

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

DESCRIPTION

AVED Memory Products AMP374P6453BT1-C1H/S is a 64M bit X 72 Synchronous Dynamic RAM high density memory module. The AVED Memory Products AMP374P6453BT1-C1H/S consists of eighteen CMOS 32M X 8 bit with 4 banks Synchronous DRAMs in TSOP-II 400mil package and a 2K EEPROM in 8-pin TSSOP package on a 168-pin glass-epoxy substrate. Two 0.1uF decoupling capacitors are mounted on the printed circuit board in parallel for each SDRAM.

The AVED Memory Products AMP374P6453BT1-C1H/S is a Dual In-Line Memory Module and is intended for mounting into 168-pin edge connector sockets. Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable latencies allows the same device to be useful for a variety of high bandwidth, high performance memory system applications.

APPLICATION

Main Memory unit for computer, Microcomputer memory, Refresh memory for CRT.

FEATURES

- Performance Ranges
- Part Identification
- AMP374P6453BT1-C1H/S
 8k cycles/64ms Ref, TSOP, Gold Contact Plating
- PC100 Compliant

Part #	Maximum Frequency/Speed
AMP374P6453BT1-C1H/S	PC100MHz (10ns @ CL=2)

- Burst Mode Operation
- Auto & Self Refresh capability (8k cycles/64ms)
- LVTTL compatible inputs and outputs
- Single $3.3V \pm 0.3V$ power supply
- MRS cycle with address key programs Latency (Access from column address) Burst Length (1, 2, 4, 8 & Full Page) Data Scramble (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock
- Serial Presence Detect with EEPROM

PIN NAMES

Pin Name	Function
A0 - A12	Address Input (multiplexed)
BA0 - BA1	Select Bank
DQ0 - DQ63	Data Input/Output
CB0 - 7	Check Bit (Data-in/out)
CLK0 - CLK3	Clock Input
CKE0 - CKE1	Clock Enable Input
<u>C</u> S0 - <u>C</u> S3	Chip Select Input
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
DQM0 - 7	DQM
VDD	Power Supply(3.3V)
Vss	Ground
*VREF	Power Supply for Reference
SDA	Serial Address Data I/O
SCL	Serial Clock
SA0 - 2	Address in EEPROM
WP	Write Protect
DU	Don't Use
NC	No Connection

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

PIN CONFIGURATIONS (FRONT SIDE/BACK SIDE)

Pin	Front	Pin	Front	Pin	Front	Pin	Back	Pin	Back	Pin	Back
1	Vss	29	DQM1	57	DQ18	85	Vss	113	DQM5	141	DQ50
2	DQ0	30	CS0	58	DQ19	86	DQ32	114	$\overline{\text{CS1}}$	142	DQ51
3	DQ1	31	DU	59	VDD	87	DQ33	115	RAS	143	Vdd
4	DQ2	32	Vss	60	DQ20	88	DQ34	116	Vss	144	DQ52
5	DQ3	33	A0	61	NC	89	DQ35	117	A1	145	NC
6	VDD	34	A2	62	*VREF	90	VDD	118	A3	146	*VREF
7	DQ4	35	A4	63	CKE1	91	DQ36	119	A5	147	NC
8	DQ5	36	A6	64	Vss	92	DQ37	120	A7	148	Vss
9	DQ6	37	A8	65	DQ21	93	DQ38	121	A9	149	DQ53
10	DQ7	38	A10/AP	66	DQ22	94	DQ39	122	BA0	150	DQ54
11	DQ8	39	BA1	67	DQ23	95	DQ40	123	A11	151	DQ55
12	Vss	40	VDD	68	Vss	96	Vss	124	Vdd	152	Vss
13	DQ9	41	VDD	69	DQ24	97	DQ41	125	CLK1	153	DQ56
14	DQ10	42	CLK0	70	DQ25	98	DQ42	126	A12	154	DQ57
15	DQ11	43	Vss	71	DQ26	99	DQ43	127	Vss	155	DQ58
16	DQ12	44	DU	72	DQ27	100	DQ44	128	CKE0	156	DQ59
17	DQ13	45	$\overline{\text{CS2}}$	73	VDD	101	DQ45	129	CS3	157	Vdd
18	VDD	46	DQM2	74	DQ28	102	VDD	130	DQM6	158	DQ60
19	DQ14	47	DQM3	75	DQ29	103	DQ46	131	DQM7	159	DQ61
20	DQ15	48	DU	76	DQ30	104	DQ47	132	*A13	160	DQ62
21	CB0	49	VDD	77	DQ31	105	CB4	133	VDD	161	DQ63
22	CB1	50	NC	78	Vss	106	CB5	134	NC	162	Vss
23	Vss	51	NC	79	CLK2	107	Vss	135	NC	163	CLK3
24	NC	52	CB2	80	NC	108	NC	136	CB6	164	NC
25	NC	53	CB3	81	WP	109	NC	137	CB7	165	**SA0
26	VDD	54	Vss	82	**SDA	110	VDD	138	Vss	166	**SA1
27	WE	55	DQ16	83	**SCL	111	CAS	139	DQ48	167	**SA2
28	DQM0	56	DQ17	84	VDD	112	DQM4	140	DQ49	168	VDD

