
STR-G6651

OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

ABSOLUTE MAXIMUM RATINGS at $T_A = +25^{\circ}C$
Control Supply Voltage, V _{IN} 35 V
$\begin{array}{ll} Drain-Source\ Voltage,\ V_{DS}$
continuous 2.7 A
single-pulse, $t_w \le 1 \text{ ms} \dots 7.2 \text{ A}$
Avalanche Energy, E _{AS}
single-pulse 158 mJ
Over-Current Protection Voltage Range,
V _{OCP} 0.3 V to +6 V
Insulation RMS Voltage,
V _{WM(RMS)}
Package Power Dissipation, P _D
control $(V_{IN} \times I_{IN(ON)}) \dots 0.8 W$
total See Graph
FET Channel Temperature, $T_1 \dots +150^{\circ}C$
Internal Frame Temperature, T_F +125°C
Operating Temperature Range,
T _A 20°C to +125°C
Storage Temperature Range,
T_S 40°C to +125°C

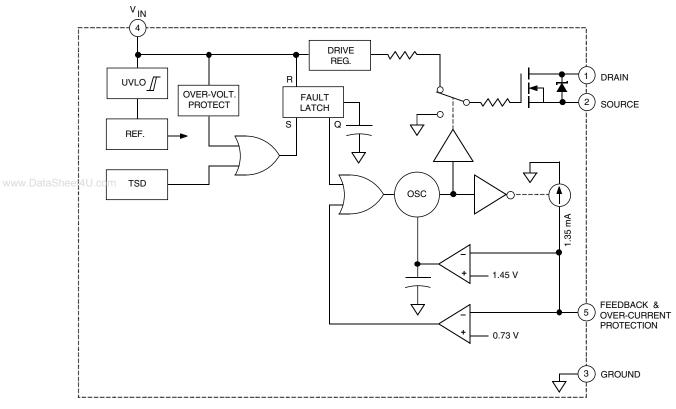
The STR-G6651 is specifically designed to satisfy the requirements for increased integration and reliability in off-line quasi-resonant flyback converters. This device incorporates the primary control and drive circuit with a discrete avalanche-rated power MOSFET.

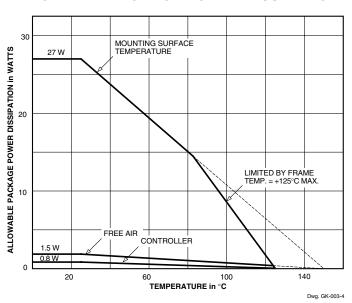
Cycle-by-cycle current limiting, under-voltage lockout with hysteresis, over-voltage protection, and thermal shutdown protects the power supply during the normal overload and fault conditions. Over-voltage protection and thermal shutdown are latched after a short delay. The latch may be reset by cycling the input supply. Low-current startup and a low-power standby mode selected from the secondary circuit completes a comprehensive suite of features. The device is provided in a five-pin over-molded TO-220 style package, affording dielectric isolation without compromising thermal characteristics. Two lead forms are available (with and without the suffix '-LF') to accommodate printed wiring board layout or mechanical constraints.

Proven in substantial volumes, the STR-G6651 is a robust low-risk solution for off-line power supplies particularly where management of EMI at the source is a significant element of the system design.

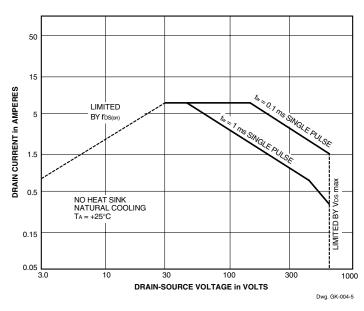
FEATURES

- Quasi-Resonant Operation
- Output Power to 66 W
- Low-Loss, Pulse-Ratio-Control Standby Mode
- Temperature-Compensated Pulse-by-Pulse Over-Current Protection
- Latched Over-Voltage and Thermal Protection
- Under-Voltage Lockout with Hysteresis
- Active Low-Pass Filter for Enhanced Light-Load Stability
- Switched Attenuation of Leading-Edge Current-Sensing Signal
- Regulated Soft Gate Drive
- Adjustable Switching Speed for EMI Control
- Overmolded Five-Pin Package


Always order by complete part number: **STR-G6651**


STR-G6651 OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

FUNCTIONAL BLOCK DIAGRAM



Dwg. FK-002-5

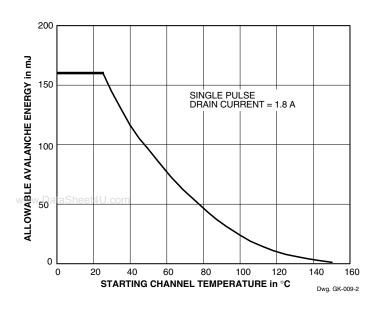
ALLOWABLE PACKAGE POWER DISSIPATION

MAXIMUM SAFE OPERATING AREA

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$, $V_{IN} = 18 \text{ V}$, $V_{DD} = 10 \text{ V}$, $V_S = 0$, voltage measurements are referenced to ground terminal (unless otherwise specified).

