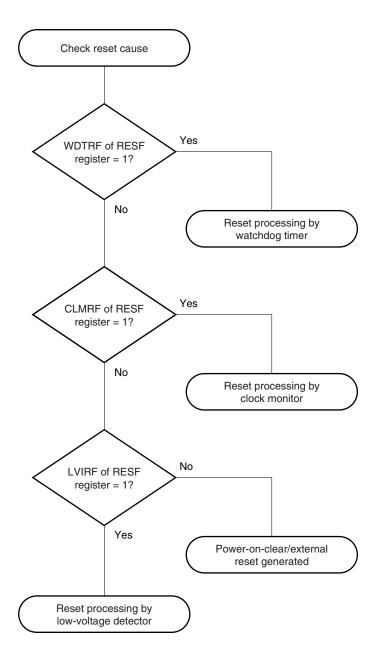
In this system, take the following actions.


<Action>

(1) When used as reset

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports.

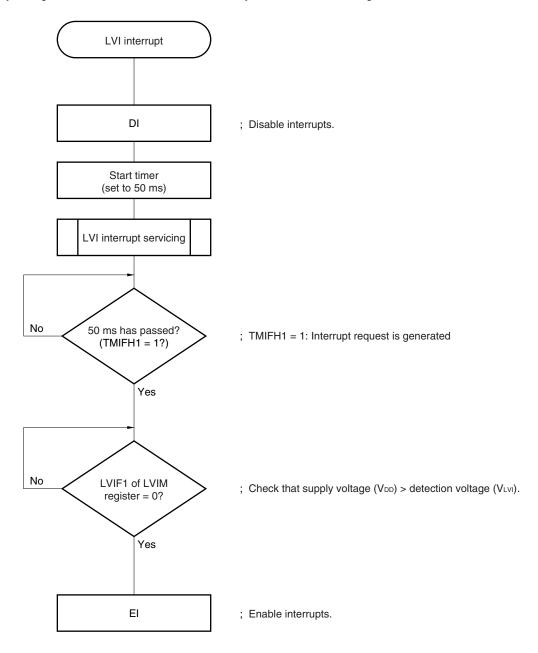
Figure 22-6. Example of Software Processing After Release of Reset (1/2)


• If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage

- Notes 1. If reset is generated again during this period, initialization processing is not started.
 - 2. A flowchart is shown on the next page.

Figure 22-6. Example of Software Processing After Release of Reset (2/2)

• Checking reset cause


(2) When used as interrupt

Disable interrupts (DI) in the servicing routine of the LVI interrupt, and check to see if "supply voltage (V_{DD}) > detection voltage (V_{LVI})", by using bit 0 (LVIF) of the low-voltage detection register (LVIM). Then enable interrupts (EI).

In a system where the supply voltage fluctuation period is long in the vicinity of the LVI detection voltage, disable interrupts (DI), wait for the supply voltage fluctuation period, check that "supply voltage (V_{DD}) > detection voltage (V_{LVI})" with the LVIF flag, and then enable interrupts (EI).

Figure 22-7. Example of Software Processing of LVI Interrupt

• If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage

CHAPTER 23 REGULATOR

23.1 Outline

The 78K0/KD1 Series includes a circuit to realize low-voltage operation inside the device. To stabilize the regulator output voltage, connect the REGC pin to Vss via a 0.1 μ F capacitor.

The regulator of the 78K0/KD1 Series stops operating in the following cases.

- · During the reset period
- In STOP mode
- In HALT mode when the CPU is operating on the subsystem clock

Figure 23-1 shows the block diagram of the periphery of the regulator.

...... EV_{DD} system I/O buffer Internal digital circuits EV_DD Flash memory uPD78F0124 only A/D converter X1, Ring, Regulator sub oscillator <u></u> AV_{REF} **REGC** V_{DD} V_{PP} $0.1 \mu F$ Bidirectional level shifter

Figure 23-1. Block Diagram of Regulator Periphery

Remark To use the CPU at high speed ($f_{XP} = 10 \text{ MHz}$, $V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$), connect the REGC pin directly to V_{DD} and use at the same potential as the V_{DD} pin.

CHAPTER 24 MASK OPTIONS

Mask ROM versions are provided with the following mask options.

- 1. Power-on-clear (POC) circuit
 - POC cannot be used
 - POC used (detection voltage: VPOC = 2.85 V ±0.15 V)
 - POC used (detection voltage: VPOC = 3.5 V ±0.2 V)
- 2. Ring-OSC
 - Cannot be stopped
 - · Can be stopped by software
- 3. Pull-up resistor of P60 to P63 pins
 - Pull-up resistor can be incorporated in 1-bit units (Pull-up resistors are not available for the flash memory versions.)

Flash memory versions that support the mask options of the mask ROM versions are as follows.

Table 24-1. Flash Memory Versions Supporting Mask Options of Mask ROM Versions

Mas	Flash Memory Version	
POC Circuit	Ring-OSC	
POC cannot be used	Cannot be stopped	μPD78F0124M1
	Can be stopped by software	μPD78F0124M2
POC used (V _{POC} = 2.85 V ±0.15 V)	Cannot be stopped	μPD78F0124M3
	Can be stopped by software	μPD78F0124M4
POC used (V _{POC} = $3.5 \text{ V} \pm 0.2 \text{ V}$)	Cannot be stopped	μPD78F0124M5
	Can be stopped by software	μPD78F0124M6

CHAPTER 25 μ PD78F0124

The μ PD78F0124 is provided as the flash memory version of the 78K0/KD1 Series.

The μ PD78F0124 replaces the internal mask ROM of the μ PD780124 with flash memory to which a program can be written, erased, and overwritten while mounted on the board. Table 25-1 lists the differences between the μ PD78F0124 and the mask ROM versions.

Table 25-1. Differences Between μPD78F0124 and Mask ROM Versions

Item	μPD78F0124	Mask ROM Versions		
Internal ROM configuration	Flash memory	Mask ROM		
Internal ROM capacity	32 KB ^{Note}	μPD780121: 8 KB μPD780122: 16 KB μPD780123: 24 KB μPD780124: 32 KB		
Internal high-speed RAM capacity	1024 bytes ^{Note}	μ PD780121: 512 bytes μ PD780122: 512 bytes μ PD780123: 1024 bytes μ PD780124: 1024 bytes		
IC pin	None	Available		
V _{PP} pin	Available	None		
Electrical specifications Refer to CHAPTER 27 ELECTRICAL SPECIFICATIONS (TARGET VA				

Note The same capacity as the mask ROM versions can be specified by means of the internal memory size switching register (IMS).

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM versions.

25.1 Internal Memory Size Switching Register

The μ PD78F0124 allows users to select the internal memory capacity using the internal memory size switching register (IMS) so that the same memory map as that of the mask ROM versions with a different internal memory capacity can be achieved.

IMS is set by an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Caution Be sure to set the value of the relevant mask ROM version at initialization.

Figure 25-1. Format of Internal Memory Size Switching Register (IMS)

Address: FFF0H After reset: CFH		R/W						
Symbol	7	6	5	4	3	2	1	0
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0

RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection
0	1	0	512 bytes
1	1	0	1024 bytes
Other than above		ve	Setting prohibited

ROM3	ROM2	ROM1	ROM0	Internal ROM capacity selection
0	0	1	0	8 KB
0	1	0	0	16 KB
0	1	1	0	24 KB
1	0	0	0	32 KB
Other than above				Setting prohibited

The IMS settings required to obtain the same memory map as mask ROM versions are shown in Table 25-2.

Table 25-2. Internal Memory Size Switching Register Settings

Target Mask ROM Versions	IMS Setting
μPD780121	42H
μPD780122	44H
μPD780123	C6H
μPD780124	C8H

Caution When using a mask ROM version, be sure to set the value indicated in Table 25-2 to IMS.

25.2 Flash Memory Programming

On-board writing of flash memory (with device mounted on target system) is supported.

On-board writing is performed after connecting a dedicated flash programmer (Flashpro III (FL-PR3, PG-FP3)/Flashpro IV (FL-PR4, PG-FP4)) to the host machine and target system.

Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to Flashpro III/Flashpro IV.

- Remarks 1. FL-PR3 and FL-PR4 are products of Naito Densei Machida Mfg. Co., Ltd.
 - 2. USB is supported only by Flashpro IV.

25.2.1 Selection of communication mode

Writing to flash memory is performed using Flashpro III/Flashpro IV and serial communication. Select the communication mode for writing from Table 25-3. For the selection of the communication mode, a format like the one shown in Figure 25-2 is used. The communication mode is selected according to the number of VPP pulses shown in Table 25-3.

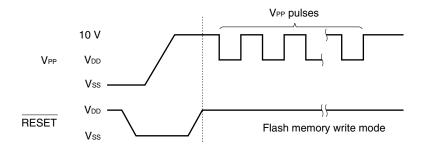

Communication Mode	Number of Channels	Pin Used ^{Note}	Number of VPP Pulses
3-wire serial I/O	1	SCK10/TxD0/P10 SI10/RxD0/P11 SO10/P12	0
		SCK10/TxD0/P10 SI10/RxD0/P11 SO10/P12 HS/P15/TOH0	3
UART (UART0)	1	TxD0/SCK10/P10 RxD0/SI10/P11	8
		TxD0/SCK10/P10 RxD0/SI10/P11 HS/P15/TOH0	11
UART (UART6)	1	TxD6/P13 RxD6/P14	9

Table 25-3. Communication Mode List

Note After shifting to flash memory programming mode, all pins not used for flash memory programming are set to the same state as after reset. Therefore, since all ports become output high-impedance, pin processing, such as connecting to V_{DD} or V_{SS} via a resistor is required if the output high-impedance state is not acknowledged by external devices.

Caution Be sure to select the number of VPP pulses shown in Table 25-3 for the communication mode.

Figure 25-2. Communication Mode Selection Format

25.2.2 Flash memory programming function

Flash memory writing is performed via command and data transmit/receive operations using the selected communication mode. The main functions are listed in Table 25-4.

Table 25-4. Main Functions of Flash Memory Programming

Function	Description
Reset	Used to detect write stop and transmission synchronization.
Batch verify	Compares entire memory contents and input data.
Batch erase	Erases the entire memory contents.
Batch blank check	Checks the erase status of the entire memory.
High-speed write	Performs writing to flash memory according to write start address and number of write data (bytes).
Continuous write	Performs successive write operations using the data input with high-speed write operation.
Status	Checks the current operation mode and operation end.
Oscillation frequency setting	Inputs the resonator oscillation frequency information.
Erase time setting	Inputs the memory erase time.
Baud rate setting	Sets the communication rate when the UART mode is used.
Silicon signature read	Outputs the device name, memory capacity, and device block information.

25.2.3 Connecting Flashpro III/Flashpro IV

The connection between Flashpro III/Flashpro IV and the μ PD78F0124 differs depending on the communication mode (3-wire serial I/O or UART). Figures 25-3 to 25-7 show the connection diagrams of each case.

Figure 25-3. Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode

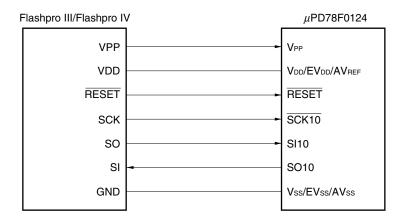
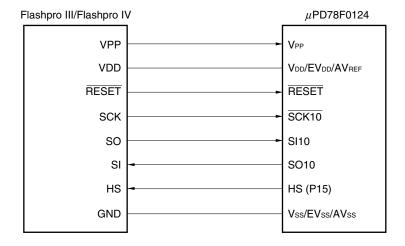



Figure 25-4. Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode (Using Handshake)

Caution Be sure to connect the REGC pin of the μ PD78F0124 in either of the following two ways.

- Connect to GND of Flashpro III/Flashpro IV via 0.1 μF capacitor
- Connect directly to VDD of Flashpro III/Flashpro IV

Figure 25-5. Connection of Flashpro III/Flashpro IV in UART (UART0) Mode

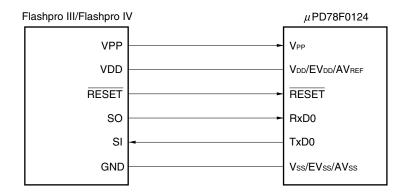


Figure 25-6. Connection of Flashpro III/Flashpro IV in UART (UART0) Mode (Using Handshake)

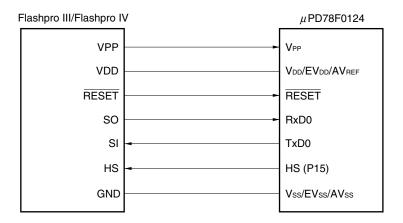
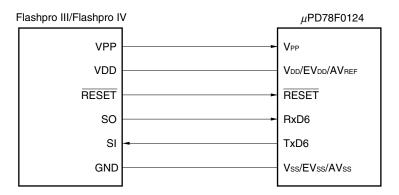
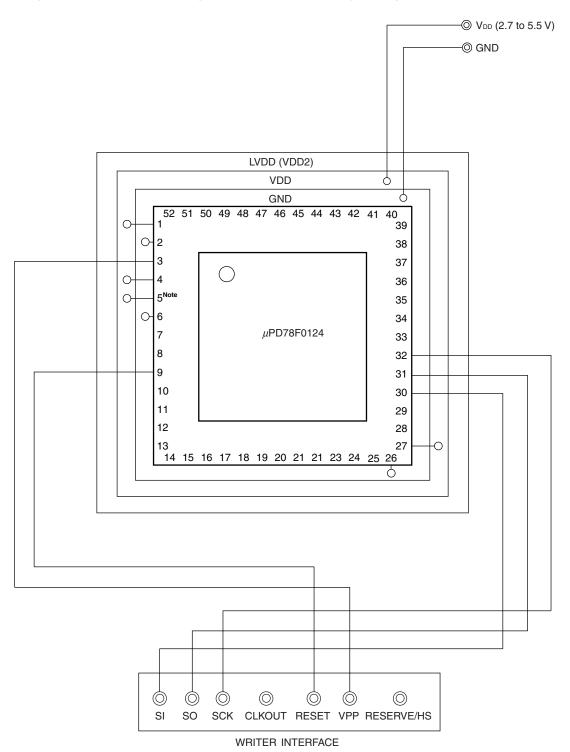



Figure 25-7. Connection of Flashpro III/Flashpro IV in UART (UART6) Mode


Caution Be sure to connect the REGC pin of the μ PD78F0124 in either of the following two ways.