Pins marked * are not used in this module.

Pins marked ** should be NC in the system which does not support SPD.

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

PIN CONFIGURATION DESCRIPTION

Pin	Name	Input Function
CLK	System Clock	Active on the positive going edge to sample all inputs.
\overline{CS}	Chip Select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE, and DQM.
СКЕ	Clock Enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby. CKE should be enabled 1CLK+t ss prior to valid command.
A0 - A12	Address	Row/Column addresses are multiplexed on the same pins. Row Address: RA0 – RA12, Column address: CA0 – CA9
BA0 - BA1	Bank Select Address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row Address Strobe	Latches row addresses on the positive going edge of the CLK with \overline{RAS} low. Enables row access & precharge.
CAS	Column Address Strobe	Latches column addresses on the positive going edge of the CLK with $\overline{_{CAS}}$ low. Enables column access.
WE	Write Enable	Enables write operation and row precharge. Latches data in starting from \overline{CAS} , \overline{WE} active.
DQM0 - DQM7	Data Input/Output Mask	Makes data output Hi-Z, tSHZ after the clock and masks the output. Blocks data input when DQM active. (Byte Masking)
DQ0 - DQ63	Data Input/Output	Data inputs/outputs are multiplexed on the same pins.
CB0 - 7	Check bit	Check bits for ECC.
WP	Write Protect	WP pin is connected to Vss through 47KΩ Resistor. When WP is "high" EEPROM programming will be inhibited, and the entire memory will be write-protected.
VDD/Vss	Power Supply/Ground	Power and ground for the input buffers and the core logic.

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1.0 - 4.6	V
Voltage on VDD supply relative to Vss	VDD, VDDQ	-1.0 - 4.6	V
Storage Temperature	Tstg	-55 to + 150	°C
Power Dissipation	Pd	18	W
Short Circuit Current	IOS	50	mA

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to higher than recommended voltage for extended periods may affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS Recommended operating conditions

(Voltage referenced to Vss=OV, Ta = 0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	VDD, VDDQ	3.0	3.3	3.6	V	-
Input logic high voltage	VIH	2.0	3.0	VDDQ+0.3	V	1
Input logic low voltage	VIL	-0.3	0	0.8	V	2
Output logic high voltage	VOH	2.4	-	-	V	IOH = -2mA
Output logic low voltage	VOL	-	-	0.4	V	IOL = 2mA
Input leakage current (Inputs)	ILI	-10	-	10	μA	3

Note:1. VIH(max) = 5.6V AC. Pulse width \leq 3ns.

- 2. VIL(min) = -2.0V AC. Pulse width≤3ns
- 3. Any input $0V \le VIN \le VDDQ$. Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

CAPACITANCE (VDD = 3.3V, Ta = 23°C, f=1MHz, VREF = $1.4V \pm 200mV$)

Item	Symbol	Min	Max	Unit
Input capacitance [A0 - A12, BA0 - BA1]	CADD	50	95	pF
Input capacitance [$\overline{\text{RAS}}$, $\overline{\text{CAS}}$, $\overline{\text{WE}}$]	CIN	50	95	pF
Input capacitance [CKE0 - CKE1]	CCKE	28	50	pF
Input capacitance [CLK0 - CLK3]	CCLK	18	25	pF
Input capacitance [CS0 - CS3]	CCS	18	30	pF
Input capacitance [DQM0 - DQM7]	CDQM	13	20	pF
Data input/output capacitance[DQ0 - DQ63]	COUT ¹	13	18	pF
Check bit [CB0 - 7]	COUT ²	13	18	pF

