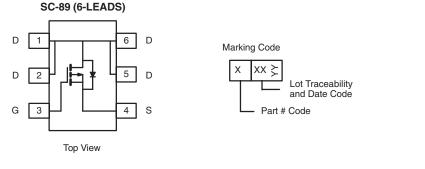


P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}$ (Ω)	I _D (A)	Q _g (Typ.)	
	0.150 at V _{GS} = - 4.5 V	1.06		
- 20	0.166 at V _{GS} = - 2.5V	1.0	6.0	
	0.214 at V _{GS} = - 1.8V	0.49		

FEATURES


- Halogen-free Option Available
- TrenchFET® Power MOSFET
- 100 % R_g Tested

RoHS

APPLICATIONS

· Load Switch for Portable Devices

Ordering Information: Si1067X-T1-E3 (Lead (Pb)-free)

Si1067X-T1-GE3 (Lead (Pb)-free and Halogen-free)

P-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	- 20	V	
Gate-Source Voltage		V _{GS}	± 8		
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 25 °C	I _D	- 1.06 ^{b, c}		
Continuous Brain Current (1) = 130 °C)	T _A = 70 °C	J .0	- 0.85 ^{b, c}	Α	
Pulsed Drain Current		I _{DM}	- 8		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	- 0.2 ^{b, c}	7	
Manianum Davier Disabertiani	T _A = 25 °C	P _D	0.236 ^{b, c}	W	
Maximum Power Dissipation ^a	T _A = 70 °C	' D	0.151 ^{b, c}	VV	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Mariana Indiana Indiana A	t ≤ 5 s	R _{thJA}	440	530	°C/W	
Maximum Junction-to-Ambient ^{a, b}	Steady State	' 'thJA	540	650	J C/VV	

Notes

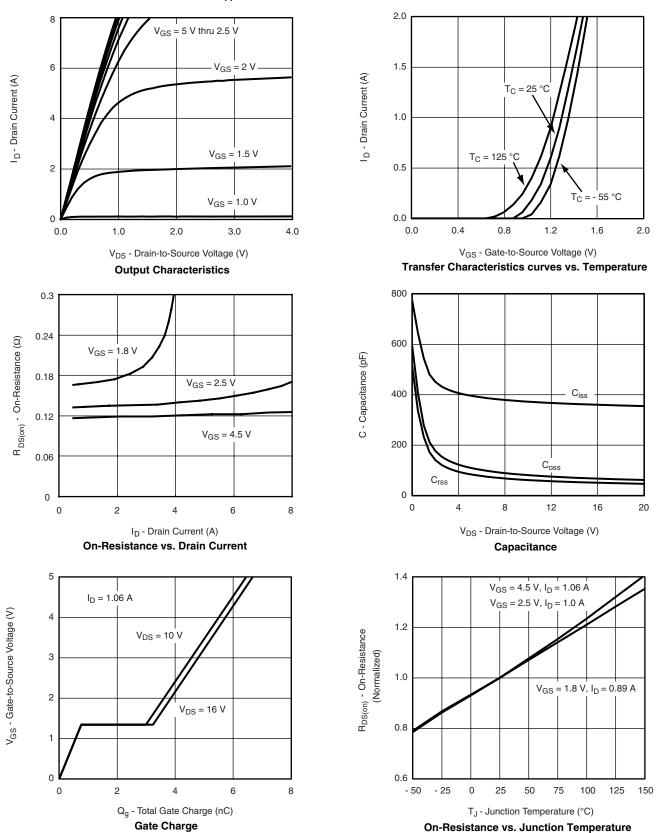
- a. Maximum under Steady State conditions is 650 °C/W.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 5 s.