					Limits		
	Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
	On-State Voltage	V _{INT}	Turn-on, increasing V _{IN}	14.4	16	17.6	V
	Under-Voltage Lockout	V_{INQ}	Turn-off, decreasing V _{IN}	9.0	10	11	V
	Over-Voltage Threshold	$V_{OVP(th)}$	Turn-off, increasing V _{IN}	20.5	22.5	24.5	V
WWW	Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	I _D = 300 μA	650	_	_	V
	Drain Leakage Current	I _{DSS}	V _{DS} = 650 V	_	-	300	μА
	On-State Resistance	r _{DS(on)}	$V_{\rm S} = 10 \text{ V}, I_{\rm D} = 0.9 \text{ A}, T_{\rm J} = +25^{\circ}\text{C}$	-	_	3.95	Ω
	Maximum OFF Time	t _{off}	Drain waveform high	45	_	55	μs
	Minimum Pulse Duration for Input of Quasi-Resonant Signals	t _{w(th)}	Drain waveform high ¹	_	_	1.0	μs
	Minimum OFF Time	t_{off}	Drain waveform high ¹	1	-	1.5	μs
	Feedback Threshold Voltage	V_{FDBK}	Drain waveform low to high ¹	0.68	0.73	0.78	V
ww. <u>.</u>			Oscillation synchronized ²	1.3	1.45	1.6	V
	Over-Current Protection/Feedback	I _{OCP/FB}	V _{OCP/FB} = 1.0 V	1.2	1.35	1.5	mA
	Latch Holding Current	I _{IN(OVP)}	V _{IN} reduced from 24.5 V to 8.5 V	1	-	400	mA
	Latch Release Voltage	V_{IN}	$I_{IN} \le 20 \mu\text{A}, V_{IN} \text{reduced from } 24.5 \text{V}$	6.6	_	8.4	V
	Switching Time	t _f	V _{DD} = 200 V, I _D = 0.9 A	_	_	250	ns
	Supply Current	I _{IN(ON)}	Operating ³	_	_	30	mA
		I _{IN(OFF)}	Increasing V _{IN} prior to oscillation	_	_	100	μА
	Insulation RMS Voltage	V _{WM(RMS)}	All terminals simultaneous reference metal plate against backside	2000	_	_	٧
İ	Thermal Shutdown	T _J		140	_	_	°C
	Thermal Resistance	$R_{\theta JM}$	Output junction-to-mounting frame	_	_	1.63	°C/W

Notes: Typical Data is for design information only.


- 1. Feedback is square wave, $V_{IM}^{}$ = 2.2 V, $t_h^{}$ = 1 $\mu s,\,t_l^{}$ = 35 μs
- 2. For quasi-resonant operation, the input signal must be longer than $t_{w(th)}$ and greater than V_{FDBK}

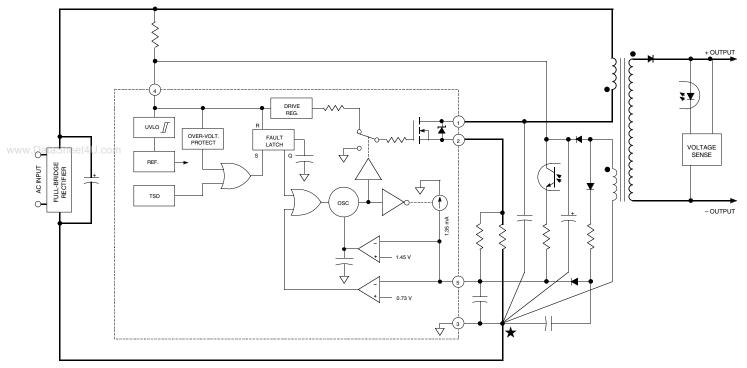
3. Feedback is square wave, $V_{IM} = 2.2 \text{ V}$, $t_h = 4 \mu \text{s}$, $t_l = 1 \mu \text{s}$