Where Quality & Memory Merge

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted) T A = 0 to 70°C

Symbol	Test Condition	Version -1H	Unit
ICC1*	Burst Length = 1		Unit
	tRC > tRC (min)	1,260	mA
	IOL = 0mA	, , , , , , , , , , , , , , , , , , ,	
ICC2P	CKE≤ VIL (max), tCC = 10ns	36	mA
ICC2PS	CKE & CLK≤ VIL (max), tCC = ∞	36	
ICC2N	CKE \geq VIH (min), $\overline{CS} \geq$ VIH (min), tCC = 10ns		
	Input signals are changed one time during 20ns	288	mA
ICC2NS	CKE \geq VIH (min), CLK \leq VIL (max), tCC = ∞		
	Input signals are stable	252	
ICC3P	CKE≤ VIL (max), tCC = 10ns	108	mA
ICC3PS	CKE & CLK≤ VIL(max), tCC = ∞	108	
ICC3N	CKE \geq VIH(min), $\overline{CS} \geq$ VIH(min), tCC = 10ns		
	Input signals are changed one time during 20ns	540	mA
ICC3NS	$CKE \ge VIH(min), CLK \le VIL(max), tCC = \infty$		
	Input signals are stable	450	
ICC4	IOL = 0mA		mA
	Page Burst	1,305	
	4 Banks activated		
	tCCD = 2CLKS		
ICC5	$tRC \ge tRC (min)$	2,070	mA
ICC6	CKE≤0.2V	90	mA

ICC1:	Operating Current (one bank active)
ICC2P:	Precharge Standby Current in power-down mode
ICC2PS:	Precharge Standby Current in power-down mode.
ICC2N:	Precharge Standby Current in non power-down mode.
ICC2NS:	Precharge Standby Current in non power-down mode.
ICC3P:	Active Standby Current in power-down mode.
ICC3PS:	Active Standby Current in power-down mode.
ICC3N:	Active Standby Current in non power-down mode (One Bank Active).
ICC3NS:	Active Standby Current in non power-down mode (One Bank Active).
ICC4:	Operating Current (Burst Mode)
ICC5	Refresh Current
ICC6:	Self Refresh Current

Notes:

1. Measured with outputs open.

2. Refresh period is 64ms.

3. Unless otherwise noted, input swing level is CMOS(VIH/VIL=VDDQ/VSSQ).

www.DataSheet4U.com

Page Number: 5 of 12

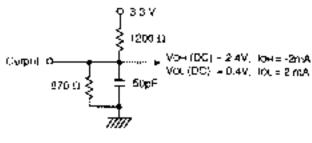
Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

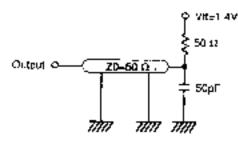
64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

AC OPERATING TEST CONDITIONS (VDD = $3.3V \pm 0.3V$, TA = 0 to 70°C)

Parameter	Value
AC input levels	VIH/VIL= 2.4V / 0.4V
Input timing measurement reference level	1.4V
Input rise and fall time	tr / tf = 1ns / 1ns
Output measurement reference level	1.4V
Output load condition	See Fig. 2


OPERATING AC PARAMETER (AC operating conditions unless otherwise noted)

Refer to the individual component not the whole module.


Parameter	Symbol	Version	Unit	Note	
	-	-1H			
Row active to row active delay	tRRD (min)	20	ns	1	
$\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ delay	tRCD (min)	20	ns	1	
Row precharge time	tRP (min)	20	ns	1	
Row active time	tRAS (min)	50	ns	1	
	tRAS (max)	100	us		
Row cycle time	tRC (min)	70	ns	1	
Last data in to row precharge	tRDL (min)	2	CLK	2,5	
Last data in to active delay	tDAL (min)	2CLK + 20 ns	-	5	
Last data in to new col. add. delay	tCDL (min)	1	CLK	2	
Last data in to burst stop	tBDL (min)	1	CLK	2	
Column address to col. add. delay	tCCD (min)	1	CLK	3	
Number of valid output data	CAS latency = 2	1	ea	4	

Note: 1. The minimum number of clock cycles is determined by dividing the minimum time

- required with clock cycle time, and then rounding off to the next higher integer.
- 2. Minimum delay is required to complete write.
- 3. All parts allow every cycle column address change.
- 4. In case of row precharge interrupt, auto precharge and read burst stop.
- 5. For -80/1H/1L, tRDL=1CLK and tDAL=1CLK+20ns is also supported.

(Fig. 1) DC Ortput Load Circuit

1 Fig. 2) AC Cutput Triad Circuit

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

AC CHARACTERISTICS (AC Operating conditions unless otherwise noted) Refer to the individual component, not the whole module.

Parameter	Symbol -1H		Н	Unit	Note
		Min	Max		
CLK cycle time	tCC	10	1000	ns	1
CLK to valid output delay	tSAC	-	6	ns	1,2
Output data hold time	tOH	3	-	ns	2
CLK high pulse width	tCH	3	-	ns	3
CLK low pulse width	tCL	3	-	ns	3
Input setup time	tSS	2		ns	3
Input hold time	tSH	1	-	ns	3
CLK to output in Low-Z	tSLZ	1	-	ns	2
CLK to output in Hi-Z	tSHZ		6	ns	

Note: 1. Parameters depend on programmed CAS latency.

2. If clock rising time is no longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

3. Assumed input rise and fall time (tr & tf) = 1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered, i.e., [(tr + tf)/2 - 1] ns should be added to the parameter.

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

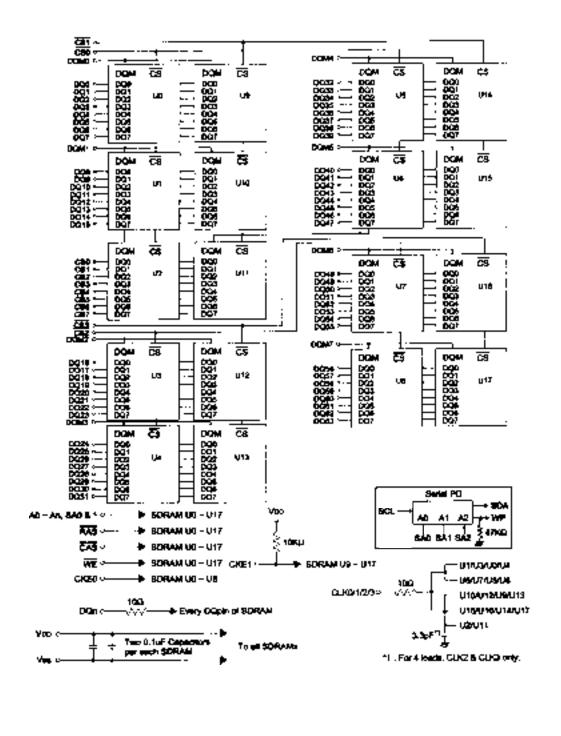
SIMPLIFIED TRUTH TABLE

COMMAND		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	B0,1	A10/AP	A12-11,A9-0	Note	
Register	Mode Regis	ter Set	Н	X	L	L	L	L	Х		OPCO	DE	1, 2
	Auto Refre	sh	Н	н	L	L	L	н	Х		Х		3
Refresh	Self	Entry		L	1								3
	Refresh	Exit	L	Н	L	Н	Н	н	Х		Х		3
					н	Х	Х	Х					3
Bank Active & Row Address		Н	Х	L	L	Н	н	Х	V	Row	Address		
Read &	Auto Precharge Disable										L	Column	4
Column Address	Auto Prechar	ge Enable	н	х	L	н	L	н	Х	V	н	Address	4, 5
												(A0-A9)	
Write &	Auto Prechar	Auto Precharge Disable			L	н	L	L	x	v	L	Column	4
Column Address	Auto Prechar	ge Enable	Enable H								Н	Address	4, 5
												(A0-A9)	
Burst Stop			Н	X	L	Н	Н	L	Х		Х		6
Precharge	Bank Selection		Н	Х	L	L	Н	L	Х	V	L	х	
	All Banks]							Х	н	н ^	
Clock Suspend or Entry		Entry	Н	L	Н	Х	Х	Х	Х				
Active Power Down				L	V	V	V			Х			
Exit		Exit	L	Н	Х	Х	Х	Х	Х				
Precharge Power Down Entry Mode		Entry	Н	L	Н	Х	Х	Х	Х	x			
					L	н	н	н					
		Exit	L	Н	Н	Х	Х	Х	Х	1			
					L	V	V	V					
DQM			Н	X		V		Х		7			
No Operation Command		н	X	н	х	Х	Х	Х		Х			
					L	Н	Н	н					

