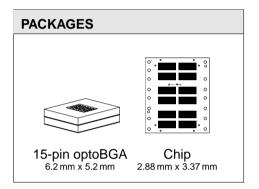
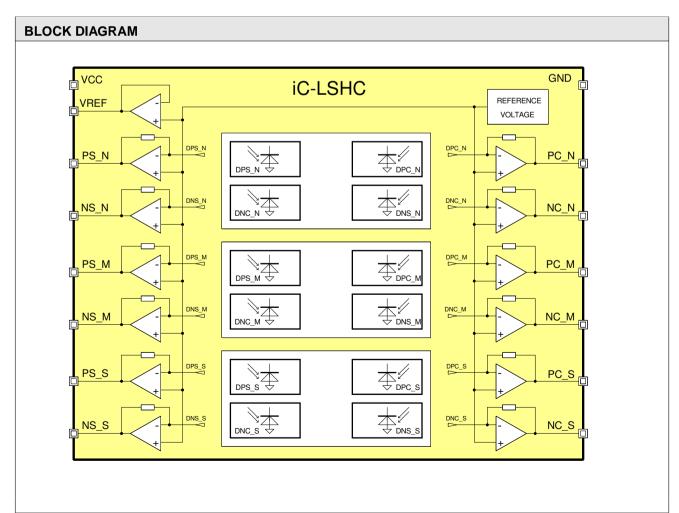
preliminary

3-CHANNEL SIN/COS PHOTOSENSOR ARRAY


Rev B1, Page 1/7


FEATURES

- ♦ Monolithic array of independent photosensors with excellent matching
- ♦ Compact photosensor size of 800 µm x 330 µm enabling smaller encoder systems
- ♦ Moderate alignment tolerance due to a track pitch of 1.08 mm
- ♦ Ultra low dark currents for operation to high temperature
- ♦ Low noise amplifiers with high transimpedance of typ. $4 M\Omega$
- ♦ Short-circuit-proof, low impedance voltage outputs for enhanced EMI tolerance
- ♦ Low power consumption from single 5 V supply
- ♦ Operational temperature range of -40 to 125 °C
- ♦ Space saving 15-pin optoBGA package (RoHS compatible)
- ♦ Available options
 - reticle assembly, code discs
 - customized COB modules

APPLICATIONS

- ♦ Optical position encoding from analog sine/cosine signals
- Incremental encoders with interpolation
- Absolute position encoders using nonius scales

Copyright © 2009 iC-Haus http://www.ichaus.com

preliminary

3-CHANNEL SIN/COS PHOTOSENSOR ARRAY

Rev B1, Page 2/7

DESCRIPTION

The iC-LSHC photosensor is a general purpose optoelectronic scanner made to suit a variety of encoding applications, such as rotary and linear encoders used for motion control, robotics, brushless DC motor commutation, power tools etc.

iC-LSHC features 12 monolithically integrated photosensors with active areas of 800 μm x 330 μm each. A high transimpedance gain of typically 4 $M\Omega$ generates output signals of a few hundret Millivolts already from illumination levels of 0.3 to 0.7 mW/cm². In most cases no additional measures must be considered to filter for noise and interferences.

Sine/cosine encoders are the typical application for iC-LSHC. Its 3-track scanning features a set of 4 pho-

tosensors each per track, generating positive and negative going sine signals, as well as positive and negative going cosine signals. An excellent matching and common mode behavior of the differential signal paths is obtained by a paired amplifier design, reducing the needs for external signal calibration to an absolute minimum.

The spectral sensitivity range includes visible to near infrared light, with the maximum sensitivity being close to a wavelength of 680 nm. When using iC-LSHC for encoder applications with typical disc and mask codes, a signal amplitude of approximately 1 V is typical under low light conditions, for instance when iC-LSHC is illuminated at only 1.5 mW/cm² by an 740 nm LED.

