

Agilent E6835A TD-SCDMA Calibration Application

For the E6601A Wireless Communications Test Set

Data Sheet

The next generation of mobile phone manufacturing test.

The E6601A is the newest test set from Agilent Technologies, designed especially for high-volume, test-mode manufacturing. Combining industry-leading measurement speed, selectable formats, flexible licensing, and an integrated open Windows[®] XP PC, the E6601A helps you achieve the lowest cost of test in mobile phone manufacturing.

The E6601A and its available technology-specific software applications deliver industry leading measurement speed and accuracy for your mobile phone test needs.

The Agilent E6835A TD-SCDMA Calibration Application is a non-signaling application optimized for TD-SCDMA user equipment calibration. The E6835A also provides a choice of perpetual, transportable, or term licenses for maximizing asset utilization and your cost per test.

Because it's Agilent, you can be confident—it operates using trusted, proven measurement methodology that ensures measurement integrity that is never compromised.

E6601A Features

- · CW, AM, FM, DSB-SC source modulation
- RF analyzer
 - Spectrum monitor
 - Transmitter power measurements
 - · Power versus time measurement
 - Frequency error measurement
 - Optional IQ capture waveform sampling
 - Internal OCXO time base
 - Built-in open Windows XP PC
 - · Built-in help system
 - · Run test programs with internal or external PC
 - GPIB, USB, and LAN connectivity and control

E6835A Features

Source modulation

- CW, AM, FM, DSB-SC source modulation
- TD-SCDMA source modulation

Power measurements

- Mean power
- Root-raised cosine (RRC) filtered mean power

Spectral measurements

- · Adjacent channel leakage ratio (ACLR)
- Spectrum emission mask (SEM)
- · Spectrum monitor

Modulation quality

- CW frequency error
- DPCH error vector magnitude (EVM)
- DPCH peak code domain error (PCDE)
- DPCH frequency error

Dynamic power measurement

Agilent Technologies

Technical Specifications

These specifications apply to an Agilent E6601A Wireless Communications Test Set mainframe and the E6835A TD-SCDMA Calibration Application firmware revision A.05 or higher. Only feature additions beyond the Agilent E6890A General Purpose Application are included in this document. Specifications describe the test set's warranted performance and are valid for the unit's operation within ±10 °C of the last self alignment. All specifications are valid after a 30-minute warm-up period of continuous operation with valid self alignment. If the instrument has been off for longer than 48 hours, a 48-hour warm-up period followed by self alignment is required.

Supplemental characteristics are intended to provide typical, but non-warranted, performance parameters that may be useful in applying the instrument. These characteristics are shown in italics and labeled as "typical." All units shipped from the factory meet these typical numbers at +25 °C ambient temperature without including measurement uncertainty.

RF Generator

Frequency

Frequency range	380 to 2700 MHz
TD-SCDMA cellular bands	2010 to 2025 MHz

Output level

Output level ranges RF IN/OUT port **RF OUT ONLY port**

-120 to -15 dBm/1.28 MHz -120 to -5 dBm/1.28 MHz

Composite signal absolute level accuracy

< 10.00 and < 04 having fine	and the state of t
$< \pm 10$ °C and < 24 hours from last self alignment	
RF IN/OUT port	
-108 to -28 dBm/1.28 MHz	$< \pm 1$ dB, typically $< \pm 0.45$ dB
-28 to -15 dBm/1.28 MHz	$< \pm 1$ dB, typically $< \pm 0.39$ dB
RF OUT ONLY port	
-108 to -28 dBm/1.28 MHz	$< \pm 1$ dB, typically $< \pm 0.45$ dB
–28 to –5 dBm/1.28 MHz	$< \pm 1$ dB, typically $< \pm 0.39$ dB
PSK modulation	
Residual EVM	Typically < 2.5% (rms)

n **Residual EVM**

RF Analyzer

Frequency

Frequency range	380 to 2700 MHz
TD-SCDMA cellular bands	2010 to 2025 MHz
Input level ranges	
Average power	-65 to +28 dBm/1.28 MHz
Peak power	-65 to +37 dBm/1.28 MHz (5 W)
Self alignment validity	$\leq \pm 10$ °C change and ≤ 30 days from last self alignment

DPCH Measurement Suite

Includes mean power, RRC filtered mean power, ACLR, EVM, frequency error, PCDE, and SEM measurements.