(V = Valid, X = Don't Care, H = Logic High, L = Logic Low)

Note: 1. OP Code: Operand Code

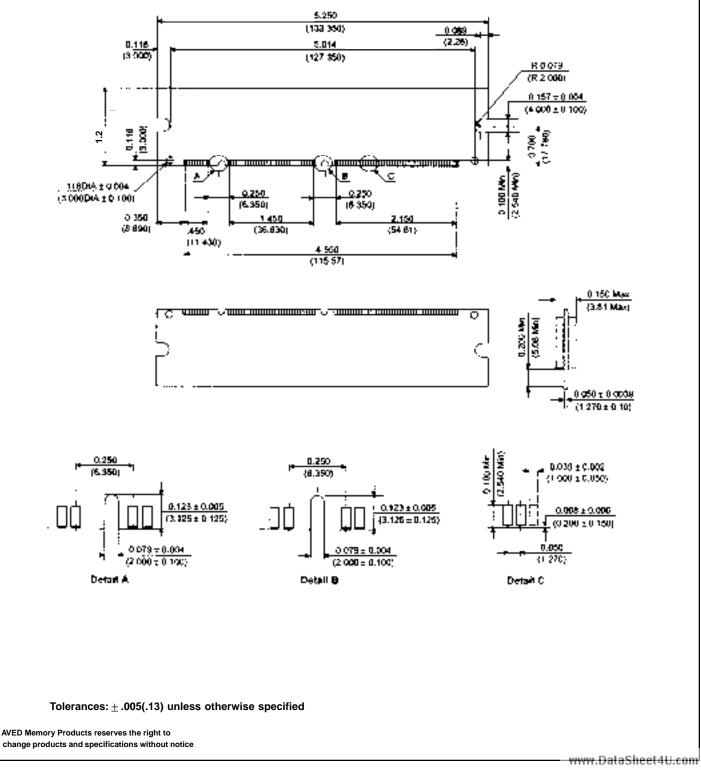
A0 - A12, BA0 - BA1: Program keys. (@MRS)


- 2. MRS can be issued only at all banks precharge state.
 - A new command can be issued after 2 clock cycles of MRS.
- Auto refresh functions are same as CBR refresh of DRAM. The automatic precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state.
- 4. BA0 BA1: Bank select addresses. If both BA0 and BA1 are "Low" at read, write, row active and precharge, bank A is selected. If both BA0 is "Low" and BA1 is "High" at read, write, row active and precharge, bank B is selected. If both BA0 is "High" and BA1 is "Low" at read, write, row active and precharge, bank C is selected. If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected. If A10/AP is "High" at row precharge, BA0 and BA1 are ignored and all banks are selected.
- During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst. New row active of the associated bank can be issued at tRP after the end of burst.
- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0) but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

FUNCTIONAL BLOCK DIAGRAM



AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

PACKAGE DIMENSIONS

Units: Inches(Millimeters)

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

SERIAL PRESENCE DETECT

- Organization: 64M x 72
- Composition: 32M x 8*18
- # of rows in module: 2
- # of banks in component: 4
- Refresh: 8K/64ms

Byte#	Function Description	Function Supported	Hex Value -1H	Note
		-1H		
0	# of bytes written into serial memory at module manufacturer	128 bytes	80h	
1	Total # of bytes of SPD memory devices	256 bytes (2K-bit)	08h	
2	Fundamental memory type	SDRAM	04h	
3	# of row address on this assembly	13	0Dh	1
4	# of column address on this assembly	10	0Ah	1
5	# of module rows on this assembly	2	02h	
6	Data width of this assembly	72 bits	48h	
7	Data width of this assembly	-	00h	
8	Voltage interface standard of this assembly	LVTTL	01h	
9	SDRAM cycle time @ CAS latency 3	10ns	A0h	2
10	SDRAM access time from clock @ CAS latency 3	6ns	60h	2
11	DIMM configuration type	ECC	02h	
12	Refresh rate and type	7.8 µs, support self refresh	82h	
13	Primary SDRAM width	x8	08h	
14	Error checking SDRAM width	x8	08h	
15	Minimum clock delay for back-to-back random column address	tCCD = 1CLK	01h	
16	SDRAM device attributes: Burst lengths supported	1,2,4,8 & Full page	8Fh	
17	SDRAM device attributes: # of banks on SDRAM device	4 banks	04h	
18	SDRAM device attributes: CAS latency	2&3	06h	
19	SDRAM device attributes: CS latency	0 CLK	01h	
20	SDRAM device attributes: Write latency	0 CLK	01h	
21	SDRAM module attributes	Non-buffered, Non- registered & redundant addressing	00h	
22	SDRAM device attributes: General	±10% voltage tolerance, Burst read, Single bit Write, precharge all, auto precharge	OEh	
23	SDRAM cycle time @ CAS latency 2	10ns	A0h	2
24	SDRAM access time from clock @ CAS latency 2	6ns	60h	2
25	SDRAM cycle time @ CAS latency 1	-	00h	
26	SDRAM access time from clock @ CAS latency 1	-	00h	
27	Minimum row precharge time (=tRP)	20ns	14h	
28	Minimum row active to row active delay(tRRD)	20ns	14h	
29	Minimum RAS to CAS delay (=tRCD)	20ns	14h	
30	Minimum activate precharge time(=tRAS)	50ns	32h	
31	Module row density	2 rows of 256MB	40h	
32	Command and address signal input setup time	2ns	20h	
33	Command and address signal input hold time	1ns	10h	
34	Data signal input setup time	2ns	20h	
35	Data signal input hold time	1ns	10h	
36-61	Superset information (may be used in the future)	-	00h	

Where Quality & Memory Merge

AMP374P6453BT1-C1H/S

64M X 72 SDRAM DIMM with ECC based on 32M X 8, 4 Banks, 8K REFRESH, 3.3V Synchronous DRAMs WITH SPD

SERIAL PRESENCE DETECT

(CONTINUED FROM PRESIOUS PAGE)

Byte#	Function Description	Function Supported	Hex Value	Note
		-1H	-1H	
62	SPD data revision code	PC100 SPD Spec. Ver. 1.2A	12h	
63	Check sum for bytes 0-62	-	4Ch	
64	Manufacturer JEDEC ID code	AVED Memory Products	67h	
65-71	Manufacturer JEDEC ID code	AVED Memory Products	00h	
72	Manufacturing location	Tustin	01h	
73	Manufacturer part #	A	41h	
74	Manufacturer part #	М	4Dh	
75	Manufacturer part #	Р	50h	
76	Manufacturer part #	3	33h	
77	Manufacturer part #	7	37h	
78	Manufacturer part #	4	34h	
79	Manufacturer part #	Р	50h	
80	Manufacturer part #	6	36h	
81	Manufacturer part #	4	34h	
82	Manufacturer part #	5	35h	
83	Manufacturer part #	3	33h	-
84	Manufacturer part #	В	42h	
85	Manufacturer part #	Т	54h	
86	Manufacturer part #	1	31h	
87	Manufacturer part #	"_"	2Dh	
88	Manufacturer part #	С	43h	-
89	Manufacturer part #	1	31h	
90	Manufacturer part #	Н	48h	-
91	Manufacturer revision code (for PCB)	/	2Fh	
92	Manufacturer revision code (for component)	S	53h	
93	Manufacturer part #	1	31h	-
94	Manufacturer part #	Н	48h	
95	Manufacturer part #	-	20h	
96	Manufacturer revision code (for PCB)	0	30h	
97	Manufacturer revision code (for component)	B-die (3 RD Gen.)	42h	
98	Manufacturing date (Week)	-	-	3
99	Manufacturing date (Year)	-	-	3
100-103	Assembly serial #	-	-	4
104-130	Manufacturer specific data (for future use)	Undefined	-	5
131	System frequency for 100MHz	100MHz	64h	
132	PC100 specification details	Detailed 100MHz information	FFh	
133+	Unused storage locations	Undefined	-	5

Notes:

1. The bank select address is excluded in counting the total # of Addresses.

2. This value is based on the component specification.

3. These bytes are programmed by code of Date, Week & Date, Year with BCD format.

These bytes are programmed by AVED's own assembly serial # system. All modules may have different unique serial #s.
 These bytes are Undefined and can be used for AVED's own purpose.