- Connect to GND of Flashpro III/Flashpro IV via 0.1 μF capacitor
- Connect directly to VDD of Flashpro III/Flashpro IV

25.2.4 Connection on adapter for flash memory writing

Examples of the recommended connection when using the adapter for flash memory writing are shown below.

Figure 25-8. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode

- Connect to GND via 0.1 μF capacitor
- · Connect directly to VDD

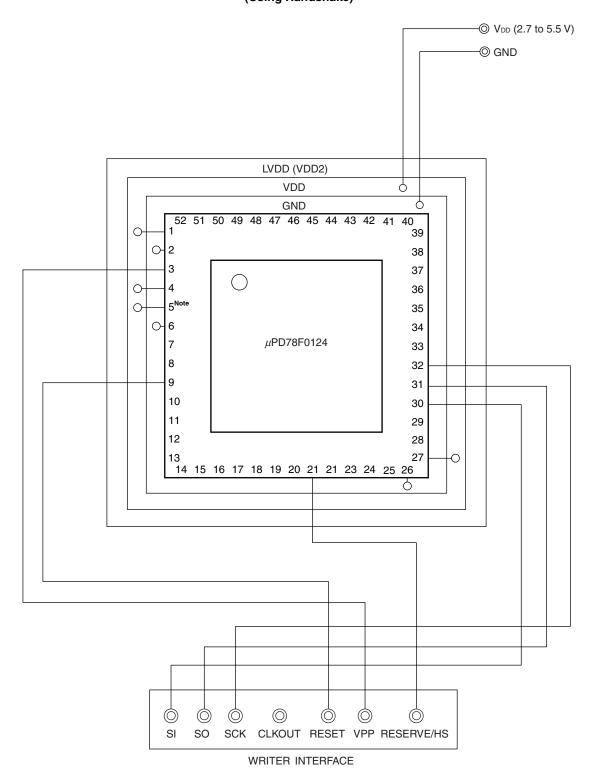


Figure 25-9. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode (Using Handshake)

- Connect to GND via 0.1 μ F capacitor
- Connect directly to VDD

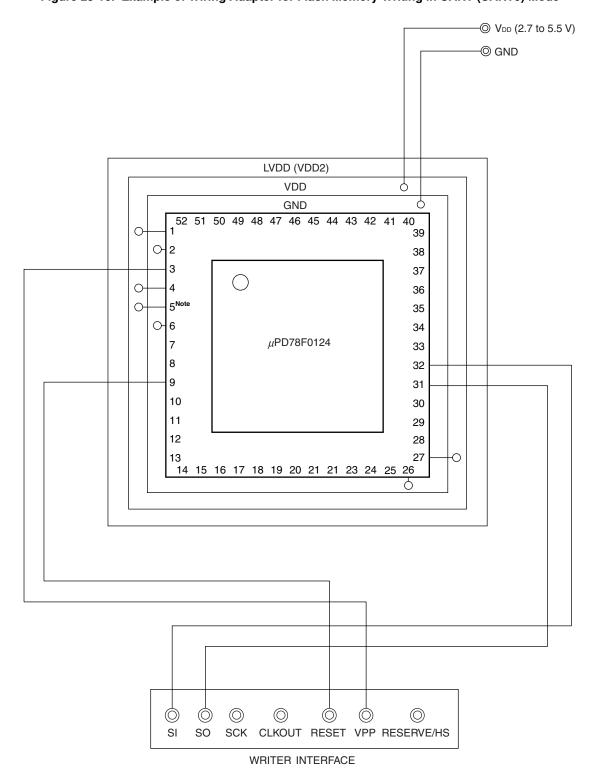


Figure 25-10. Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode

- Connect to GND via 0.1 μ F capacitor
- Connect directly to VDD

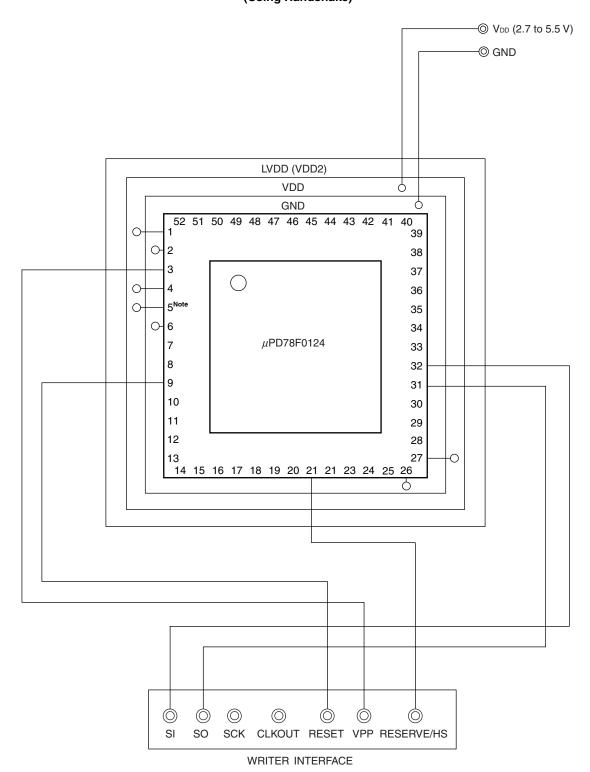


Figure 25-11. Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode (Using Handshake)

- Connect to GND via 0.1 μ F capacitor
- Connect directly to VDD

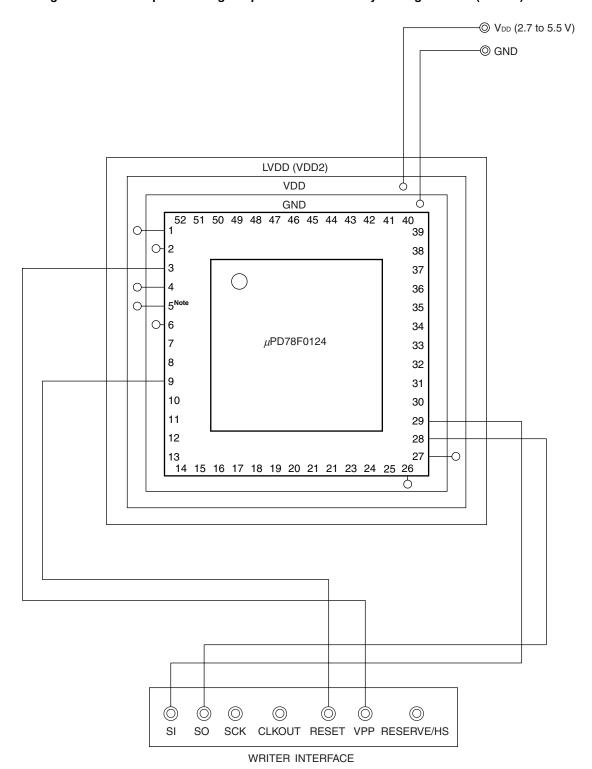


Figure 25-12. Example of Wiring Adapter for Flash Memory Writing in UART (UART6) Mode

- Connect to GND via 0.1 μ F capacitor
- Connect directly to VDD

CHAPTER 26 INSTRUCTION SET

This chapter lists each instruction set of the 78K0/KD1 Series in table form. For details of each operation and operation code, refer to the separate document 78K/0 Series Instructions User's Manual (U12326E).

26.1 Conventions Used in Operation List

26.1.1 Operand identifiers and specification methods

Operands are written in the "Operand" column of each instruction in accordance with the specification method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more methods, select one of them. Uppercase letters and the symbols #, !, \$ and [] are keywords and must be written as they are. Each symbol has the following meaning.

- #: Immediate data specification
- !: Absolute address specification
- \$: Relative address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to write the #, !, \$, and [] symbols.

For operand register identifiers r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for specification.

Table 26-1. Operand Identifiers and Specification Methods

Identifier	Specification Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol ^{Note}
sfrp	Special function register symbol (16-bit manipulatable register even addresses only) ^{Note}
saddr	FE20H to FF1FH Immediate data or labels
saddrp	FE20H to FF1FH Immediate data or labels (even address only)
addr16	0000H to FFFFH Immediate data or labels
	(Only even addresses for 16-bit data transfer instructions)
addr11	0800H to 0FFFH Immediate data or labels
addr5	0040H to 007FH Immediate data or labels (even address only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
RBn	RB0 to RB3

Note Addresses from FFD0H to FFDFH cannot be accessed with these operands.

Remark For special function register symbols, refer to **Table 3-5 Special Function Register List**.

26.1.2 Description of operation column

A: A register; 8-bit accumulator

X: X register B: B register

C: C registerD: D registerE: E register

H: H register
L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair
DE: DE register pair
HL: HL register pair
PC: Program counter
SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

RBS: Register bank select flag
IE: Interrupt request enable flag

NMIS: Non-maskable interrupt servicing flag

(): Memory contents indicated by address or register contents in parentheses

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

\(\): Logical product (AND)\(\): Logical sum (OR)

→: Exclusive logical sum (exclusive OR)

--: Inverted data

addr16: 16-bit immediate data or label

jdisp8: Signed 8-bit data (displacement value)

26.1.3 Description of flag operation column

(Blank): Not affected
0: Cleared to 0
1: Set to 1

×: Set/cleared according to the result

R: Previously saved value is restored

26.2 Operation List

Instruction	Managania	Operanda	Dittoo	С	locks	Operation	F	lag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z A	AC CY
8-bit data	MOV	r, #byte	2	4	-	$r \leftarrow \text{byte}$		
transfer		saddr, #byte	3	6	7	(saddr) ← byte		
		sfr, #byte	3	_	7	sfr ← byte		
		A, r	1	2	-	$A \leftarrow r$		
		r, A Note 3	1	2	-	$r \leftarrow A$		
		A, saddr	2	4	5	A ← (saddr)		
		saddr, A	2	4	5	(saddr) ← A		
		A, sfr	2	_	5	A ← sfr		
		sfr, A	2	_	5	sfr ← A		
		A, !addr16	3	8	9 + n	A ← (addr16)		
		!addr16, A	3	8	9 + m	(addr16) ← A		
		PSW, #byte	3	_	7	PSW ← byte	×	××
		A, PSW	2	_	5	$A \leftarrow PSW$		
		PSW, A	2	_	5	PSW ← A	×	××
		A, [DE]	1	4	5 + n	A ← (DE)		
		[DE], A	1	4	5 + m	$(DE) \leftarrow A$		
		A, [HL]	1	4	5 + n	$A \leftarrow (HL)$		
		[HL], A	1	4	5 + m	$(HL) \leftarrow A$		
		A, [HL + byte]	2	8	9 + n	A ← (HL + byte)		
		[HL + byte], A	2	8	9 + m	(HL + byte) ← A		
		A, [HL + B]	1	6	7 + n	$A \leftarrow (HL + B)$		
		[HL + B], A	1	6	7 + m	(HL + B) ← A		
		A, [HL + C]	1	6	7 + n	$A \leftarrow (HL + C)$		
		[HL + C], A	1	6	7 + m	$(HL + C) \leftarrow A$		
	хсн	A, r	1	2	-	$A \leftrightarrow r$		
		A, saddr	2	4	6	$A \leftrightarrow (saddr)$		
		A, sfr	2	_	6	$A \leftrightarrow (sfr)$		
		A, !addr16	3	8	10 + n + m	$A \leftrightarrow (addr16)$		
		A, [DE]	1	4	6 + n + m	$A \leftrightarrow (DE)$		
		A, [HL]	1	4	6 + n + m	$A \leftrightarrow (HL)$		
		A, [HL + byte]	2	8	10 + n + m	$A \leftrightarrow (HL + byte)$		
		A, [HL + B]	2	8	10 + n + m	$A \leftrightarrow (HL + B)$		
		A, [HL + C]	2	8	10 + n + m	$A \leftrightarrow (HL + C)$		

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except "r = A"

- 2. This clock cycle applies to the internal ROM program.
- 3. n is the number of waits when the external memory expansion area is read.
- **4.** m is the number of waits when the external memory expansion area is written.

Instruction	Maamania	Operande	Dutoo	С	locks	Operation	Flag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z AC CY
16-bit data	MOVW	rp, #word	3	6	_	$rp \leftarrow word$	
transfer		saddrp, #word	4	8	10	(saddrp) ← word	
		sfrp, #word	4	_	10	$sfrp \leftarrow word$	
		AX, saddrp	2	6	8	$AX \leftarrow (saddrp)$	
		saddrp, AX	2	6	8	(saddrp) ← AX	
		AX, sfrp	2	-	8	AX ← sfrp	
		sfrp, AX	2	_	8	$sfrp \leftarrow AX$	
		AX, rp	³ 1	4	-	AX ← rp	
		rp, AX	³ 1	4	_	rp ← AX	
		AX, !addr16	3	10	12 + 2n	AX ← (addr16)	
		!addr16, AX	3	10	12 + 2m	(addr16) ← AX	
	XCHW	AX, rp	3 1	4	_	$AX \leftrightarrow rp$	
8-bit	ADD	A, #byte	2	4	_	A, CY ← A + byte	× × ×
operation		saddr, #byte	3	6	8	(saddr), CY ← (saddr) + byte	× × ×
		A, r	2	4	_	$A, CY \leftarrow A + r$	× × ×
		r, A	2	4	_	$r, CY \leftarrow r + A$	× × ×
		A, saddr	2	4	5	A, CY ← A + (saddr)	× × ×
		A, !addr16	3	8	9 + n	A, CY ← A + (addr16)	× × ×
		A, [HL]	1	4	5 + n	$A, CY \leftarrow A + (HL)$	\times \times \times
		A, [HL + byte]	2	8	9 + n	A, CY ← A + (HL + byte)	× × ×
		A, [HL + B]	2	8	9 + n	$A, CY \leftarrow A + (HL + B)$	× × ×
		A, [HL + C]	2	8	9 + n	$A, CY \leftarrow A + (HL + C)$	× × ×
	ADDC	A, #byte	2	4	-	A, CY ← A + byte + CY	× × ×
		saddr, #byte	3	6	8	(saddr), CY ← (saddr) + byte + CY	× × ×
		A, r	2	4	_	$A, CY \leftarrow A + r + CY$	\times \times \times
		r, A	2	4	-	$r, CY \leftarrow r + A + CY$	× × ×
		A, saddr	2	4	5	A, CY ← A + (saddr) + CY	× × ×
		A, !addr16	3	8	9 + n	A, CY ← A + (addr16) + CY	× × ×
		A, [HL]	1	4	5 + n	$A, CY \leftarrow A + (HL) + CY$	× × ×
		A, [HL + byte]	2	8	9 + n	$A, CY \leftarrow A + (HL + byte) + CY$	\times \times \times
		A, [HL + B]	2	8	9 + n	$A, CY \leftarrow A + (HL + B) + CY$	\times \times \times
		A, [HL + C]	2	8	9 + n	$A, CY \leftarrow A + (HL + C) + CY$	× × ×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- 3. Only when rp = BC, DE or HL
- **4.** Except "r = A"

- 2. This clock cycle applies to the internal ROM program.
- 3. n is the number of waits when the external memory expansion area is read.
- **4.** m is the number of waits when the external memory expansion area is written.

Instruction	Mnemonic	Operands	Bytes	С	locks	Operation		Flaç	g
Group	WITTETTIOTIC	Ореганиз	Dytes	Note 1	Note 2	Ореганоп	Z	AC	CY
8-bit	SUB	A, #byte	2	4	-	A, CY ← A – byte	×	×	×
operation		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) – byte	×	×	×
		A, r	2	4	_	$A, CY \leftarrow A - r$	×	×	×
		r, A	2	4	_	$r, CY \leftarrow r - A$	×	×	×
		A, saddr	2	4	5	A, CY ← A − (saddr)	×	×	×
		A, !addr16	3	8	9 + n	A, CY ← A − (addr16)	×	×	×
		A, [HL]	1	4	5 + n	$A, CY \leftarrow A - (HL)$	×	×	×
		A, [HL + byte]	2	8	9 + n	A, CY ← A − (HL + byte)	×	×	×
		A, [HL + B]	2	8	9 + n	$A, CY \leftarrow A - (HL + B)$	×	×	×
		A, [HL + C]	2	8	9 + n	$A, CY \leftarrow A - (HL + C)$	×	×	×
	SUBC	A, #byte	2	4	_	A, CY ← A – byte – CY	×	×	×
		saddr, #byte	3	6	8	(saddr), CY ← (saddr) – byte – CY	×	×	×
		A, r	2	4	-	$A, CY \leftarrow A - r - CY$	×	×	×
		r, A	2	4	-	$r, CY \leftarrow r - A - CY$	×	×	×
		A, saddr	2	4	5	A, CY ← A − (saddr) − CY	×	×	×
		A, !addr16	3	8	9 + n	A, CY ← A − (addr16) − CY	×	×	×
		A, [HL]	1	4	5 + n	$A, CY \leftarrow A - (HL) - CY$	×	×	×
		A, [HL + byte]	2	8	9 + n	$A, CY \leftarrow A - (HL + byte) - CY$	×	×	×
		A, [HL + B]	2	8	9 + n	$A, CY \leftarrow A - (HL + B) - CY$	×	×	×
		A, [HL + C]	2	8	9 + n	$A, CY \leftarrow A - (HL + C) - CY$	×	×	×
	AND	A, #byte	2	4	_	$A \leftarrow A \wedge byte$	×		
		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \land byte$	×		
		A, r	2	4	=	$A \leftarrow A \wedge r$	×		
		r, A	2	4	_	$r \leftarrow r \wedge A$	×		
		A, saddr	2	4	5	$A \leftarrow A \wedge (saddr)$	×		
		A, !addr16	3	8	9 + n	$A \leftarrow A \wedge (addr16)$	×		
		A, [HL]	1	4	5 + n	$A \leftarrow A \wedge (HL)$	×		
		A, [HL + byte]	2	8	9 + n	A ← A ∧ (HL + byte)	×		
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \wedge (HL + B)$	×		
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \wedge (HL + C)$	×		

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except "r = A"

- **2.** This clock cycle applies to the internal ROM program.
- 3. n is the number of waits when the external memory expansion area is read.

Instruction	Mananania	Onersande	Distan	С	locks	On anation	Flag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z AC CY
8-bit	OR	A, #byte	2	4	_	$A \leftarrow A \lor byte$	×
operation		saddr, #byte	3	6	8	(saddr) ← (saddr) ∨ byte	×
		A, r	2	4	_	$A \leftarrow A \lor r$	×
		r, A	2	4	_	$r \leftarrow r \lor A$	×
		A, saddr	2	4	5	$A \leftarrow A \lor (saddr)$	×
		A, !addr16	3	8	9 + n	$A \leftarrow A \lor (addr16)$	×
		A, [HL]	1	4	5 + n	$A \leftarrow A \lor (HL)$	×
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \lor (HL + byte)$	×
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \lor (HL + B)$	×
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \lor (HL + C)$	×
	XOR	A, #byte	2	4	_	$A \leftarrow A \forall byte$	×
		saddr, #byte	3	6	8	$(saddr) \leftarrow (saddr) \lor byte$	×
		A, r	2	4	_	$A \leftarrow A \vee r$	×
		r, A	2	4	_	$r \leftarrow r \forall A$	×
		A, saddr	2	4	5	$A \leftarrow A \forall (saddr)$	×
		A, !addr16	3	8	9 + n	$A \leftarrow A \vee (addr16)$	×
		A, [HL]	1	4	5 + n	$A \leftarrow A \lor (HL)$	×
		A, [HL + byte]	2	8	9 + n	$A \leftarrow A \lor (HL + byte)$	×
		A, [HL + B]	2	8	9 + n	$A \leftarrow A \vee (HL + B)$	×
		A, [HL + C]	2	8	9 + n	$A \leftarrow A \lor (HL + C)$	×
	СМР	A, #byte	2	4	-	A – byte	× × ×
		saddr, #byte	3	6	8	(saddr) – byte	\times \times \times
		A, r	2	4	-	A – r	× × ×
		r, A	2	4	-	r – A	\times \times \times
		A, saddr	2	4	5	A – (saddr)	\times \times \times
		A, !addr16	3	8	9 + n	A – (addr16)	\times \times \times
		A, [HL]	1	4	5 + n	A – (HL)	× × ×
		A, [HL + byte]	2	8	9 + n	A – (HL + byte)	× × ×
		A, [HL + B]	2	8	9 + n	A – (HL + B)	× × ×
		A, [HL + C]	2	8	9 + n	A – (HL + C)	× × ×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Except "r = A"

- 2. This clock cycle applies to the internal ROM program.
- 3. n is the number of waits when the external memory expansion area is read.

Instruction		0	D. 4-		locks	Occupation		Flag	
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z	AC	CY
16-bit	ADDW	AX, #word	3	6	_	$AX,CY\leftarrowAX+word$	×	×	×
operation	SUBW	AX, #word	3	6	_	$AX,CY\leftarrowAX-word$	×	×	×
	CMPW	AX, #word	3	6	-	AX – word	×	×	×
Multiply/	MULU	X	2	16	-	$AX \leftarrow A \times X$			
divide	DIVUW	С	2	25	-	AX (Quotient), C (Remainder) \leftarrow AX \div C			
Increment/	INC	r	1	2	_	$r \leftarrow r + 1$	×	×	
decrement		saddr	2	4	6	$(\text{saddr}) \leftarrow (\text{saddr}) + 1$	×	×	
	DEC	r	1	2	-	$r \leftarrow r - 1$	×	×	
		saddr	2	4	6	$(saddr) \leftarrow (saddr) - 1$	×	×	
	INCW	rp	1	4	_	rp ← rp + 1			
	DECW	rp	1	4		$rp \leftarrow rp - 1$			
Rotate	ROR	A, 1	1	2	_	(CY, A7 \leftarrow A0, Am - 1 \leftarrow Am) \times 1 time			×
	ROL	A, 1	1	2	_	(CY, $A_0 \leftarrow A_7$, $A_{m+1} \leftarrow A_m$) \times 1 time			×
	RORC	A, 1	1	2	_	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1 \text{ time}$			×
	ROLC	A, 1	1	2		(CY \leftarrow A7, A0 \leftarrow CY, Am + 1 \leftarrow Am) \times 1 time			×
	ROR4	[HL]	2	10	12 + n + m	$A_{3-0} \leftarrow (HL)_{3-0}, (HL)_{7-4} \leftarrow A_{3-0},$ $(HL)_{3-0} \leftarrow (HL)_{7-4}$			
	ROL4	[HL]	2	10	12 + n + m	$A_{3-0} \leftarrow (HL)_{7-4}, (HL)_{3-0} \leftarrow A_{3-0},$ $(HL)_{7-4} \leftarrow (HL)_{3-0}$			
BCD	ADJBA		2	4	-	Decimal Adjust Accumulator after Addition	×	×	×
adjustment	ADJBS		2	4	-	Decimal Adjust Accumulator after Subtract	×	×	×
Bit	MOV1	CY, saddr.bit	3	6	7	$CY \leftarrow (saddr.bit)$			×
manipulate		CY, sfr.bit	3	-	7	$CY \leftarrow sfr.bit$			×
		CY, A.bit	2	4	-	$CY \leftarrow A.bit$			×
		CY, PSW.bit	3	_	7	$CY \leftarrow PSW.bit$			×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow (HL).bit$			×
		saddr.bit, CY	3	6	8	$(saddr.bit) \leftarrow CY$			
		sfr.bit, CY	3	-	8	$sfr.bit \leftarrow CY$			
		A.bit, CY	2	4		A.bit ← CY			
		PSW.bit, CY	3	_	8	$PSW.bit \leftarrow CY$	×	×	
		[HL].bit, CY	2	6	8 + n + m	(HL).bit ← CY			

- Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
 - 2. When an area except the internal high-speed RAM area is accessed
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.
 - 3. n is the number of waits when the external memory expansion area is read.
 - **4.** m is the number of waits when the external memory expansion area is written.

Instruction	Managania	Onevenda	Durton	С	locks	Onerstien	Flag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z AC CY
Bit	AND1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \land (saddr.bit)$	×
manipulate		CY, sfr.bit	3	_	7	$CY \leftarrow CY \land sfr.bit$	×
		CY, A.bit	2	4	_	$CY \leftarrow CY \wedge A.bit$	×
		CY, PSW.bit	3	_	7	$CY \leftarrow CY \land PSW.bit$	×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \land (HL).bit$	×
	OR1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \lor (saddr.bit)$	×
		CY, sfr.bit	3	-	7	$CY \leftarrow CY \lor sfr.bit$	×
		CY, A.bit	2	4	-	$CY \leftarrow CY \lor A.bit$	×
		CY, PSW.bit	3	_	7	$CY \leftarrow CY \lor PSW.bit$	×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \lor (HL).bit$	×
	XOR1	CY, saddr.bit	3	6	7	CY ← CY → (saddr.bit)	×
		CY, sfr.bit	3	_	7	CY ← CY y sfr.bit	×
		CY, A.bit	2	4	-	$CY \leftarrow CY \lor A.bit$	×
		CY, PSW.bit	3	-	7	CY ← CY → PSW.bit	×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \lor (HL).bit$	×
	SET1	saddr.bit	2	4	6	(saddr.bit) ← 1	
		sfr.bit	3	_	8	sfr.bit ← 1	
		A.bit	2	4	_	A.bit ← 1	
		PSW.bit	2	_	6	PSW.bit ← 1	\times \times \times
		[HL].bit	2	6	8 + n + m	(HL).bit ← 1	
	CLR1	saddr.bit	2	4	6	(saddr.bit) ← 0	
		sfr.bit	3	_	8	sfr.bit ← 0	
		A.bit	2	4	-	A.bit ← 0	
		PSW.bit	2	_	6	PSW.bit ← 0	\times \times \times
		[HL].bit	2	6	8 + n + m	(HL).bit ← 0	
	SET1	CY	1	2	_	CY ← 1	1
	CLR1	CY	1	2	_	CY ← 0	0
	NOT1	CY	1	2	_	$CY \leftarrow \overline{CY}$	×

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

- 2. This clock cycle applies to the internal ROM program.
- ${\bf 3.}\,$ n is the number of waits when the external memory expansion area is read.
- **4.** m is the number of waits when the external memory expansion area is written.

Instruction	Mnemonic	Operands	Bytes		locks	Operation	I	-lag
Group	winemonic	Operands	bytes	Note 1	Note 2	Operation	Z	AC CY
Call/return	CALL	!addr16	3	7	I	$(SP-1) \leftarrow (PC+3)H, (SP-2) \leftarrow (PC+3)L,$ PC \leftarrow addr16, SP \leftarrow SP -2		
	CALLF	!addr11	2	5	I	$\begin{split} &(SP-1) \leftarrow (PC+2)_{H}, (SP-2) \leftarrow (PC+2)_{L}, \\ &PC_{15-11} \leftarrow 00001, PC_{10-0} \leftarrow addr11, \\ &SP \leftarrow SP-2 \end{split}$		
	CALLT	[addr5]	1	6	ı	$\begin{split} &(SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L},\\ &PC_{H} \leftarrow (00000000, addr5+1),\\ &PC_{L} \leftarrow (00000000, addr5),\\ &SP \leftarrow SP-2 \end{split}$		
	BRK		1	6	ı	$\begin{split} (SP-1) \leftarrow PSW, \ (SP-2) \leftarrow (PC+1)_H, \\ (SP-3) \leftarrow (PC+1)_L, \ PC_H \leftarrow (003FH), \\ PC_L \leftarrow (003EH), \ SP \leftarrow SP-3, \ IE \leftarrow 0 \end{split}$		
	RET		1	6	1	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $SP \leftarrow SP + 2$		
	RETI		1	6	I	$\begin{aligned} & PCH \leftarrow (SP+1),PCL \leftarrow (SP),\\ & PSW \leftarrow (SP+2),SP \leftarrow SP+3,\\ & NMIS \leftarrow 0 \end{aligned}$	R	R R
	RETB		1	6	-1	$PCH \leftarrow (SP + 1), PCL \leftarrow (SP),$ $PSW \leftarrow (SP + 2), SP \leftarrow SP + 3$	R	R R
Stack	PUSH	PSW	1	2	-	(SP − 1) ← PSW, SP ← SP − 1		
manipulate		rp	1	4	-	$(SP - 1) \leftarrow rpH, (SP - 2) \leftarrow rpL,$ $SP \leftarrow SP - 2$		
	POP	PSW	1	2	-	$PSW \leftarrow (SP),SP \leftarrow SP + 1$	R	R R
		rp	1	4	-	$rpH \leftarrow (SP + 1), rpL \leftarrow (SP),$ $SP \leftarrow SP + 2$		
	MOVW	SP, #word	4	-	10	$SP \leftarrow word$		
		SP, AX	2	-	8	SP ← AX		
		AX, SP	2	_	8	$AX \leftarrow SP$		
Unconditional	BR	!addr16	3	6	-	PC ← addr16		
branch		\$addr16	2	6	_	PC ← PC + 2 + jdisp8		
		AX	2	8	-	$PCH \leftarrow A, PCL \leftarrow X$		
Conditional	ВС	\$addr16	2	6	-	PC ← PC + 2 + jdisp8 if CY = 1		
branch	BNC	\$addr16	2	6	_	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$		
	BZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$		
	BNZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$		

- Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
 - 2. When an area except the internal high-speed RAM area is accessed
- Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
 - **2.** This clock cycle applies to the internal ROM program.

Instruction	Manania	Operanda	Dutos	С	locks	Operation	Flag
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z AC CY
Conditional	вт	saddr.bit, \$addr16	3	8	9	$PC \leftarrow PC + 3 + jdisp8 \text{ if (saddr.bit)} = 1$	
branch		sfr.bit, \$addr16	4	_	11	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1$	
		A.bit, \$addr16	3	8	_	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$	
		PSW.bit, \$addr16	3	_	9	$PC \leftarrow PC + 3 + jdisp8 \text{ if PSW.bit} = 1$	
		[HL].bit, \$addr16	3	10	11 + n	$PC \leftarrow PC + 3 + jdisp8 \text{ if (HL).bit} = 1$	
	BF	saddr.bit, \$addr16	4	10	11	$PC \leftarrow PC + 4 + jdisp8 \text{ if (saddr.bit)} = 0$	
		sfr.bit, \$addr16	4	_	11	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$	
		A.bit, \$addr16	3	8	_	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 0$	
		PSW.bit, \$addr16	4	_	11	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0	
		[HL].bit, \$addr16	3	10	11 + n	$PC \leftarrow PC + 3 + jdisp8 \text{ if (HL).bit} = 0$	
	BTCLR	saddr.bit, \$addr16	4	10	12	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 1 then reset (saddr.bit)	
		sfr.bit, \$addr16	4	-	12	$PC \leftarrow PC + 4 + jdisp8$ if $sfr.bit = 1$ then reset $sfr.bit$	
		A.bit, \$addr16	3	8	_	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$ then reset A.bit	
		PSW.bit, \$addr16	4	-	12	$PC \leftarrow PC + 4 + jdisp8 \text{ if PSW.bit} = 1$ then reset PSW.bit	× × ×
		[HL].bit, \$addr16	3	10	12 + n + m	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 1 then reset (HL).bit	
	DBNZ	B, \$addr16	2	6	_	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0	
		C, \$addr16	2	6	-	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$	
		saddr, \$addr16	3	8	10	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if $(saddr) \neq 0$	
CPU	SEL	RBn	2	4	-	RBS1, 0 ← n	
control	NOP		1	2	_	No Operation	
	El		2	_	6	IE ← 1 (Enable Interrupt)	
	DI		2		6	IE ← 0 (Disable Interrupt)	
	HALT		2	6	_	Set HALT Mode	
	STOP		2	6	_	Set STOP Mode	

- Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
 - 2. When an area except the internal high-speed RAM area is accessed
- Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.
 - 3. n is the number of waits when the external memory expansion area is read.
 - **4.** m is the number of waits when the external memory expansion area is written.

26.3 Instructions Listed by Addressing Type

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	#byte	А	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte] [HL+B] [HL+C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
First Operand								
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
First Operand								
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СУ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand First Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ BNZ
Compound instruction					BT BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

CHAPTER 27 ELECTRICAL SPECIFICATIONS (TARGET VALUES)

These specifications are only target values, and may not be satisfied by mass-produced products. The electrical specifications (target values) of (A1) products are under evaluation.

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$ (1/2)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +6.5	V
	EV _{DD}			-0.3 to +6.5	٧
	REGC			-0.3 to +6.5	٧
	Vss			-0.3 to +0.3	٧
	EVss			-0.3 to +0.3	٧
	AVREF			-0.3 to $V_{DD} + 0.3^{Note 1}$	٧
	AVss			-0.3 to +0.3	V
	V _{PP}	μPD78F	0124 Note 2	-0.3 to +10.5	V
Input voltage	Vı1	to P33, F	P60, P61, P70 to P77, P120, P140, X1, X2, XT1, XT2, RESET	-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	V ₁₂	P62,	N-ch open drain	-0.3 to +13	V
		P63	On-chip pull-up resistor	-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	Vıз		sh programming mode F0124 only)	-0.3 to +10.5	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Analog input voltage	Van			$AV_{SS} - 0.3 \text{ to } AV_{REF} + 0.3^{\text{Note 1}}$ and -0.3 to $V_{DD} + 0.3^{\text{Note 1}}$	V
Output current, high	Іон	Per pin		-10	mA
		Total of all pins	P00 to P03, P10 to P14, P70 to P77	-30	mA
		-60 mA	P15 to P17, P30 to P33, P60 to P63, P120, P130, P140	-30	mA

(Refer to Note on the next page.)

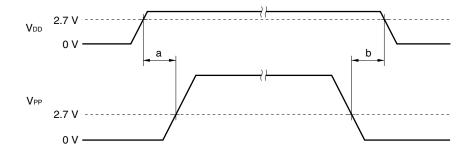
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Absolute Maximum Ratings (T_A = 25°C) (2/2)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, low	Іог	Per pin	P00 to P03, P10 to P17, P30 to P33, P70 to P77, P120, P130, P140	20	mA
			P60 to P63	30	mA
		Total of all pins	P00 to P03, P10 to P14, P70 to P77	35	mA
		70 mA	P15 to P17, P30 to P33, P60 to P63, P120, P130, P140	35	mA
Operating ambient temperature	Та	In norma	al operation mode	-40 to +85	°C
Storage temperature	T _{stg}	Mask RO	OM version	-65 to +150	°C
		μPD78F	0124	-40 to +125	

Notes 1. Must be 6.5 V or lower.


2. Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash memory is written.

• When supply voltage rises

 V_{PP} must exceed V_{DD} 10 μ s or more after V_{DD} has reached the lower-limit value (2.7 V) of the operating voltage range (15 μ s if the supply voltage is dropped by the regulator) (see a in the figure below).

• When supply voltage drops

 V_{DD} must be lowered 10 μ s or more after V_{PP} falls below the lower-limit value (2.7 V) of the operating voltage range of V_{DD} (see b in the figure below).

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

X1 Oscillator Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{Vdd} = \text{EVdd} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AVREF} \le \text{Vdd}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Cond	ditions	MIN.	TYP.	MAX.	Unit
Ceramic	IC (V _{PP}) X1 X2	Oscillation	When a capacitor	$3.3~V \leq V_{DD} \leq 5.5~V$	2.0		8.38	MHz
resonator	+-ID-	frequency (fxp) ^{Note 1}	is connected to the REGC pin ^{Note 2}	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 3.3~\textrm{V}$	2.0		5.0	
	C1= C2=		When the REGC	$4.0~V \leq V_{DD} \leq 5.5~V$	2.0		10	MHz
			pin is directly	$3.3~V \leq V_{DD} < 4.0~V$	2.0		8.38	
	///		connected to VDD	$2.7~V \leq V_{DD} < 3.3~V$	2.0		5.0	
Crystal	IC (V _{PP}) X1 X2	Oscillation	When a capacitor	$3.3~V \leq V_{DD} \leq 5.5~V$	2.0		8.38	MHz
resonator		frequency (fxp) ^{Note 1}	is connected to the REGC pin ^{Note 2}	$2.7 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$	2.0		5.0	
	C1= C2=		When the REGC	$4.0~V \leq V_{DD} \leq 5.5~V$	2.0		10	MHz
	<u> </u>		pin is directly	$3.3~V \leq V_{DD} < 4.0~V$	2.0		8.38	
	///		connected to VDD	$2.7~V \leq V_{DD} < 3.3~V$	2.0		5.0	
External		X1 input	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$,	2.0		10	MHz
clock ^{Note 3}	X1 X2	frequency (fxp) ^{Note 1}	$3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	1	2.0		8.38	
			$2.7 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$,	2.0		5.0	
		X1 input high-	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$,	46		500	ns
	\vdash	/low-level width	3.3 V ≤ V _{DD} < 4.0 V		56		500	
		(txph, txpl)	$2.7 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$,	96		500	

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. When the REGC pin is connected to Vss via a 0.1 μ F capacitor.
 - 3. Connect the REGC pin directly to VDD.
- Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - Since the CPU is started by the Ring-OSC after reset, check the oscillation stabilization time of
 the X1 input clock using the oscillation stabilization time status register (OSTC). Determine the
 oscillation stabilization time of the OSTC register and oscillation stabilization time select
 register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator
 to be used.
- **Remark** For the resonator selection and oscillator constant, users are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Ring-OSC Oscillator Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{Vdd} = \text{EVdd} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AVref} \le \text{Vdd}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
On-chip Ring-OSC oscillator	Oscillation frequency (fR)		120	240	480	kHz

Subsystem Clock Oscillator Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{Vdd} = \text{EVdd} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AVref} \le \text{Vdd}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	IC (VPP) XT2 XT1	Oscillation frequency (fxr) ^{Note}		32	32.768	35	kHz
External clock	XT2 XT1	XT1 input frequency (fxr) ^{Note}		32		38.5	kHz
	,	XT1 input high-/low-level width (txth, txtl)		12		15	μs

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (1/4)

 $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{V}_{\text{DD}}, \text{Vss} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			-5	mA
		Total of P00 to P03, P10 to P14, P70 to P77	$4.0~V \le V_{DD} \le 5.5~V$			-25	mA
		Total of P15 to P17, P30 to P33, P60 to P63, P120, P130, P140	4.0 V ≤ V _{DD} ≤ 5.5 V			-25	mA
		All pins	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-10	mA
Output current, low	Іоь	Per pin for P00 to P03, P10 to P17, P30 to P33, P70 to P77, P120, P130, P140	4.0 V ≤ V _{DD} ≤ 5.5 V			10	mA
		Per pin for P60 to P63	$4.0~V \leq V_{DD} \leq 5.5~V$			15	mA
		Total of P00 to P03, P10 to P14, P70 to P77	$4.0~V \le V_{DD} \le 5.5~V$			30	mA
		Total of P15 to P17, P30 to P33, P60 to P63, P120, P130, P140	4.0 V ≤ V _{DD} ≤ 5.5 V			30	mA
		All pins	2.7 V ≤ V _{DD} < 4.0 V			10	mA
Input voltage, high	V _{IH1}	P12, P13, P15		0.7V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P03, P10, P11, P14, P33, P70 to P77, P120, P14		0.8V _{DD}		V _{DD}	V
	VIH3	P20 to P27 ^{Note}		0.7AVREF		AVREF	V
	V _{IH4}	P60, P61		0.7V _{DD}		V _{DD}	V
	V _{IH5}	P62, P63		0.7V _{DD}		12	V
	V _{IH6}	X1, X2, XT1, XT2		$V_{\text{DD}}-0.5$		V _{DD}	V
Input voltage, low	V _{IL1}	P12, P13, P15		0		0.3V _{DD}	V
	V _{IL2}	P00 to P03, P10, P11, P14, P33, P70 to P77, P120, P14		0		0.2V _{DD}	V
	V _{IL3}	P20 to P27 ^{Note}		0		0.3AVREF	V
	V _{IL4}	P60, P61		0		0.3V _{DD}	V
	V _{IL5}	P62, P63		0	-	0.3V _{DD}	V
	V _{IL6}	X1, X2, XT1, XT2		0		0.4	V

Note When used as A/D converter analog input pins, set $AV_{REF} = V_{DD}$.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (2/4)

(TA = -40 to +85°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, 2.7 V \leq AVREF \leq VDD, Vss = EVss = AVss = 0 V)

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон	Total of P00 to to P14, P70 to lон = -25 mA	*	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH} = -5 \text{ mA}$	V _{DD} – 1.0			V
		Total of P15 to to P33, P60 to P130, P140 lон = -25 mA	•	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{IOH} = -5 \text{ mA}$	V _{DD} - 1.0			>
		I он = $-100 \mu A$		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	V _{DD} - 0.5			V
Output voltage, low	Vol1	Total of P00 to to P14, P70 to loL = 30 mA	· ·	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{DL} = 10 \text{ mA}$			1.3	٧
			Total of P15 to P17, P30 to P33, P60 to P63, P120, P130, P140 4.0 V ≤ V _{DD} ≤ 5.5 V, lo _L = 10 mA				1.3	٧
		$I_{OL} = 400 \ \mu A$		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			0.4	V
	V _{OL2}	P60 to P63		IoL = 15 mA			2.0	V
Input leakage current, high	Ішн1	$V_I = V_{DD}$	P33, P60, F	, P10 to P17, P30 to P61, P70 to P77, D, P140, RESET			3	μΑ
		VI = AVREF	P20 to P27				3	μΑ
	ILIH2	$V_{I} = V_{DD}$	X1, X2, XT	1, XT2			20	μΑ
	Ішнз	Vı = 12 V	P62, P63 (f	N-ch open drain)			3	μΑ
Input leakage current, low	Іші 1	V1 = 0 V	P27, P30 to	, P10 to P17, P20 to b P33, P60, P61, P70 20, P130, P140,			-3	μΑ
	ILIL2		X1, X2, XT	1, XT2			-20	μΑ
	Ішз		P62, P63 (I	N-ch open drain)			−3 ^{Note}	μΑ
Output leakage current, high	Ісон	$V_0 = V_{DD}$					3	μΑ
Output leakage current, low	ILOL	Vo = 0 V					-3	μΑ
Pull-up resistance value	R∟	Vı = 0 V	V _I = 0 V			30	100	kΩ
V _{PP} supply voltage (μPD78F0124)	V _{PP1}	In normal oper	ation mode		0		0.2V _{DD}	V

Note If there is no on-chip pull-up resistor for P62 and P63 (specified by a mask option) and if port 6 has been set to input mode when a read instruction is executed to read from port 6, a low-level input leakage current of up to -45μ A flows during only one cycle. At all other times, the maximum leakage current is -3μ A.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (3/4): µPD78F0124

(TA = -40 to +85°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, 2.7 V \leq AVREF \leq VDD, Vss = EVss = AVss = 0 V)

Parameter	Symbol		Condition	ons	MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	X1 crystal	fxp = 10 MHz	When A/D converter is stopped		11.5	24.2	mA
current ^{Note 1}		oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Notes 3, 7}}$	When A/D converter is operating Note 9		12.5	26.3	mA
		operating mode ^{Note 2}	fxp = 8.38 MHz	When A/D converter is stopped		8.5	17	mA
			$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Notes 3, 8}}$	When A/D converter is operating Note 9		9.5	19	mA
			$f_{XP} = 5 \text{ MHz}$	When A/D converter is stopped		5.5	11	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is operating Note 9		6.5	13	mA
	I _{DD2}	X1 crystal	$f_{XP} = 10 \text{ MHz}$	When peripheral functions are stopped		1.6	3.2	mA
		oscillation HALT	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Notes 3, 7}}$	When peripheral functions are operating			6.4	mA
		mode	$f_{XP} = 8.38 \text{ MHz}$	When peripheral functions are stopped		0.8	1.6	mA
			$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Notes 3, 8}}$	When peripheral functions are operating			3.8	mA
			$f_{XP} = 5 \text{ MHz}$	When peripheral functions are stopped		0.4	0.8	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are operating			1.6	mA
	IDD3	Ring-OSC	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.7	2.1	mA
		operating mode ^{Note 4}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.4	1.2	mA
	I _{DD4}	32.768 kHz	$V_{DD} = 5.0 \text{ V} \pm 10\%$			115	230	μΑ
		crystal oscillation operating mode ^{Notes 4, 6}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			95	190	μΑ
	I _{DD5}	32.768 kHz	V _{DD} = 5.0 V ±10%			30	60	μΑ
		crystal oscillation HALT mode ^{Notes 4, 6}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			6	18	μΑ
	I _{DD6}	STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$	POC: OFF, RING: OFF		0.1	30	μΑ
				POC: OFF, RING: ON		14	58	μΑ
				POC: ON ^{Note 5} , RING: OFF		3.5	35.5	μΑ
				POC: ON ^{Note 5} , RING: ON		17.5	63.5	μΑ
			$V_{DD} = 3.0 \text{ V} \pm 10\%$	POC: OFF, RING: OFF		0.05	10	μΑ
				POC: OFF, RING: ON		7.5	25	μΑ
				POC: ON ^{Note 5} , RING: OFF		3.5	15.5	μΑ
				POC: ON ^{Note 5} , RING: ON		11	30.5	μΑ

Notes 1. Total current flowing through the internal power supply (VDD). Peripheral operation current is included (however, the current that flows through the pull-up resistors of ports is not included).

- 2. IDD1 includes peripheral operation current.
- 3. When PCC = 00H.
- 4. When main system clock is stopped.
- 5. Including when LVIE (bit 4 of LVIM) = 1 with POC-OFF selected by a mask option.
- 6. When POC-OFF (including LVIE = 0) is selected by a mask option and Ring-OSC oscillation is stopped.
- 7. When the REGC pin is directly connected to V_{DD} .
- **8.** When the REGC pin is connected to Vss via a 0.1 μ F capacitor.
- 9. Including the current that flows through the AVREF pin.

DC Characteristics (4/4): Mask ROM version

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AV}_{REF} \le V_{DD}, \text{Vss} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

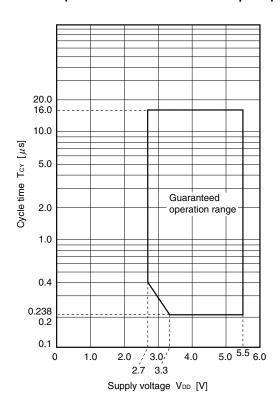
Parameter	Symbol		Condition	ons	MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	X1 crystal	fxp = 10 MHz	When A/D converter is stopped		5.8	13.3	mA
current ^{Note 1}		oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Notes 3, 7}}$	When A/D converter is operating ^{Note 9}		6.8	15.5	mA
		operating mode ^{Note 2}	fxp = 8.38 MHz	When A/D converter is stopped		3.8	7.6	mA
		mode	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Notes 3, 8}}$	When A/D converter is operating ^{Note 9}		4.8	9.6	mA
			fxp = 5 MHz	When A/D converter is stopped		1.8	4.2	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When A/D converter is operating ^{Note 9}		2.8	6.5	mA
	I _{DD2}	X1 crystal	fxp = 10 MHz	When peripheral functions are stopped		1.2	2.4	mA
		oscillation HALT	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Notes 3, 7}}$	When peripheral functions are operating			4.8	mA
		mode	fxp = 8.38 MHz	When peripheral functions are stopped		0.8	1.6	mA
			$V_{\text{DD}} = 5.0 \ V \pm 10\%^{\text{Notes 3, 8}}$	When peripheral functions are operating			3.8	mA
			fxp = 5 MHz	When peripheral functions are stopped		0.4	0.8	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$	When peripheral functions are operating			1.6	mA
	I _{DD3}	Ring-OSC	$V_{DD} = 5.0 \text{ V} \pm 10\%$			0.3	0.9	mA
		operating mode ^{Note 4}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			0.19	0.57	mA
	I _{DD4}	32.768 kHz	$V_{DD} = 5.0 \text{ V} \pm 10\%$			45	90	μΑ
		crystal oscillation operating mode ^{Notes 4, 6}	$V_{DD} = 3.0 \text{ V} \pm 10\%$			25	50	μΑ
	I _{DD5}	32.768 kHz	$V_{DD} = 5.0 \text{ V} \pm 10\%$			30	60	μΑ
		crystal oscillation HALT mode ^{Notes 4, 6}	V _{DD} = 3.0 V ±10%			6	18	μΑ
	I _{DD6}	STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$	POC: OFF, RING: OFF		0.1	30	μΑ
				POC: OFF, RING: ON		14	58	μΑ
				POC: ON ^{Note 5} , RING: OFF		3.5	35.5	μΑ
				POC: ON ^{Note 5} , RING: ON		17.5	63.5	μΑ
			V _{DD} = 3.0 V ±10%	POC: OFF, RING: OFF		0.05	10	μΑ
				POC: OFF, RING: ON		7.5	25	μΑ
				POC: ON ^{Note 5} , RING: OFF		3.5	15.5	μΑ
				POC: ON ^{Note 5} , RING: ON		11	30.5	μΑ

- **Notes 1.** Total current flowing through the internal power supply (V_{DD}). Peripheral operation current is included (however, the current that flows through the pull-up resistors of ports is not included).
 - 2. IDD1 includes peripheral operation current.
 - **3.** When PCC = 00H.
 - **4.** When main system clock is stopped.
 - 5. Including when LVIE (bit 4 of LVIM) = 1 with POC-OFF selected by a mask option.
 - 6. When POC-OFF (including LVIE = 0) is selected by a mask option and Ring-OSC oscillation is stopped.
 - 7. When the REGC pin is directly connected to VDD.
 - **8.** When the REGC pin is connected to Vss via a 0.1 μ F capacitor.
 - 9. Including the current that flows through the AVREF pin.

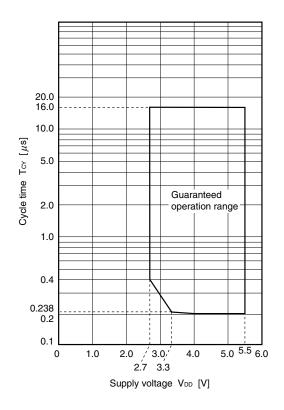
AC Characteristics

(1) Basic operation

 $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{V}_{\text{DD}}, \text{Vss} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$


Parameter	Symbol		Conditions					MAX.	Unit
Instruction cycle (minimum	Тсч	Main	X1 input	Note 1	$3.3~V \leq V_{DD} \leq 5.5~V$	0.238		16	μs
instruction execution time)		system	clock		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 3.3~\textrm{V}$	0.4		16	μs
		clock operation		Note 2	$4.0~V \leq V_{DD} \leq 5.5~V$	0.2		16	μs
					$3.3 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	0.238		16	μs
					$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 3.3~\textrm{V}$	0.4		16	μs
			Ring-OSC	clock		4.17	8.33	16.67	μs
		Subsystem	n clock oper	ation		114	122	125	μs
TI000, TI010 input high-level width, low-level width	tтіно, tтіlo	4.0 V ≤ V _D	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$						μs
		2.7 V ≤ V _D	D < 4.0 V			2/f _{sam} + 0.2 ^{Note 3}			μs
TI50, TI51 input frequency	f T15	4.0 V ≤ V _D	o ≤ 5.5 V					10	MHz
		2.7 V ≤ V _D	o < 4.0 V					5	
TI50, TI51 input high-level width,	t тін5,	4.0 V ≤ V _D	o ≤ 5.5 V			50			ns
low-level width	t TIL5	2.7 V ≤ V _D	o < 4.0 V			100			ns
Interrupt input high-level width, low-level width	tinth, tintl					1			μs
Key return input low-level width	tkr	4.0 V ≤ V _D	o ≤ 5.5 V			50			ns
		2.7 V ≤ V _D	o < 4.0 V			100			ns
RESET low-level width	trst					10			μs

Notes 1. When the REGC pin is connected to Vss via a 0.1 μ F capacitor.


- 2. When the REGC pin is directly connected to V_{DD} .
- 3. Selection of $f_{sam} = f_{XP}$, $f_{XP}/4$, $f_{XP}/256$ is possible using bits 0 and 1 (PRM000, PRM001) of prescaler mode register 00 (PRM00). Note that when selecting the TI000 or TI010 valid edge as the count clock, $f_{sam} = f_{XP}$.

Tcy vs. Vdd (X1 Input Clock Operation)

(a) When REGC pin is connected to Vss via 0.1 μ F capacitor

(b) When REGC pin is directly connected to V_{DD}

(2) Serial interface

(TA = -40 to +85°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, 2.7 V \leq AVREF \leq VDD, VSS = EVSS = AVSS = 0 V)

(a) UART mode (UART6, dedicated baud rate generator output)

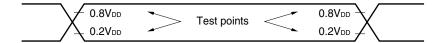
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

(b) UART mode (UART0, dedicated baud rate generator output)

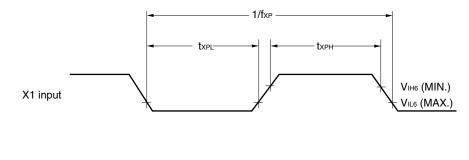
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

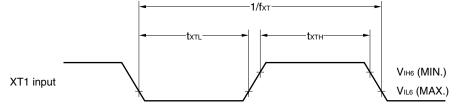
(c) 3-wire serial I/O mode (master mode, SCK10... internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkcy1	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	200			ns
		$3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	240			ns
		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 3.3~\textrm{V}$	400			ns
SCK10 high-/low-level width	tкн1,		tkcy1/2-10			ns
	t _{KL1}					
SI10 setup time (to SCK10↑)	tsıĸı		30			ns
SI10 hold time (from SCK10↑)	t _{KSI1}		30			ns
Delay time from SCK10↓ to SO10 output	tkso1	C = 100 pF ^{Note}			30	ns

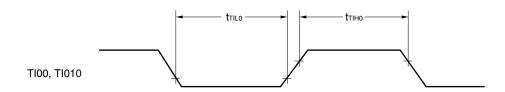

Note C is the load capacitance of the SCK10 and SO10 output lines.

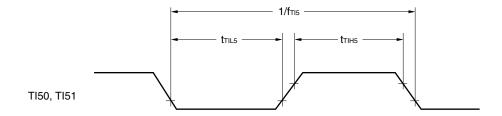
(d) 3-wire serial I/O mode (slave mode, SCK10... external clock input)

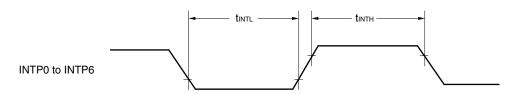

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkcy2		400			ns
SCK10 high-/low-level width	tкн2, tкL2		tксү2/2			ns
SI10 setup time (to SCK10↑)	tsık2		80			ns
SI10 hold time (from SCK10↑)	tksi2		50			ns
Delay time from SCK10↓ to SO10 output	tkso2	C = 100 pF ^{Note}			120	ns


Note C is the load capacitance of the SO10 output line.

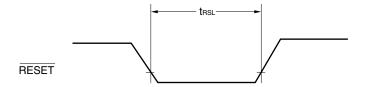
AC Timing Test Points (Excluding X1 Input)




Clock Timing



TI Timing



Interrupt Request Input Timing

RESET Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

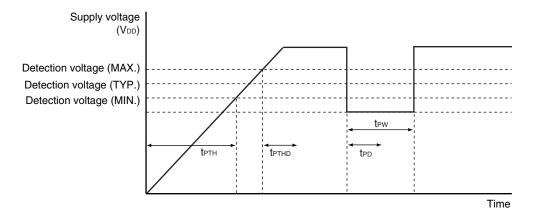
Remark m = 1, 2

A/D Converter Characteristics

 $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{V}_{\text{DD}}, \text{Vss} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Notes 1, 2}		4.0 V ≤ AV _{REF} ≤ 5.5 V		±0.2	±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V		±0.3	±0.6	%FSR
Conversion time	tconv	4.0 V ≤ AV _{REF} ≤ 5.5 V	14		100	μs
		2.7 V ≤ AV _{REF} < 4.0 V	17		100	μs
Zero-scale error ^{Notes 1, 2}		4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.6	%FSR
Full-scale error ^{Notes 1, 2}		$4.0 \text{ V} \le \text{AV}_{\text{REF}} \le 5.5 \text{ V}$			±0.4	%FSR
		2.7 V ≤ AV _{REF} < 4.0 V			±0.6	%FSR
Integral non-linearity error ^{Note 1}		$4.0 \text{ V} \le \text{AV}_{\text{REF}} \le 5.5 \text{ V}$			±2.5	LSB
		2.7 V ≤ AV _{REF} < 4.0 V			±4.5	LSB
Differential non-linearity error Note 1		4.0 V ≤ AV _{REF} ≤ 5.5 V			±1.5	LSB
		2.7 V ≤ AV _{REF} < 4.0 V			±2.0	LSB
Analog input voltage	VIAN		AVss		AVREF	V

Notes 1. Excludes quantization error (±1/2 LSB).


2. This value is indicated as a ratio (%FSR) to the full-scale value.

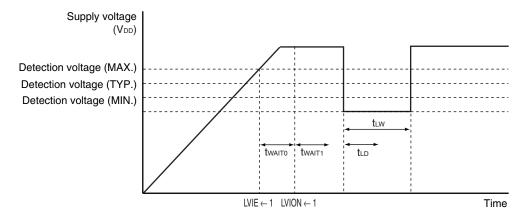
POC Circuit Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POC0}	Mask option = 3.5 V	3.3	3.5	3.7	V
	V _{POC1}	Mask option = 2.85 V	2.7	2.85	3.0	V
Power supply rise time	tртн	VDD: $0 \text{ V} \rightarrow 2.7 \text{ V}$	0.0015		1500	ms
		VDD: $0 \text{ V} \rightarrow 3.3 \text{ V}$	0.002		1800	ms
Response delay time 1 ^{Note}	tртнD	When power supply rises, after reaching detection voltage (MAX.)			3.0	ms
Response delay time 2 ^{Note}	tpD	When power supply falls, V _{DD} = 1.7 V			1.0	ms
Minimum pulse width	tpw		0.2			ms

Note Time required from voltage detection to reset release.

POC Circuit Timing

LVI Circuit Characteristics (T_A = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		4.1	4.3	4.5	V
	V _{LVI1}		3.9	4.1	4.3	V
	V _{LVI2}		3.7	3.9	4.1	V
	VLVI3		3.5	3.7	3.9	V
	V _{LVI4}		3.3	3.5	3.7	V
	V _{LVI5}		3.15	3.3	3.45	V
	V _{LVI6}		2.95	3.1	3.25	V
Response time ^{Note 1}	tld			0.2	2.0	ms
Minimum pulse width	tLW		0.2			ms
Reference voltage stabilization wait time ^{Note 2}	tlwait0			0.5	2.0	ms
Operation stabilization wait time Note 3	tLWAIT1			0.1	0.2	ms

- **Notes 1.** Time required from voltage detection to interrupt output or RESET output.
 - 2. Time required from setting LVIE to 1 to reference voltage stabilization when POC = OFF is selected by the POC mask option.
 - **3.** Time required from setting LVION to 1 to operation stabilization.

Remarks 1. $V_{LV10} > V_{LV11} > V_{LV12} > V_{LV13} > V_{LV14} > V_{LV15} > V_{LV16}$

2. $V_{POCn} < V_{LVIm}$ (n = 0, 1, m = 0 to 6)

LVI Circuit Timing

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.6		5.5	V
Release signal set time	tsrel		0			μs

Flash Memory Programming Characteristics: µPD78F0124

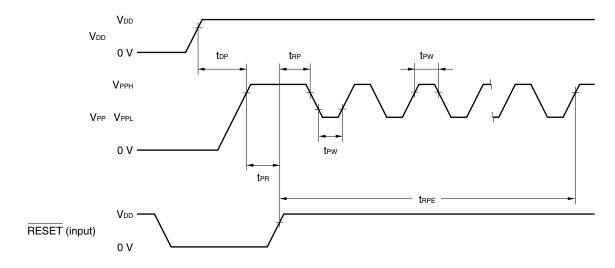
 $(T_A = +10 \text{ to } +60^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} = \text{EVDD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AVREF} \le \text{VDD}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

(1) Write erase characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{PP} supply voltage	V _{PP2}	During flash memory programming	9.7	10.0	10.3	٧
V _{DD} supply current	IDD	When $V_{PP} = V_{PP2}$, $f_{XP} = 10$ MHz, $V_{DD} = 5.5$ V			37	mA
VPP supply current	IPP	VPP = VPP2			100	mA
Step erase time ^{Note 1}	Ter		0.199	0.2	0.201	s
Overall erase time ^{Note 2}	Tera	When step erase time = 0.2 s			20	s/chip
Writeback time ^{Note 3}	Twb		49.4	50	50.6	ms
Number of writebacks per 1 writeback commandNote 4	Cwb	When writeback time = 50 ms			60	Times
Number of erases/writebacks	Cerwb				16	Times
Step write timeNote 5	Twr		48	50	52	μs
Overall write time per word ^{Note 6}	Twrw	When step write time = 50 μ s (1 word = 1 byte)	48		520	μs
Number of rewrites per chip ^{Note 7}	Cerwr	1 erase + 1 write after erase = 1 rewrite			20	Times

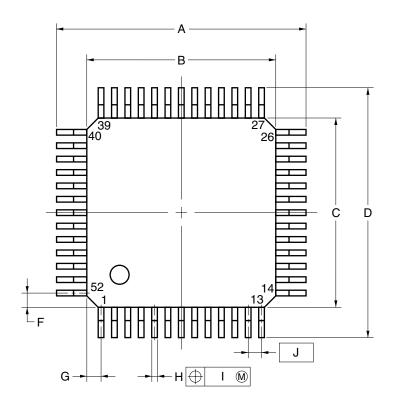
Notes 1. The recommended setting value of the step erase time is 0.2 s.

- 2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
- **3.** The recommended setting value of the writeback time is 50 ms.
- **4.** Writeback is executed once by the issuance of the writeback command. Therefore, the number of retries must be the maximum value minus the number of commands issued.
- **5.** The recommended setting value of the step write time is 50 μ s.
- **6.** The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
- 7. When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.

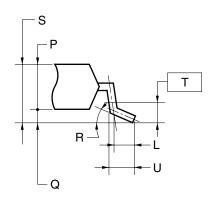

Example: P: Write, E: Erase
 Shipped product
$$\rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$$
: 3 rewrites
 Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites

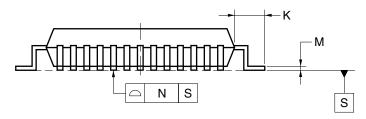
Remark The range of the operating clock during flash memory programming is the same as the range during normal operation.

(2) Serial write operation characteristics


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Set time from VDD↑ to VPP↑	top		10			μs
Release time from V _{PP} ↑ to RESET↑	t PR		10			μs
V _{PP} pulse input start time from RESET↑	tre		2			ms
VPP pulse high-/low-level width	tpw		8			μs
V _{PP} pulse input end time from RESET↑	trpe				20	ms
VPP pulse low-level input voltage	V _{PPL}		0.8V _{DD}		1.2V _{DD}	V
VPP pulse high-level input voltage	V _{PPH}		9.7	10.0	10.3	V

Flash Write Mode Setting Timing




CHAPTER 28 PACKAGE DRAWING

52-PIN PLASTIC LQFP (10x10)

detail of lead end

ITEM	MILLIMETERS
Α	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.1
G	1.1
Н	0.32±0.06
ı	0.13
J	0.65 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.05}$
N	0.10
P	1.4
Q	0.1±0.05
R	3°+4° -3°
S	1.5±0.1
Т	0.25
U	0.6±0.15
	S52GB-65-8ET-2

CHAPTER 29 CAUTIONS FOR WAIT

29.1 Cautions for Wait

This product has two internal system buses.

One is a CPU bus and the other is a peripheral bus that interfaces with the low-speed peripheral hardware.

Because the clock of the CPU bus and the clock of the peripheral bus are asynchronous, unexpected illegal data may be passed if an access to the CPU conflicts with an access to the peripheral hardware.

When accessing the peripheral hardware that may cause a conflict, therefore, the CPU repeatedly executes processing, until the correct data is passed.

As a result, the CPU does not start the next instruction processing but waits. If this happens, the number of execution clocks of an instruction increases by the number of wait clocks (for the number of wait clocks, refer to **Table 29-1**). This must be noted when real-time processing is performed.

29.2 Peripheral Hardware That Generates Wait

Table 29-1 lists the registers that issue a wait request when accessed by the CPU, and the number of CPU wait clocks.

Table 29-1. Registers That Generate Wait and Number of CPU Wait Clocks

Peripheral Hardware	Register	Access	Number of Wait Clocks
Watchdog timer	WDTM	Write	3 clocks (fixed)
Serial interface UART0	ASIS0	Read	1 clock (fixed)
Serial interface UART6	ASIS6	Read	1 clock (fixed)
A/D converter	ADM	Write	2 to 5 clocks ^{Note}
	ADS	Write	(when ADM.5 flag = "1")
	PFM	Write	2 to 9 clocks ^{Note} (when ADM.5 flag = "0")
	PFT	Write	(when / is mag = 0)
	ADCR	Read	1 to 5 clocks (when ADM.5 flag = "1") 1 to 9 clocks (when ADM.5 flag = "0")
	(1/fcpu), and is rounded up fmacro: Macro operating	al point is truncated if it is lest of it exceeds topul. g frequency 2) of ADM = "1": fx/2, when I sency	ss than topul after it has been multiplied by bit 5 (FR2) of ADM = "0": fx/2")

Note No wait cycle is generated for the CPU if the number of wait clocks calculated by the above expression is 1.

Remarks 1. The clock is the CPU clock (fcpu).

2. When the CPU is operating on the subsystem clock and the X1 input clock is stopped, do not access the registers listed above using an access method in which a wait request is issued.

29.3 Example of Wait Occurrence

<1> Watchdog timer

<On execution of MOV WDTM, A>

Number of execution clocks: 8

(5 clocks when data is written to a register that does not issue a wait (MOV sfr, A).)

<On execution of MOV WDTM, #byte>

Number of execution clocks: 10

(7 clocks when data is written to a register that does not issue a wait (MOV sfr, #byte).)

<2> Serial interface UART6

<On execution of MOV A, ASIS6>

Number of execution clocks: 6

(5 clocks when data is read from a register that does not issue a wait (MOV A, sfr).)

<3> A/D converter

Table 29-2. Number of Wait Clocks and Number of Execution Clocks on Occurrence of Wait (A/D Converter)

<On execution of MOV ADM, A; MOV ADS, A; or MOV A, ADCR>

• When fx = 10 MHz, tcpuL = 50 ns

Value of Bit 5 (FR2) of ADM Register	fсри	Number of Wait Clocks	Number of Execution Clocks
0	fx	9 clocks	14 clocks
	fx/2	5 clocks	10 clocks
	fx/2 ²	3 clocks	8 clocks
	fx/2 ³	2 clocks	7 clocks
	fx/2 ⁴	0 clocks (1 clock ^{Note})	5 clocks (6 clocks ^{Note})
1	fx	5 clocks	10 clocks
	fx/2	3 clocks	8 clocks
	fx/2 ²	2 clocks	7 clocks
	fx/2³	0 clocks (1 clock ^{Note})	5 clocks (6 clocks ^{Note})
	fx/2 ⁴	0 clocks (1 clock ^{Note})	5 clocks (6 clocks ^{Note})

Note On execution of MOV A, ADCR

Remark The clock is the CPU clock (fcpu).

fx: X1 input clock frequency tcput: Low-level width of CPU clock

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the 78K0/KD1 Series. Figure A-1 shows the development tool configuration.

• Support for PC98-NX series

Unless otherwise specified, products supported by IBM PC/AT[™] compatibles are compatible with PC98-NX series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT compatibles.

• Windows

Unless otherwise specified, "Windows" means the following OSs.

- Windows 3.1
- Windows 95, 98, 2000
- Windows NT[™] Ver 4.0

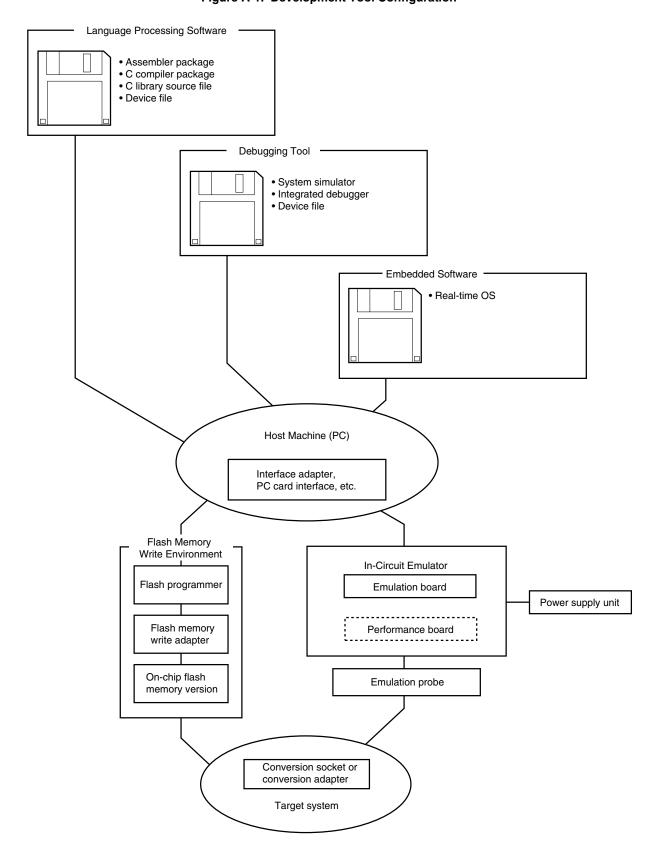


Figure A-1. Development Tool Configuration

Remark The item in the broken-line box differs according to the development environment. See A.4.1 Hardware.

A.1 Software Package

SP78K0	Development tools (software) common to the 78K/0 Series are combined in this package.
78K/0 Series software package	Part number: μSxxxxSP78K0

Remark xxx in the part number differs depending on the host machine and OS used.

μ S $\times\times\times$ SP78K0

***	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

A.2 Language Processing Software

RA78K0 Assembler package	This assembler converts programs written in mnemonics into object codes executable with a microcontroller. This assembler is also provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler should be used in combination with a device file (DF780124) (sold separately). Precaution when using RA78K0 in PC environment> This assembler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (included in assembler package) on Windows.
	Part number: μSxxxRA78K0
CC78K0 C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler should be used in combination with an assembler package and device file (both sold separately). <pre> <precaution cc78k0="" environment="" in="" pc="" using="" when=""> This C compiler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (included in assembler package) on Windows. </precaution></pre>
	Part number: μSxxxCC78K0
DF780124 ^{Notes 1, 2} Device file	This file contains information peculiar to the device. This device file should be used in combination with a tool (RA78K0, CC78K0, SM78K0, ID78K0-NS, and ID78K0) (all sold separately). The corresponding OS and host machine differ depending on the tool to be used.
	Part number: μSxxxDF780124
CC78K0-L ^{Note 3} C library source file	This is a source file of the functions that configure the object library included in the C compiler package. This file is required to match the object library included in the C compiler package to the user's specifications. Since this is a source file, its working environment does not depend on any particular operating system.
	Part number: μSxxxCC78K0-L

- Notes 1. The DF780124 can be used in common with the RA78K0, CC78K0, SM78K0, ID78K0-NS, and ID78K0.
 - 2. Under development
 - 3. The CC78K0-L is not included in the software package (SP78K0).

Remark ×××× in the part number differs depending on the host machine and OS used.

 $\mu \text{S} \times \times \times \text{RA78K0} \\ \mu \text{S} \times \times \times \times \text{CC78K0}$

××××	Host Machine	OS	Supply Medium
AB13	PC-9800 series,	Windows (Japanese version)	3.5-inch 2HD FD
BB13	IBM PC/AT compatibles	Windows (English version)	
AB17		Windows (Japanese version)	CD-ROM
BB17		Windows (English version)	
3P17	HP9000 series 700™	HP-UX [™] (Rel. 10.10)	
3K17	SPARCstation™	SunOS [™] (Rel. 4.1.4), Solaris [™] (Rel. 2.5.1)	

 $\mu \text{S} \times \times \times \text{DF780124} \\ \mu \text{S} \times \times \times \times \text{CC78K0-L}$

-	××××	Host Machine	OS	Supply Medium
	AB13	PC-9800 series,	Windows (Japanese version)	3.5-inch 2HD FD
	BB13	IBM PC/AT compatibles	Windows (English version)	
	3P16	HP9000 series 700	HP-UX (Rel. 10.10)	DAT
	3K13	SPARCstation	SunOS (Rel. 4.1.4),	3.5-inch 2HD FD
	3K15		Solaris (Rel. 2.5.1)	1/4-inch CGMT

A.3 Flash Memory Writing Tools

Flashpro III	Flash programmer dedicated to microcontrollers with on-chip flash memory.
(part number: FL-PR3, PG-FP3)	
Flashpro IV	
(part number: FL-PR4, PG-FP4)	
Flash programmer	
FA-52GB-8ET	Flash memory writing adapter used connected to the Flashpro III/Flashpro IV.
Flash memory writing adapter	FA-52GB-8ET: For 52-pin plastic LQFP (GB-8ET type)

Remark FL-PR3, FL-PR4, and FA-52GB-8ET are products of Naito Densei Machida Mfg. Co., Ltd. TEL: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.

A.4 Debugging Tools

A.4.1 Hardware

IE-78K0-NS In-circuit emulator		The in-circuit emulator serves to debug hardware and software when developing application systems using a 78K/0 Series product. It corresponds to the integrated debugger (ID78K0-NS). This emulator should be used in combination with a power supply unit, emulation probe, and the interface adapter required to connect this emulator to the host machine.
IE-78K0-NS-PA Performance board		This board is connected to the IE-78K0-NS to expand its functions. Adding this board adds a coverage function and enhances debugging functions such as tracer and timer functions.
IE-78K0-NS-A In-circuit emulato	r	Product that combines the IE-78K0-NS and IE-78K0-NS-PA
IE-70000-MC-PS Power supply uni		This adapter is used for supplying power from a 100 V to 240 V AC outlet.
IE-70000-98-IF-C Interface adapter		This adapter is required when using a PC-9800 series computer (except notebook type) as the IE-78K0-NS(-A) host machine (C bus compatible).
IE-70000-CD-IF-A PC card interface		This is PC card and interface cable required when using a notebook-type computer as the IE-78K0-NS(-A) host machine (PCMCIA socket compatible).
IE-70000-PC-IF-C Interface adapter IE-70000-PCI-IF-A Interface adapter IE-780148-NS-EM1 Emulation board		This adapter is required when using an IBM PC/AT compatible computer as the IE-78K0-NS(-A) host machine (ISA bus compatible).
		This adapter is required when using a computer with a PCI bus as the IE-78K0-NS(-A) host machine.
		This board emulates the operations of the peripheral hardware peculiar to a device. It should be used in combination with an in-circuit emulator.
NP-H52GB-TQ Emulation probe		This emulation probe is used to connect the in-circuit emulator and target system, and is designed for a 52-pin plastic LQFP (GB-8ET type).
	TGB-052SBP Conversion adapter	This conversion adapter is used to connect the NP-H52GB-TQ and target system board to which a 52-pin plastic LQFP (GB-8ET type) can be connected.

Remarks 1. NP-H52GB-TQ is a product of Naito Densei Machida Mfg. Co., Ltd.

TEL: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.

2. TGB-052SBP is a product of TOKYO ELETECH CORPORATION.

For further information, contact: Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL +81-3-3820-7112)

Osaka Electronics Department (TEL +81-6-6244-6672)

A.4.2 Software

SM78K0 System simulator	This system simulator is used to perform debugging at C source level or assembler level while simulating the operation of the target system on a host machine. This simulator runs on Windows. Use of the SM78K0 allows the execution of application logical testing and performance testing on an independent basis from hardware development without having to use an incircuit emulator, thereby providing higher development efficiency and software quality. The SM78K0 should be used in combination with a device file (DF780124) (sold separately).
ID78K0-NS Integrated debugger (supporting in-circuit emulator IE-78K0-NS(-A))	Part number: μSxxxxSM78K0 This debugger is a control program used to debug 78K/0 Series microcontrollers. It adopts a graphical user interface, which is equivalent visually and operationally to Windows or OSF/Motif™. It also has an enhanced debugging function for C language programs, and thus trace results can be displayed on screen at C-language level by using the windows integration function which links a trace result with its source program, disassembled display, and memory display. In addition, by incorporating function expansion modules such as a task debugger and system performance analyzer, the efficiency of debugging programs that run on real-time OSs can be improved. It should be used in combination with a device file (sold separately).

