

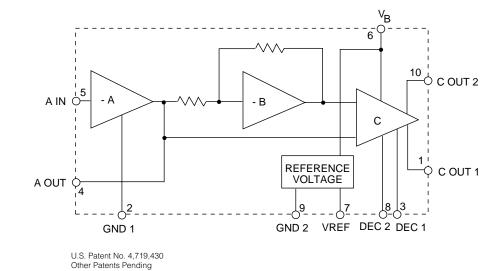
GS551 DATA SHEET

FEATURES

- adjustable gain to 48 dB
- · capable of driving low impedance receiver
- · low component count, 3 small capacitors and 1 resistor
- gain trim can be used as vol. control for reduced noise
- minimal start-up transient
- no gain expansion

STANDARD PACKAGING

- 10 pin MICROpac
- 10 pin PLID®
- 10 pin SLT
- Chip (68 x 60 mils)


CIRCUIT DESCRIPTION

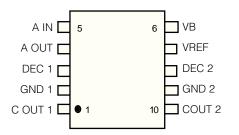
The GS551 is a 10 pin, low voltage, class B amplifier which operates over a battery range of 1.1 VDC to 3 VDC.

The GS551 consists of three gain blocks. The first block is an inverting amplifier with the gain set by two external resistors. The gain trim feature can be used as a volume control in hearing aid applications. The second block is an inverting unity gain amplifier which serves as a phase splitter. The outputs from the first and second blocks drive the differential input of the third block. The third block has a fixed AC gain of 28 dB when driving a receiver.

The amplifier has internal compensation eliminating the need for a capacitor across the receiver. Two ground pins are available for "Star" grounding to reduce any second order harmonic distortion introduced by ground line resistance.

www.DataSheet4U.com

BLOCK DIAGRAM


Revision Date: January 2001

Document No. 510 - 31 - 04

ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE/UNITS		
Supply Voltage	5 VDC		
Operating Temperature	-10 to +40 °C		
Storage Temperature	-20 to +70 °C		
CAUTION CLASS 1 ESD SENSITIVITY	R		

PIN CONNECTION

ELECTRICAL CHARACTERISTICS

Conditions: Frequency = 1 kHz, Temperature = 25°C, Supply Voltage V_{B} = 1.3 VDC

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Gain	A _V	V _o =0.707 VRMS	46	48	50	dB
Amplifier Current	I _{AMP}		120	220	335	μΑ
Transducer Current	I		120	250	390	μΑ
Input Referred Noise	IRN	NFB 0.2 to 10 kHz at 12 dB/Oct	-	1.3	2.5	μV
Total Harmonic Distortion	THD	V _o =0.707 VRMS	-	0.25	1.3	%
		V _O =1.3 VRMS	-	0.3	1.5	%
Stable with R _B to	R _{STAB}	$R_B = 22\Omega$	-	-	22	Ω
Maximum Output Current	I _{OUT}	V _{P8} =0	-	>35	-	mA

All parameters remain as shown in Test Circuit unless otherwise stated in "Conditions" column

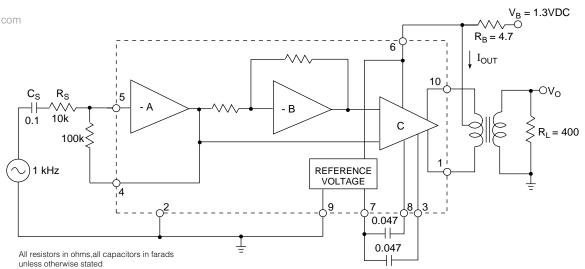
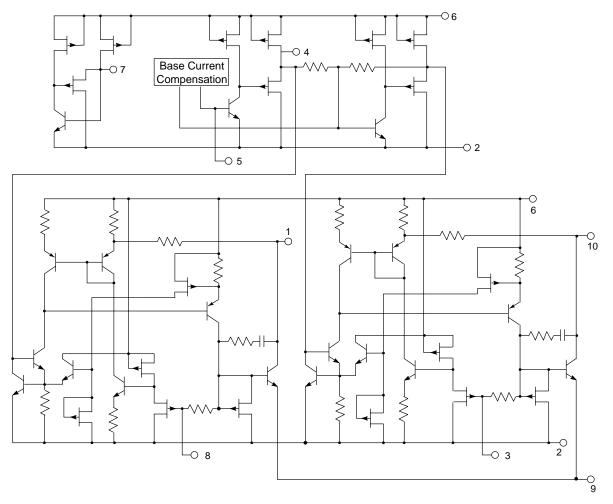



Fig. 1 Test Circuit

www.DataSheet4U.com

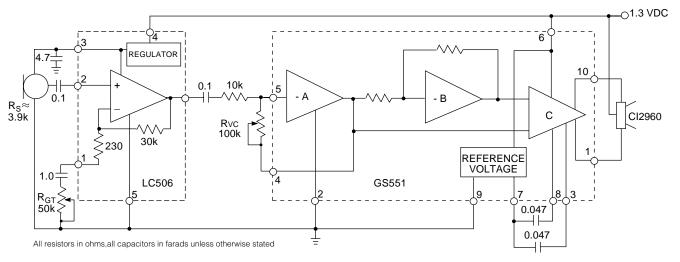


Fig. 3 Application Circuit

C-101, Miyamae Village, 2-10-42 Miyamae, Suginami-ku, Tokyo 168-0081, Tel. +81 (3) 3334-7700 Fax: +81 (3) 3247-8839 Japan

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement. © Copyright August 1988 Gennum Corporation. All rights reserved.