Trigger setup

Delay	–20 to +20 ms
Sources	External, immediate, RF rise

Mean and RRC-filtered mean power measurements

Input level range	
Average power	-65 to +28 dBm/1.28 MHz
Measurement accuracy	
-61 to +28 dBm/1.28 MHz	$< \pm 0.65$ dB, typically $< \pm 0.3$ dB
With < 48 hours warm-up be	fore self alignment initiated
-61 to +28 dBm/1.28 MHz	$< \pm 0.8$ dB, typically $< \pm 0.3$ dB
Measurement repeatability	Typically < ±0.05 dB
Filter	
Mean power	Mean power-compliant filter
RRC-filtered mean power	1.28 MHz

Adjacent channel leakage ratio (ACLR) measurement

This measurement provides a ratio of the RRC filtered mean power centered on an adjacent channel to the RRC filtered mean power centered on the assigned channel frequency. The RRC filter has an RRC response with roll-off $\alpha = 0.22$ and a bandwidth equal to the chip rate.

Input level range	
Average power	+5 to +28 dBm/1.28 MHz
Measurement accuracy	
±1.6 MHz offsets at –33 dB	$< \pm 0.8$ dB, typically $< \pm 0.4$ dB
± 3.2 MHz offsets at –43 dB	$< \pm 0.8$ dB, typically $< \pm 0.4$ dB
Residual noise floor	
±1.6 MHz offsets	Typically < –53 dBc
±3.2 MHz offsets	Typically < -63 dBc
Filter	1.28 MHz (RRC)

Spectrum emission mask (SEM) measurement

This measurement provides the out of channel emission for the offset frequencies, which are between 0.8 and 4 MHz away from the UE carrier frequency. The out of channel emission is specified relative to the RRC filtered mean power of the UE carrier. The RRC filter has an RRC response with roll-off $\alpha = 0.22$ and a bandwidth equal to the chip rate.

Input level range	
Average power	+5 to +28 dBm/1.28 MHz
Measurement accuracy	\pm (0.8 to 4.0) MHz < \pm 1.5 dB
Filter	
In band	1.28 MHz (RRC)
0.8 to 2.4 MHz	30 kHz (Gaussian)
2.4 to 4.0 MHz	1 MHz (Gaussian)

Measurement results

Pass/fail, in-channel power (dBm/1.28 MHz), average power level relative to in-channel power for each offset range (dBc), the power level vectors relative to in-channel power for all points tested in each offset range, as well as the worst case results

Error vector magnitude (EVM) measurement

This measurement calculates composite EVM and several other results relating to UE modulation quality.

Input level range

Average power	-25 to +28 dBm/1.28 MHz
UE ranges	
EVM	≤ 20% rms
Frequency error	< ±20 kHz
Timing error	< ±25 chips
EVM measurement accuracy	1
(Includes residual EVM)	< ±2.5% rms
Filtor	1 28 MHz (BBC)

riiter	1.20 MHZ (KKC)
Measurement results	EVM, magnitude error, phase
	error, origin offset

Frequency error measurement

This measurement measures the difference between the carrier frequency transmitted from the UE and the expected frequency. The UE uses the same frequency source for both RF frequency generation and the chip clock.

Input level range	
Average power	-25 to +28 dBm/1.28 MHz
UE ranges	
EVM	≤ 20% rms
Frequency error	< ±20 kHz
Timing error	< ±25 chips
Measurement accuracy	< (±10 Hz + timebase accuracy)
Filter	1.28 MHz (RRC)
Measurement results	Frequency error

Peak code domain error (PCDE) measurement

This measurement is computed by projecting power of the error vector onto the code domain at a specific spreading factor. The code domain error for every code in the domain is defined as the ratio of the mean power of the projection onto that code, to the mean power of the composite reference waveform. This ratio is expressed in dB. The PCDE is defined as the maximum value for the code domain error for all codes.

Input level range Average power	-25 to +28 dBm/1.28 MHz
UE ranges	
EVM	≤ 20% rms
Frequency error	< ±20 kHz
Timing error	< ±25 chips
Measurement accuracy	< ±0.3 dB
Filter	1.28 MHz (RRC)
Measurement results	Maximum value of CDE

Dynamic Power Measurement

This measurement provides a fast and flexible method for calibrating the power accuracy of a wireless device by providing multiple Tx power measurements at a single frequency. It tracks and reports the power result for each step. To take advantage of this measurement capability, the wireless device must have a test mode that outputs an appropriate power ramp at each frequency with the expected number of steps and dwell time at each step (step length).

Innut level range	
Average power	-65 to +28 dBm/1.28 MHz
Amplitude capture range	
With 7 dB crest factor	$< \pm 2$ dB of expected power
Measurement accuracy ¹	
+2 to -42 dB of expected power	
-54 to +28 dBm/1.28 MHz	$< \pm 0.6 \text{ dB}$, typically $< \pm 0.3 \text{ dB}$
-61 to < -54 dBm/1.28 MHz	$< \pm 0.7$ dB, typically $< \pm 0.4$ dB
+2 to -42 dB of expected power	
With < 48 hours warm-up befo	ore self alignment initiated
-54 to +28 dBm/1.28 MHz	$< \pm 0.7$ dB, typically $< \pm 0.3$ dB
-61 to < -54 dBm/1.28 MHz	$< \pm 0.8$ dB, typically $< \pm 0.4$ dB
Measurement repeatability	<i>Typically</i> < ±0.05 dB
Trigger setup	
Sources	External, fall, rise

Step Length and **Number of Steps** parameters are coupled to the setting of the **Filter**:

Filter	Step length (SL)	Number of steps
1 kHz	0.5 to 180 ms	1 to (1048000/(21973 x SL))
30 kHz	0.25 to 180 ms	1 to (1048000/(60e3 x SL))
100 kHz	0.1 to 20 ms	1 to (1048000/(250e3 x SL))
300 kHz	0.1 to 20 ms	1 to (1048000/(600e3 x SL))
640 kHz	0.1 to 20 ms	1 to (1048000/(1.28e6 x SL))
1.23 MHz	0.1 to 20 ms	1 to (1048000/(2.46e6 x SL))
1.28 MHz	0.1 to 20 ms	1 to (1048000/(2.56e6 x SL))
1.6 MHz	0.1 to 20 ms	1 to (1048000/(3.2e6 x SL))
3.84 MHz	0.1 to 20 ms	0.1 to (1048000/(7.68e6 x SL))
5.0 MHz	0.1 to 20 ms	0.1 to (1048000/(10e6 x SL))
8PSK estimated carrier power	0.575 to 20 ms	1 to 1047800/(1.0833e6 x SL)
GSM Tx power	0.1 to 20 ms	1 to (1048000/(320e3 x SL))
W-CDMA mean power)	0.1 to 20 ms	1 to (1048000/(5.25e6 x SL))

Measurement result

A graph displaying the discrete power at each power step along with numeric power results for each step

^{1.} Additional accuracy error when using RF OUT ONLY port is $< \pm 0.1$ dB.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming **test systems** to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Windows is a U.S. registered trademark of Microsoft Corporation.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas			
Canada	(877) 894-4414		
Latin America	305 269 7500		
United States	(800) 829-4444		
Asia Pacific			
Australia	1 800 629 485		
China	800 810 0189		
Hong Kong	800 938 693		
India	1 800 112 929		
Japan	0120 (421) 345		
Korea	080 769 0800		
Malaysia	1 800 888 848		
Singapore	1 800 375 8100		
Taiwan	0800 047 866		
Thailand	1 800 226 008		
Europe & Middle East			
Austria	0820 87 44 11		
Belgium	32 (0) 2 404 93 40		
Denmark	45 /0 13 15 15		
Finland	358 (0) 10 855 2100		
France	0825 010 700*		
2	*0.125€ fixed network rates		
Germany	01805 24 6333**		
	**0.14€/minute		
Ireland			
Israel	9/2-3-9288-504/544		
Italy	39 02 92 60 8484		
Netherlands	31 (0) 20 547 2111		
Spain	34 (91) 631 3300		
Sweden	0200-88 22 55		
Switzerland (French)	41 (21) 8113811(Option 2)		
Switzerland (German)	0800 80 53 53 (Option 1)		
United Kingdom	44 (U) 118 9276201		
Other European Countries:			
www.agilent.com/find/contactus			
Revised: October 24, 2007			

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2007 Printed in USA, December 5, 2007 5989-7180EN