Si1067X

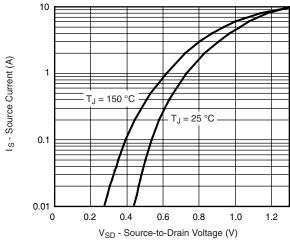
Vishay Siliconix

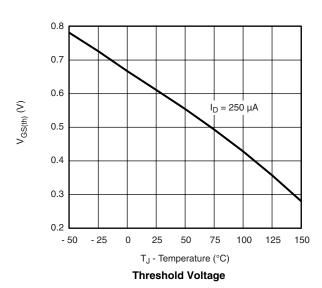
Parameter	Symbol Test Conditions		Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	- 20			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = - 250 μA		- 32.07		m)//°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = - 250 μA		3.02		mV/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 0.45		- 0.95	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA	
Zana Oata Valtana Busin Oamari	I _{DSS}	V _{DS} = - 20 V, V _{GS} = 0 V			- 1	μΑ	
Zero Gate Voltage Drain Current		$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85 ^{\circ}\text{C}$	°C -		- 10		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = \ge 5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 8			Α	
Drain-Source On-State Resistance ^a	, ,	V _{GS} = - 4.5 V, I _D = - 1.06 A		0.125	0.150		
	R _{DS(on)}	V _{GS} = - 2.5 V, I _D = - 1.0 A		0.138	0.166	Ω	
	,	V _{GS} = - 1.8 V, I _D = - 0.49 A		0.165	0.214		
Forward Transconductance	9 _{fs}	V _{DS} = - 10 V, I _D = - 1.06 A		4.0		S	
Dynamic ^b		-				I.	
Input Capacitance	C _{iss}			375		pF	
Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		82			
Reverse Transfer Capacitance	C _{rss}			62			
T. 10 . 0		V _{DS} = - 10 V, V _{GS} = - 5 V, I _D = - 1.06 A		6.5	9.3		
Total Gate Charge	Q_g			6.0	9.1	0	
Gate-Source Charge	Q _{qs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -1.06 \text{ A}$		0.76		nC	
Gate-Drain Charge	Q _{qd}			2.23		1	
Gate Resistance	R _g	f = 1 MHz		8.8	13.2	Ω	
Turn-On Delay Time	t _{d(on)}			14	21		
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_L = 19.74 \Omega$		22	33		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -0.76 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_a = 1 \Omega$		48	72	ns	
Fall Time	t _f	3		17	25.5	1	
Drain-Source Body Diode Characteris	stics					L	
Pulse Diode Forward Current ^a	I _{SM}				8	Α	
Body Diode Voltage	V _{SD}	I _S = - 0.63 A		0.8	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}			12.8	19.2	nC	
Body Diode Reverse Recovery Charge	Q _{rr}	1 0.7 4 41/34 400 4/33		4.5	6.8		
Reverse Recovery Fall Time	t _a	I _F = - 0.7 A, dl/dt = 100 A/μs		7.3		ns	
Reverse Recovery Rise Time	t _b			5.5			

Notes:

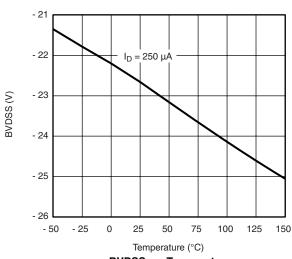

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

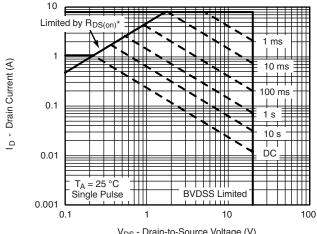

b. Guaranteed by design, not subject to production testing.


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted



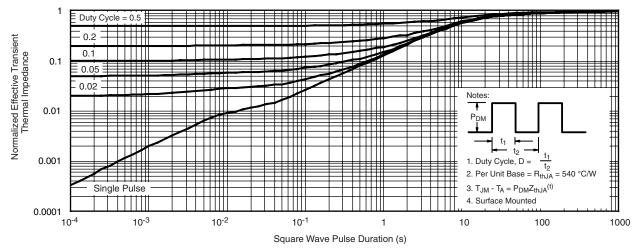
Source-Drain Diode Forward Voltage



 $I_D = 1.06 A$ R_{DS(on)} - On-Resistance (Ω) 0.21 T_A = 125 °C 0.14 T_A= 25 °C 0.07 0.00 5

 V_{GS} - Gate-to-Source Voltage (V) On-Resistance vs. Gate-to-Source Voltage

BVDSS vs. Temperature



 V_{DS} - Drain-to-Source Voltage (V)

* V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified Safe Operating Area, Junction-to-Ambient

TYPICAL CHARACTERISTICS $T_A = 25~^{\circ}C$, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?74322

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com