www.allegromicro.com www.DataSheet4U.com

STR-G6651 OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

ALLOWABLE AVALANCHE ENERGY

STR-G6600 Series


at I _n = 300 μA	at I _D = 0.9 A							
V _{(BR)DS} , Minimum	r _{DS(on)} , Maximum	Output Power						
For 100/120) V AC Input							
450 V	$2.18~\Omega$	44 W – 60 W						
450 V	$0.92~\Omega$	98 W – 130 W						
For 110/120 V AC Input								
500 V	$2.62~\Omega$	36 W – 50 W						
For 200/220 V AC Input								
650 V	$3.95~\Omega$	66 W						
650 V	$2.80~\Omega$	86 W						
650 V	$1.95~\Omega$	120 W						
	For 100/120 450 V 450 V For 110/120 500 V For 200/220 650 V 650 V	$V_{(BR)DS}$, Minimum $r_{DS(on)}$, Maximum For 100/120 V AC Input 450 V 2.18 Ω 450 V 0.92 Ω For 110/120 V AC Input 500 V 2.62 Ω For 200/220 V AC Input 650 V 3.95 Ω 650 V 2.80 Ω						

TYPICAL QUASI-RESONANT FLYBACK CONVERSION USING STR-G6651

WARNING: lethal potentials are present. See text.

Dwg. EK-003-4A

www.DataSheet4U.com

WARNING — These devices are designed to be operated at lethal voltages and energy levels. Circuit designs that embody these components must conform with applicable safety requirements. Precautions must be taken to prevent accidental contact with power-line potentials. Do not connect grounded test equipment.

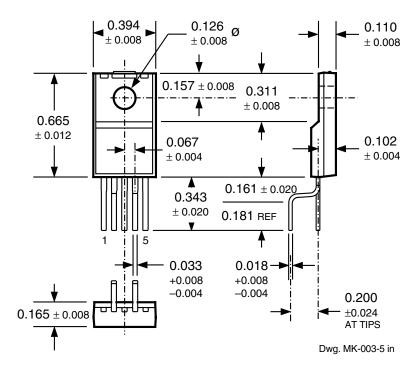
The use of an isolation transformer is recommended during circuit development and breadboarding.

Recommended mounting hardware torque:

4.34 - 5.79 lbf•ft (6 - 8 kg•cm or 0.588 - 0.784 Nm).

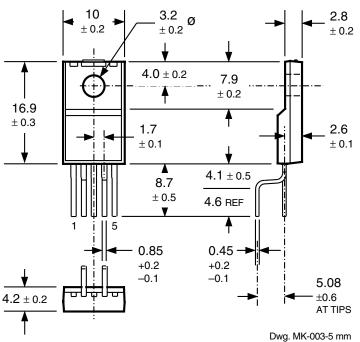
Recommended silicone grease:

Dow Corning SC102, Toshiba YG6260, Shin-Etsu G746., or equivalent


www.allegromicro.com www.DataSheet4U.com

STR-G6651 OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

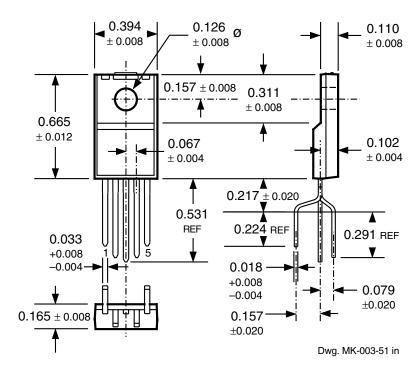
STR-G6651


(LF1129)

www.DataSheet4U.**Dimensions in Inches** (for reference only)

www.DataSheet4U.com

Dimensions in Millimeters (controlling dimensions)



QUASI-RESONANT FLYBACK
SWITCHING REGULATOR

STR-G6651-LF


(LF1128)

www.DataSheet4U.com**Dimensions in Inches** (for reference only)

www.DataSheet4U.com

Dimensions in Millimeters (controlling dimensions)

www.allegromicro.com www.DataSheet4U.com

www.DataSheet4U.com

STR-G6651 OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

www.DataSheet4U.com

www.DataSheet4U.com

The products described here are manufactured in Japan by Sanken Electric Co., Ltd. for sale by Allegro MicroSystems, Inc.

Sanken Electric Co., Ltd. and Allegro MicroSystems, Inc. reserve the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of their products. Therefore, the user is cautioned to verify that the information in this publication is current before placing any order.

These products are not authorized for use as critical components in life-support appliances, devices, or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Sanken Electric Co., Ltd. and Allegro MicroSystems, Inc. assume no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