PACKAGES

PAD LAYOUT (2.88 mm x 3.37 mm)

PAD FUNCTIONS No. Name Function

1 VCC +4.5..5.5 V Supply Voltage

2 VREF Reference Voltage Output

3 PS_N N-Track Sine +

4 NS N N-Track Sine -

5 PS_M M-Track Sine +

6 NS_M M-Track Sine -

7 PS S S-Track Sine +

8 NS S S-Track Sine -

9 NC_S S-Track Cosine -

10 PC_S S-Track Cosine +

11 NC M M-Track Cosine -

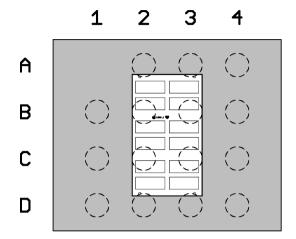
12 PC M M-Track Cosine +

13 NC_N N-Track Cosine -

14 PC_N N-Track Cosine +

15 GND Ground

Notes: All outputs supply analog voltages.


Dimension G4 is the reference radius of the chip center.

3-CHANNEL SIN/COS PHOTOSENSOR ARRAY

Rev B1, Page 3/7

PIN CONFIGURATION oBGA LSH2C (6.2 mm x 5.2 mm)

PIN FUNCTIONS

No. Name Function

Α2	VCC	+4.55.5 V Supply Voltage
А3	VREF	Reference Voltage Output

A4 GND Ground

B1 PS N N-Track Sine +

B2 NS_N N-Track Sine -

B3 NC_N N-Track Cosine -

B4 PC N N-Track Cosine +

C1 PS M M-Track Sine +

C2 NS_M M-Track Sine -

C3 NC_M M-Track Cosine -

C4 PC M M-Track Cosine +

D1 PS_S S-Track Sine +

D2 NS_S S-Track Sine -

D3 NC_S S-Track Cosine -

D4 PC_S S-Track Cosine +

iC-LSHC3-CHANNEL SIN/COS PHOTOSENSOR ARRAY

Rev B1, Page 4/7

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	I(VCC)	Current in VCC		-20	20	mA
G003	V()	Pin Voltage, all signal outputs		-0.3	VCC +	V
					0.3	
G004	I()	Pin Current, all signal outputs		-20	20	mA
G005	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G006	Tj	Junction Temperature		-40	150	°C
G007	Ts	Chip Storage Temperature Range		-40	150	°C

THERMAL DATA

Item	Symbol Parameter Conditions		.,	Unit			
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package oBGA LSH2C (extended temperature range on request)	-20		90	°C
T02	Ts	Storage Temperature Range	package oBGA LSH2C	-40		110	°C
T03	Tpk	Soldering Peak Temperature	package oBGA LSH2C				
			tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering			245 230	°C
			TOL (time on label) 8 h; Please refer to customer information file No. 7 for details.				

3-CHANNEL SIN/COS PHOTOSENSOR ARRAY

Rev B1, Page 5/7

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC = 4.5...5.5 V, Tj = -40..125 °C, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device						
001	VCC	Permissible Supply Voltage		4.5		5.5	V
002	I(VCC)	Supply Current in VCC	no output load, photocurrents within linear operating range (no override)		9.5	15	mA
003	Vc()hi	Clamp-Voltage hi at all pins	I() = 4 mA			11	V
004	Vc()lo	Clamp-Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
Photo	sensors						
101	λar	Spectral Application Range	$Se(\lambda ar) = 0.25 \times S(\lambda) max$	400		950	nm
102	λpk	Peak Sensitivity Wavelength			680		nm
103	Aph()	Radiant Sensitive Area	0.8 mm x 0.33 mm		0.264		mm ²
104	S(\lambda)	Spectral Sensitivity	$\lambda_{\text{LED}} = 740 \text{nm}$		0.5		A/W
105	S(λpk)max	Maximum Spectral Sensitivity	$\lambda_{LED} = \lambda pk$		0.55		A/W
106	E()mxr	Irradiance For Maximum Signal Level	λ_{LED} = 740 nm, Vout() not yet saturated	0.15	0.5	0.8	mW/ cm ²
Photo	current Am	olifiers					
201	lph()	Permissible Photocurrent Operating Range		0		280	nA
202	η()r	Photo Sensitivity (light-to-voltage conversion ratio)	$\lambda_{LED} = 740nm$	0.8	1.2	2.0	V/µW
203	Z()	Equivalent Transimpedance Gain	Z = Vout() / Iph()	2.69	4.0	5.46	ΜΩ
204	TCz	Temperature Coefficient of Transimpedance Gain			-0.12		%/°C
209	ΔZ()pn	Transimpedance Gain Matching	P vs. N path per diff. channel	-0.2		0.2	%
210	△Vout()pn	Signal Matching	no illumination, any output to any output	-35		35	mV
211	△Vout()pn	Signal Matching	no illumination, P output vs. corresponding N output	-2.5		2.5	mV
212	fc()hi	Cut-off Frequency (-3 dB)		120	180	280	kHz
213	VNoise()	RMS Output Noise	illuminated to 500 mV signal level above dark level, 500 kHz band width		0.5		mV
Signa	Outputs						
301	Vout()mx	Permissible Maximum Output Voltage	illumination to E()mxr, linear gain	2.45	2.72	3.02	V
302	Vout()d	Dark Signal Level	no illumination, load 20 kΩ vs. +2 V	600	770	1000	mV
303	Vout()acmx	Maximum Signal Level	Vout()acmx = Vout()mx - Vout()d	1.48	1.96	2.35	V
304	Isc()hi	Short-Circuit Current hi	load current to ground	100	420	800	μΑ
305	lsc()lo	Short-Circuit Current lo	load current to IC	250	480	700	μΑ
306	Ri()	Internal Output Resistance	f= 1 kHz	70	110	180	Ω
307	ton()	Power-On Settling Time	$VCC = 0 V \rightarrow 5 V$			100	μs
Refere	ence Voltage	VREF					
401	VREF	Reference Voltage	I(VREF) = 0+1.6 mA	600	770	1000	mV
402	dVout()	Load Balancing	I(VREF) = 0+1.6 mA	-10		+10	mV
403	Isc()hi	Short-Circuit Current hi	load current to ground	200	420	800	μA
404	Isc()lo	Short-Circuit Current lo	load current to IC	2	4.5	10	mA