Remark ×××× in the part number differs depending on the host machine and OS used.

 $\mu \text{S} \times \times \times \text{SM78K0}$ $\mu \text{S} \times \times \times \times \text{ID78K0-NS}$

-	××××	Host Machine	OS	Supply Medium
	AB13	PC-9800 series,	Windows (Japanese version)	3.5-inch 2HD FD
	BB13	IBM PC/AT compatibles	Windows (English version)	
	AB17		Windows (Japanese version)	CD-ROM
	BB17		Windows (English version)	

APPENDIX B EMBEDDED SOFTWARE

The following embedded products are available for efficient development and maintenance of the 78K0/KD1 Series.

Real-Time OS

RX78K0	The RX78K0 is a real-time OS conforming to the μ ITRON specifications.
Real-time OS	A tool (configurator) for generating the nucleus of the RX78K0 and multiple information
	tables is supplied.
	Used in combination with an assembler package (RA78K0) and device file (DF780124)
	(both sold separately).
	<pre><precaution environment="" in="" pc="" rx78k0="" using="" when=""></precaution></pre>
	The real-time OS is a DOS-based application. It should be used in the DOS prompt when
	using it in Windows.
	Part number: μ S××××RX78013- $\Delta\Delta\Delta\Delta$

Caution To purchase the RX78K0, first fill in the purchase application form and sign the user agreement.

Remark $\times\!\times\!\times\!\times$ and $\Delta\Delta\Delta\Delta$ in the part number differ depending on the host machine and OS used.

 μ S××××RX78013- $\Delta\Delta\Delta\Delta$

ΔΔΔΔ	Product Outline	Maximum Number for Use in Mass Production	
001	Evaluation object	Do not use for mass-produced product.	
100K	Mass-production object	0.1 million units	
001M		1 million units	
010M		10 million units	
S01	Source program	Object source program for mass production	

	Host Machine	OS	Supply Medium
AA13	PC-9800 series	Windows (Japanese version) ^{Note}	3.5-inch 2HD FD
AB13	IBM PC/AT compatibles	Windows (Japanese version) ^{Note}	3.5-inch 2HD FD
BB13		Windows (English version) ^{Note}	
3P16	HP9000 series 700	HP-UX (Rel. 10.10)	DAT
3K13	SPARCstation	SunOS (Rel. 4.1.4),	3.5-inch 2HD FD
3K15		Solaris (Rel. 2.5.1)	1/4-inch CGMT

Note Can also be operated in DOS environment.

C.1 Register Index (In Alphabetical Order with Respect to Register Names)

[A]	
A/D conversion result register (ADCR)	226
A/D converter mode register (ADM)	228
Analog input channel specification register (ADS)	230
Asynchronous serial interface control register 6 (ASICL6)	281, 288
Asynchronous serial interface operation mode register 0 (ASIM0)	249, 253, 254
Asynchronous serial interface operation mode register 6 (ASIM6)	275, 283, 284
Asynchronous serial interface reception error status register 0 (ASIS0)	251, 256
Asynchronous serial interface reception error status register 6 (ASIS6)	277, 286
Asynchronous serial interface transmission status register 6 (ASIF6)	278, 287
[B]	
Baud rate generator control register 0 (BRGC0)	
Baud rate generator control register 6 (BRGC6)	280, 305
[C]	
Capture/compare control register 00 (CRC00)	
Clock monitor mode register (CLM)	
Clock output selection register (CKS)	
Clock selection register 6 (CKSR6)	279, 304
[E]	
8-bit timer compare register 50 (CR50)	
8-bit timer compare register 51 (CR51)	
8-bit timer counter 50 (TM50)	
8-bit timer counter 51 (TM51)	
8-bit timer H carrier control register 1 (TMCYC1)	
8-bit timer H compare register 00 (CMP00)	
8-bit timer H compare register 01 (CMP01)	
8-bit timer H compare register 10 (CMP10)	
8-bit timer H compare register 11 (CMP11)	
8-bit timer H mode register 0 (TMHMD0)	
8-bit timer H mode register 1 (TMHMD1)	
8-bit timer mode control register 50 (TMC50)	
8-bit timer mode control register 51 (TMC51)	
External interrupt falling edge enable register (EGN)	
External interrupt rising edge enable register (EGP)	332
[1]	
Input switch control register (ISC)	
Internal memory size switching register (IMS)	
Interrupt mask flag register 0H (MK0H)	
Interrupt mask flag register 0L (MK0L)	330

Interrupt mask flag register 1L (MK1L)	330
Interrupt request flag register 0H (IF0H)	329
Interrupt request flag register 0L (IF0L)	329
Interrupt request flag register 1L (IF1L)	329
[K]	
Key return mode register (KRM)	342
[L]	
Low-voltage detection level selection register (LVIS)	373
Low-voltage detection register (LVIM)	372
[M]	
Main clock mode register (MCM)	108
Main OSC control register (MOC)	109
[0]	
Oscillation stabilization time counter status register (OSTC)	110, 345
Oscillation stabilization time select register (OSTS)	111, 346
[P]	
Port 0 (P0)	81
Port 1 (P1)	84
Port 12 (P12)	95
Port 13 (P13)	96
Port 14 (P14)	97
Port 2 (P2)	90
Port 3 (P3)	91
Port 6 (P6)	93
Port 7 (P7)	94
Port mode register 0 (PM0)	98, 138
Port mode register 1 (PM1)	98, 170
Port mode register 12 (PM12)	98
Port mode register 14 (PM14)	98, 222
Port mode register 3 (PM3)	98, 170
Port mode register 6 (PM6)	
Port mode register 7 (PM7)	
Power-fail comparison mode register (PFM)	
Power-fail comparison threshold register (PFT)	
Prescaler mode register 00 (PRM00)	
Priority specification flag register 0H (PR0H)	
Priority specification flag register 0L (PR0L)	
Priority specification flag register 1L (PR1L)	
Processor clock control register (PCC)	
Pull-up resistor option register 0 (PU0)	
Pull-up resistor option register 1 (PU1)	
Pull-up resistor option register 12 (PU12)	
Pull-up resistor option register 14 (PU14)	100

Pull-up resistor option register 3 (PU3)	100
Pull-up resistor option register 7 (PU7)	100
[R]	
Receive buffer register 0 (RXB0)	248
Receive buffer register 6 (RXB6)	274
Reset control flag register (RESF)	359
Ring-OSC mode register (RCM)	107
[S]	
Serial clock selection register 10 (CSIC10)	314, 317
Serial I/O shift register 10 (SIO10)	312
Serial operation mode register 10 (CSIM10)	313, 315, 316
16-bit timer capture/compare register 000 (CR000)	131
16-bit timer capture/compare register 010 (CR010)	132
16-bit timer counter 00 (TM00)	131
16-bit timer mode control register 00 (TMC00)	133
16-bit timer output control register 00 (TOC00)	135
[T]	
Timer clock selection register 50 (TCL50)	165
Timer clock selection register 51 (TCL51)	165
Transmit buffer register 10 (SOTB10)	312
Transmit buffer register 6 (TXB6)	274
Transmit shift register 0 (TXS0)	248
[w]	
Watch timer operation mode register (WTM)	204
Watchdog timer enable register (WDTE)	213
Watchdog timer mode register (WDTM)	212

C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)

[A]		
ADCR:	A/D conversion result register	226
ADM:	A/D converter mode register	228
ADS:	Analog input channel specification register	230
ASICL6:	Asynchronous serial interface control register 6	281, 288
ASIF6:	Asynchronous serial interface transmission status register 6	278, 287
ASIM0:	Asynchronous serial interface operation mode register 0	249, 253, 254
ASIM6:	Asynchronous serial interface operation mode register 6	275, 283, 284
ASIS0:	Asynchronous serial interface reception error status register 0	251, 256
ASIS6:	Asynchronous serial interface reception error status register 6	277, 286
[B]		
BRGC0:	Baud rate generator control register 0	252, 263
BRGC6:	Baud rate generator control register 6	280, 305
[C]		
CKS:	Clock output selection register	220
CKSR6:	Clock selection register 6	279, 304
CLM:	Clock monitor mode register	361
CMP00:	8-bit timer H compare register 00	181
CMP01:	8-bit timer H compare register 01	181
CMP10:	8-bit timer H compare register 10	181
CMP11:	8-bit timer H compare register 11	181
CR000:	16-bit timer capture/compare register 000	131
CR010:	16-bit timer capture/compare register 010	132
CR50:	8-bit timer compare register 50	164
CR51:	8-bit timer compare register 51	164
CRC00:	Capture/compare control register 00	135
CSIC10:	Serial clock selection register 10	314, 317
CSIM10:	Serial operation mode register 10	313, 315, 316
[E]		
EGN:	External interrupt falling edge enable register	332
EGP:	External interrupt rising edge enable register	332
[1]		
IF0H:	Interrupt request flag register 0H	329
IF0L:	Interrupt request flag register 0L	329
IF1L:	Interrupt request flag register 1L	329
IMS:	Internal memory size switching register	385
ISC:	Input switch control register	101
[K]		
KRM:	Key return mode register	342
[L]		
LVIM:	Low-voltage detection register	372

LVIS:	Low-voltage detection level selection register	373
[M]		
MCM:	Main clock mode register	108
MK0H:	Interrupt mask flag register 0H	330
MK0L:	Interrupt mask flag register 0L	330
MK1L:	Interrupt mask flag register 1L	330
MOC:	Main OSC control register	109
[0]		
OSTC:	Oscillation stabilization time counter status register	110, 345
OSTS:	Oscillation stabilization time select register	111, 346
[P]		
P0:	Port 0	81
P1:	Port 1	84
P12:	Port 12	95
P13:	Port 13	96
P14:	Port 14	97
P2:	Port 2	90
P3:	Port 3	91
P6:	Port 6	93
P7:	Port 7	94
PCC:	Processor clock control register	105
PFM:	Power-fail comparison mode register	231
PFT:	Power-fail comparison threshold register	231
PM0:	Port mode register 0	98, 138
PM1:	Port mode register 1	98, 170
PM12:	Port mode register 12	98
PM14:	Port mode register 14	98, 222
PM3:	Port mode register 3	98, 170
PM6:	Port mode register 6	98
PM7:	Port mode register 7	98
PR0H:	Priority specification flag register 0H	331
PR0L:	Priority specification flag register 0L	331
PR1L:	Priority specification flag register 1L	331
PRM00:	Prescaler mode register 00	137
PU0:	Pull-up resistor option register 0	100
PU1:	Pull-up resistor option register 1	100
PU12:	Pull-up resistor option register 12	100
PU14:	Pull-up resistor option register 14	100
PU3:	Pull-up resistor option register 3	100
PU7:	Pull-up resistor option register 7	100
[R]		
RCM:	Ring-OSC mode register	107
RESF:	Reset control flag register	359
RXB0:	Receive buffer register 0	248

RXB6:	Receive buffer register 6	274
[S]		
SIO10:	Serial I/O shift register 10	312
SOTB10:	Transmit buffer register 10	312
[T]		
TCL50:	Timer clock selection register 50	165
TCL51:	Timer clock selection register 51	165
TM00:	16-bit timer counter 00	131
TM50:	8-bit timer counter 50	164
TM51:	8-bit timer counter 51	164
TMC00:	16-bit timer mode control register 00	133
TMC50:	8-bit timer mode control register 50	167
TMC51:	8-bit timer mode control register 51	167
TMCYC1:	8-bit timer H carrier control register 1	185
TMHMD0:	8-bit timer H mode register 0	182
TMHMD1:	8-bit timer H mode register 1	182
TOC00:	16-bit timer output control register 00	135
TXB6:	Transmit buffer register 6	274
TXS0:	Transmit shift register 0	248
[W]		
WDTE:	Watchdog timer enable register	213
WDTM:	Watchdog timer mode register	212
WTM:	Watch timer operation mode register	204

[MEMO]

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free

Facsimile Message

From: Name			and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever		
Tel.	FAX				
Address					
			Thank you for yo	ur kind supp	ort.
North America NEC Electronics Inc. Corporate Communications Dept Fax: +1-800-729-9288 +1-408-588-6130	Hong Kong, Philippine NEC Electronics Hong F Fax: +852-2886-9022/9	Kong Ltd.	Taiwan NEC Electronics Taiwan Ltd. Fax: +886-2-2719-5951		
Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong & Seoul Branch Fax: +82-2-528-4411	Kong Ltd.	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583		
South America NEC do Brasil S.A. Fax: +55-11-6462-6829	P.R. China NEC Electronics Shanghai, Ltd. Fax: +86-21-6841-1137		Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608		
would like to report the follo		•	uggestion:		
Document title:					
Document number:			Page number:		
f possible, please fax the re	ferenced page or drav	ving.			
Document Rating	Excellent	Good	Acceptable	Poor	
Clarity				٥	
Technical Accuracy				0	
Organization					