HAMAMATSU

InGaAs linear image sensors

G9211 to G9214 series G9205 to G9208 series

Near infrared image sensors (0.9 to 1.67 μm / 2.55 $\mu m)$

The G9211 to G9214/G9205 to G9208 series InGaAs linear image sensors are specifically designed for near infrared multichannel spectrophotometry. These linear image sensors consist of an InGaAs photodiode array, a charge amplifier array, an offset compensation circuit, a shift register and a timing generator formed on a CMOS chip. The charge amplifier array is made up of CMOS transistors connected to each pixel of the InGaAs photodiode array. Signals from each pixel are read out in charge integration mode to achieve high sensitivity and stable operation in the near infrared spectral range. The package is hermetically sealed for high reliability.

Signal processing circuits on the CMOS chip can be selected from two conversion efficiencies (CE) by external voltage. The image sensor operates over a wide dynamic range when CE=16 nV/e⁻ and delivers high gain when CE=320 nV/e⁻.

Features

- Wide dynamic range
- Low noise and low dark current
- Two selectable conversion efficiencies
- Anti-saturation circuit
- CDS circuit *1
- Offset compensation circuit
- Simple operation (by built-in timing generator) *2
- High resolution: 25 µm pitch (512 ch)
- Low cross-talk
- 256 ch: 1 video line 512 ch: 2 video lines

Applications

- Near infrared multichannel spectrophotometry
- Radiation thermometry
- Non-destructive inspection
- Related products
- InGaAs multichannel detector head C8061-01, C8062-01
- Multichannel detector head controller C7557
- *1: A major source of noise in charge amplifiers is the reset noise generated when the integration capacitance is reset. A CDS (correlated double sampling) circuit greatly reduces this reset noise by holding the signal immediately after reset to find the noise differential.
- *2: Different signal timings must be properly set in order to operate a shift register. In conventional image sensor operation, external PLDs (programmable logic device) are used to input the required timing signals. However, the G9211 to G9214/G9205 to G9208 series image sensors internally generate all timing signals on the CMOS chip just by supplying CLK and RESET pulses. This makes it simple to set the timings.

Selection guide

Type No.	Cooling	Number of pixels	Pixel pitch (µm)	Pixel size [μm (H) × μm (V)]	Spectral response range (µm)	Defective pixel
G9211-256S		256	50	50 × 250		
G9212-512S	One-stage	512	25	25 × 250	$0.0 \pm 0.167 (-10.9C)$	1 % Max. * ³
G9213-256S	TE-cooled	256	50	50 × 500	0.9 (0 1.67 (-10 °C)	
G9214-512S		512	25	25 × 500		
G9205-256W					0.9 to 1.85 (-20 °C)	
G9206-256W	Two-stage	256	50		0.9 to 2.05 (-20 °C)	E 0/ Max
G9207-256W	TE-cooled	250	50	50 × 250	0.9 to 2.25 (-20 °C)	5 % Max.
G9208-256W					0.9 to 2.55 (-20 °C)	

*3: If your application requires sensors with no defective pixels, please select G9201 series.

Absolute maximum ratings

Parameter	Symbol	Value	Unit
Clock pulse voltage	Vφ	5.5	V
Operating temperature *4	Topr	-40 to +70	°C
Storage temperature *4	Tstg	-40 to +85	°C

*4: Non condensation

Electrical characteristics (Ta=25 °C, V ϕ =5 V)

Parameter		Sym	bol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd		4.9	5.0	5.1	N N
		Vref		-	1.26	-	V
		T()(dd)	256 ch	-	45	50	m۸
Supply current		1(vuu)	512 ch	-	90	100	IIIA
		I(Vr	ef)	-	-	1	mA
Ground		Vs	is	-	0	-	V
Element bias		IN	Р	3.5	4.5	4.6	V
Element bias current		I(IN	IP)	-	-	1	mA
Clock frequency		f		0.1	-	4	MHz
	High	νφ		Vø - 0.5	Vφ	Vø + 0.5	V
Clock pulse voltage	Low			0	0	0.4	V
Clock pulse rise time		trφ		0	20	100	nc
Clock pulse fall time		tfe	þ	0	20	100	115
Clock pulse width		tpv	Vφ	100	-	-	ns
Basat pulsa valtaga	High		=C)	Vø - 0.5	Vφ	Vø + 0.5	V
Reset pulse voltage	Low	V(RES)		0	0	0.4	V
Reset pulse rise time	·	tr(RES)		0	20	100	ns
Reset pulse fall time		tf(R	ES)	0	20	100	
Reset pulse width		tpw(F	RES)	6000	-	-	ns
Video output voltago	High	VI	1	-	4.5	-	N
video output voltage	Low	V	L	0	1.26	-	v
Video data rate		fv		-	f/8	-	Hz

- Spectral response

KMIRB0033EC

HAMAMATSU

Electrical and optical characteristics (G9211 to G9214 series: T=25 °C, G9205 to G9208 series: T=-20 °C)

Daramatar	Symbol	G9211 to G9214 series				Linit				
Parameter	Symbol	Min. Typ. Max.			Min.	Тур.	Max.	Unit		
			1.55	-	G9205	-	1.75	-	- μm	
Deals consistivity wavelength	2.5				G9206	-	1.95	-		
Peak sensitivity wavelength	vb	-			G9207	-	2.05	-		
						-	2.3	-]	
Saturation charge *5	Qsat	-	30	-		-	30	-	рС	
RMS noise voltage	N		190	200			190	200	u\/ rmc	
(Readout noise)	out noise)		100	500		-	100	300	μντιτις	
Photo response non-uniformity	PRNU	-	-	±5 *6		-	-	±10 *7	%	

*5: V_{\$\$\phi=5} V, CE=16 nV/e⁻

*6: 50 % of saturation, integration time: 10 ms, after dark output subtraction, excluding first and last pixels

*7: 50 % of saturation, integration time: 3 ms, after dark output subtraction, excluding first and last pixels

Dark current characteristics (T=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	
G9211-256S		-	2	10		
G9212-512S		-	1	5		
G9213-256S		-	4	20		
G9214-512S	To	-	1	5		
G9205-256W *5	ID	-	15	60	pA	
G9206-256W *5		-	30	120		
G9207-256W *5		-	200	800		
G9208-256W *5		-	500	2000		

*5: TD=-20 °C

Equivalent circuit

KMIRC0010EC

Timing chart

Connection example

Dimensional outline (unit: mm)

KMIRA0011EA

В

Pin connection (top view)

Terminal name	Input/Output	Function and recommended connection
CLK	Input (CMOS logic compatible)	Clock pulse for operating the CMOS shift register
DECET	Input (CMOS logic compatible)	Reset pulse for initializing the feedback capacitance in the charge amplifier formed
RESET	Input (CMOS logic compatible)	in the CMOS chip. The width of the reset pulse is integration time.
Vdd	Input	Supply voltage for operating the signal processing circuit in the CMOS chip
Vss	Input	Ground for the signal processing circuit in the CMOS chip
INP	Input	Reset voltage for the charge amplifier array in the CMOS chip
Cf SELECT	Input	Voltage that determines the conversion efficiency in the CMOS chip. Low gain
		(CE=16 nV/e ⁻) at 0 V, and high gain (CE=320 nV/e ⁻) at 5 V.
CASE	-	This terminal is electrically connected to the package.
THERM	Output	Thermistor for monitoring temperature inside the package
TEL TE	Input	Power supply terminal for the thermoelectric cooler that cools the photodiode
ILT, IL-	Input	array. No connection for room temperature operation type.
AD-TRIG	Output	Digital signal for AD conversion; positive polarity
VIDEO	Output	Analog video signal; positive polarity
Vref	Input	Reset voltage for the offset compensation circuit in the CMOS chip

Specifications of TE-cooler (Ta=25 °C, Vdd=5 V, INP=4.5 V)

Daramator	Condition	Symbol	One-stage TE-cooler			Two-stage TE-cooler			Upit
Parameter			Min.	Тур.	Max.	Min.	Тур.	Max.	Unic
TE-cooler allowable current		Ic Max.	-	-	1.8	-	-	2.8	А
TE-cooler allowable voltage		Vc Max.	-	-	5.0	-	-	4.0	V
Temperature difference *6	*7	Δt	40	-	-	50	-	-	°C
Thermistor resistance		Rth	4.85	5.00	5.15	4.85	5.00	5.15	kΩ
Thermistor power dissipation		Pth	-	-	0.2	-	-	0.2	mW

*6: This is a temperature difference between the surface of active area and the heat radiating portion of package.

*7: One-stage thermoelectrically cooled type: Ic=1.4 A, two-stage thermoelectrically cooled type: Ic=2.6 A.

HAMAMATSU

TE-cooler temperature characteristics

Thermistor temperature characteristic

Connection of related products

Multichannel detector head C8061-01 (One-stage TE-cooled type) C8062-01 (Two-stage TE-cooled type)

*1: Shutter, etc. are not available. *2: SCSI cable and SCSI board (card) are not supplied with the C7557. KACCC0401EA

Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2008 Hamamatsu Photonics K.K.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184 U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658 France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parcel du Moulin de Massy, 91882 (Sectional), Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 IBW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741

6