Rev B1, Page 6/7

APPLICATION CIRCUITS

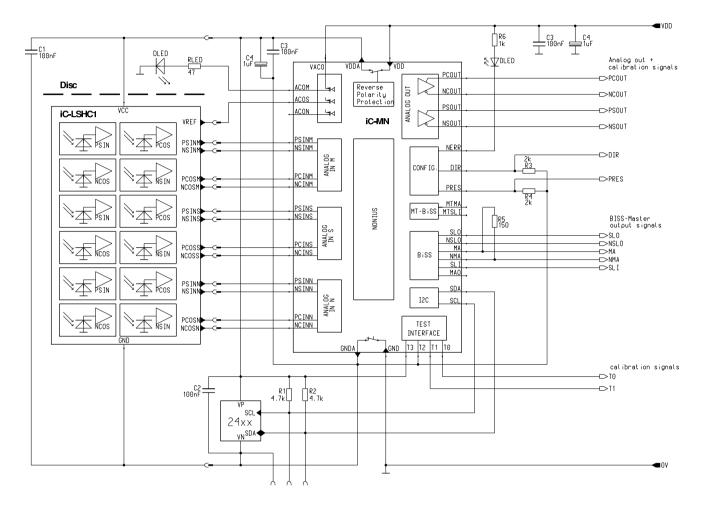


Figure 1: Application example of absolute encoder

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by

Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source. iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can

iC-LSHC 3-CHANNEL SIN/COS PHOTOSENSOR ARRAY

Rev B1, Page 7/7

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-LSHC	optoBGA 6.2 mm x 5.2 mm optoBGA 6.2 mm x 5.2 mm	reticle 26-256 NMS reticle 26-1024 NMS reticle 26-2048 NMS reticle 42-2048 NMS Nonius Code Disc 255/256/240 PPR, OD/ID Ø26/11.6 mm, glass Nonius Code Disc	iC-LSHC chip iC-LSHC OBGA LSH2C iC-LSHC OBGA LSH2C-4R iC-LSHC OBGA LSH2C-1R iC-LSHC OBGA LSH2C-2R iC-LSHC OBGA LSH2C-6R LSHC4S 26-256N LSHC5S 26-256N
		255/256/240 PPR, OD/ID Ø26/7 mm, plastic Nonius Code Disc 1023/1024/992 PPR, OD/ID Ø26/11.6 mm, glass	LSHC1S 26-1024N
		Nonius Code Disc 2047/2048/2016 PPR, OD/ID Ø26/11.6 mm, glass	LSHC2S 26-2048N
		Nonius Code Disc 2047/2048/2016 PPR, OD/ID Ø42/18 mm, glass	LSHC6S 42-2048N

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners