


MECHANICAL DATA

Dimensions in mm (inches)

TO39 Package (TO-205AF)

Underside View

Pin 1 - Source

Pin 2 - Gate

Pin 3 - Drain and Case

N-CHANNEL POWER MOSFET ENHANCEMENT MODE

FEATURES

- REPETITIVE AVALANCHE RATING
- SIMPLE DRIVE REQUIREMENTS
- HERMETICALLY SEALED

APPLICATIONS

- FAST SWITCHING
- MOTOR CONTROLS
- POWER SUPPLIES


ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{DS}	Drain Source Voltage	200V
$I_D @ T_{case} = 25^{\circ}C$	Continuous Drain Current	3.5A
$I_D @ T_{case} = 100^{\circ}C$	Continuous Drain Current	2.25A
I _{DM}	Pulsed Drain Current ¹	14A
V_{GS}	Gate Source Voltage	±20V
P_D @ $T_{case} = 25$ °C	Maximum Power Dissipation	20W
$R_{ heta J-C}$	Thermal Resistance Junction To Case	6.25°C/W
$R_{\theta J-A}$	Thermal Resistance Junction To Ambient	175°C/W
$T_{J,T_{stg}}$	Operating and Storage Temperature Range	-55 to +150°C
Lead Temperature	(1.6mm from case for 10 secs)	300°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Website: http://www.semelab.co.uk

2N6790 IRFF220

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	•		,			•	
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1.0mA	200			V	
V _{GS(th)} *	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2.0		4.0		
I _{GSSF}	Gate Body Leakage Forward	V _{GS} = 20V				100	nA	
I _{GSSR}	Gate Body Leakage Reverse	V _{GS} = -20V				-100] '''	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 160V.	V _{GS} =0			25	μΑ	
	Zero date voltage Brain Gurrent		T _C = 125°C			250		
R _{DS(on)} *	Static Drain Source On-State	V _{GS} = 10V	I _D = 2.25A			0.80	Ω	
	Resistance	V _{GS} = 10V	$I_{D} = 3.5A$			0.92		
gfs*	Forward Transconductance	V _{DS} = 15V	I _{DS} = 2.25A	1.5			S (0)	
	DYNAMIC CHARACTERISTICS	•		'				
C _{iss}	Input Capacitance	$V_{GS} = 0$	$V_{DS} = 25V$		260			
C _{oss}	Output Capacitance	f = 1.0MHz			100		pF	
C _{rss}	Reverse Transfer Capacitance				30			
t _{d(on)}	Turn-On Delay Time	V _{DD} = 100V	I _D = 3.5A			40		
t _r	Rise Time	$R_G = 7.5\Omega$	·			50	ns	
t _{d(off)}	Turn-Off Delay Time	(MOSFET switching times are essentially				50		
t _f	Fall Time	independent of operating temperature.)				50		
Qg	Total Gate Charge	te To Source Charge $V_{DS} = 100V$		8.0		14.3	nC	
Q _{gs}	Gate To Source Charge			0.9		3.0		
Q _{gd}	Gate To Drain ("Miller") Charge			2.3		9.0		
	BODY- DRAIN DIODE RATINGS & C	HARACTERIST	rics	I				
I _S	Continuous Source Current (Body Diode)	Modified MOS POWER symbol showing the intergal G. P-N junction rectifier.				3.5	- A	
I _{SM}	Source Current (Body Diode)					14		
V _{SD}	Diode Forward Voltage*	$I_S = 3.5A$ $V_{GS} = 0$ $T_J = 25^{\circ}C$				1.5	V	
t _{rr}	Reverse Recovery Time	I _F = 3.5A	T _J = 25°C			400	ns	
Q_{RR}	Reverse Recovery Charge	$d_{i} / d_{t} = 100A/\mu$	s V _{DD} = 50V			4.3	μС	

Notes

* Pulse Test: Pulse Width \leq 300 μ s, $\delta \leq$ 2%

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk