

HD74LV1G125A

Bus Buffer Gate with 3-state Output

REJ03D0071-0700 Rev.7.00 Mar 21, 2008

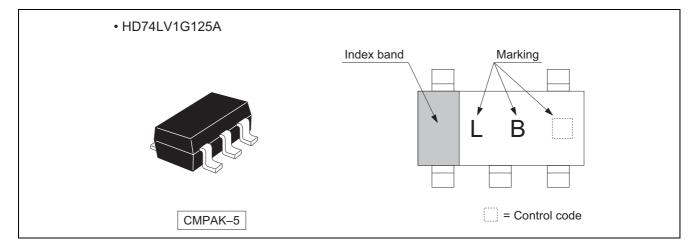
Description

The HD74LV1G125A has a bus buffer gate with 3–state output in a 5 pin package. Output is disabled when the associated output enable (\overline{OE}) input is high. To ensure the high impedance state during power up or power down, \overline{OE} should be connected to V_{CC} through a pull-down resistor; the minimum value of the resistor is determined by the current sourcing capability of the driver. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

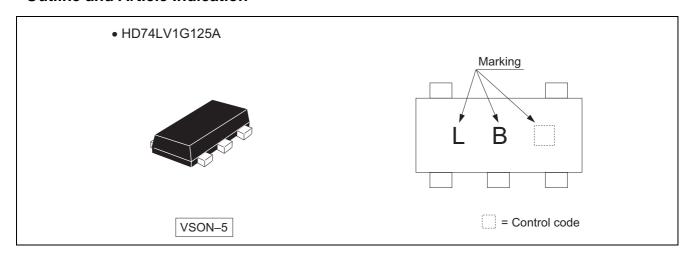
Features

- The basic gate function is lined up as Renesas uni logic series.
- Supplied on emboss taping for high-speed automatic mounting.
- Electrical characteristics equivalent to the HD74LV125A

Supply voltage range: 1.65 to 5.5 V


Operating temperature range : -40 to +85°C

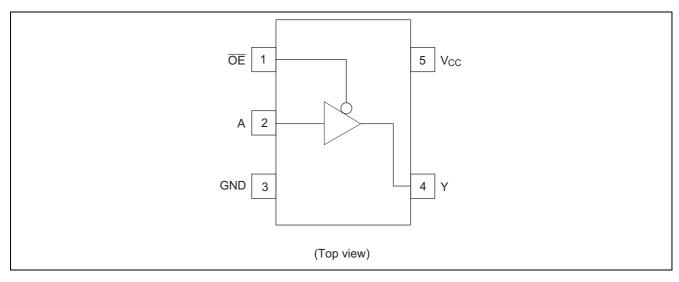
- All inputs V_{IH} (Max.) = 5.5 V (@ V_{CC} = 0 V to 5.5 V) All outputs V_{O} (Max.) = 5.5 V (@ V_{CC} = 0 V, Output : Z)
- Output current ± 6 mA (@V_{CC} = 3.0 V to 3.6 V), ± 12 mA (@V_{CC} = 4.5 V to 5.5 V)
- All the logical input has hysteresis voltage for the slow transition.
- Ordering Information


Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LV1G125ACME	CMPAK-5 pin	PTSP0005ZC-A (CMPAK-5V)	СМ	E (3000 pcs/reel)
HD74LV1G125AVSE	VSON-5 pin	PUSN0005KA-A (TNP-5DV)	VS	E (3000 pcs/reel)

Note: Please consult the sales office for the above package availability.

Outline and Article Indication

Outline and Article Indication



Function Table

Inp	Inputs					
ŌĒ	Α	Output Y				
L	Н	Н				
L	L	L				
Н	X	Z				

H : High level
L : Low level
X : Immaterial
Z : High impedance

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{cc}	-0.5 to 7.0	V	
Input voltage range *1	Vı	-0.5 to 7.0	V	
Output voltage range *1, 2	\/	-0.5 to V _{CC} + 0.5	V	Output : H or L
Cutput voltage range	Vo	-0.5 to 7.0] v	V _{CC} : OFF or Output : Z
Input clamp current	I _{IK}	-20	mA	V _I < 0
Output clamp current	I _{OK}	±50	mA	$V_O < 0$ or $V_O > V_{CC}$
Continuous output current	I _O	±25	mA	$V_{\rm O} = 0$ to $V_{\rm CC}$
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±50	mA	
Maximum power dissipation at Ta = 25°C (in still air) *3	P _T	200	mW	
Storage temperature	Tstg	-65 to 150	°C	

Notes:

- The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.
- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 5.5 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{CC}	1.65	5.5	V	
Input voltage range	VI	0	5.5	V	
Output voltage range	Vo	0	V _{cc}	V	
Output voltage range	VO	0	5.5] v	Output : Z
		_	1		$V_{CC} = 1.65 \text{ to } 1.95 \text{ V}$
	I	_	2		$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$
	l _{OL}	_	6		$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
Output ourrant		_	12	mA	V _{CC} = 4.5 to 5.5 V
Output current		_	-1		$V_{CC} = 1.65 \text{ to } 1.95 \text{ V}$
		_	-2		$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$
	I _{OH}	_	-6		$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
		_	-12		V _{CC} = 4.5 to 5.5 V
		0	300		V _{CC} = 1.65 to 1.95 V
Input transition rise or fall rate	A+ / Ax	0	200	ns / V	$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$
Input transition rise or fall rate	Δt / Δv	0	100	115 / V	$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
		0	20		V _{CC} = 4.5 to 5.5 V
Operating free-air temperature	Ta	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristic

• $Ta = -40 \text{ to } 85^{\circ}\text{C}$

Item	Symbol	V _{CC} (V) *	Min	Тур	Max	Unit	Test condition
		1.65 to 1.95	V _{CC} ×0.75	_	_		
	V _{IH}	2.3 to 2.7	V _{CC} ×0.7		_		
	VIH	3.0 to 3.6	V _{CC} ×0.7		_		
Input voltage		4.5 to 5.5	V _{CC} ×0.7	_	_	V	
input voltage		1.65 to 1.95	_	_	V _{CC} ×0.25	V	
	V_{IL}	2.3 to 2.7	_	_	V _{CC} ×0.3		
	VIL	3.0 to 3.6	_	_	V _{CC} ×0.3		
		4.5 to 5.5			V _{CC} ×0.3		
		1.8		0.25	_		
Hysteresis voltage	V _H	2.5		0.30	_	V	$V_T^+ - V_T^-$
l lysteresis voltage	VH	3.3		0.35	_	V	V - V
		5.0		0.45	_		
		Min to Max	V _{CC} -0.1	1	_		$I_{OH} = -50 \mu A$
		1.65	1.4		_		$I_{OH} = -1 \text{ mA}$
	V _{он}	2.3	2.0		_		$I_{OH} = -2 \text{ mA}$
		3.0	2.48		_		$I_{OH} = -6 \text{ mA}$
Output voltage		4.5	3.8		_	V	$I_{OH} = -12 \text{ mA}$
Output voltage		Min to Max	_		0.1	V	$I_{OL} = 50 \mu A$
		1.65	_		0.3		$I_{OL} = 1 \text{ mA}$
	V_{OL}	2.3	_		0.4		$I_{OL} = 2 \text{ mA}$
		3.0	_		0.44		$I_{OL} = 6 \text{ mA}$
		4.5			0.55		I _{OL} = 12 mA
Input current	I _{IN}	0 to 5.5	_		±1	μΑ	$V_{IN} = 5.5 \text{ V or GND}$
Off state output current	l _{OZ}	Min to Max	_	_	±5	μΑ	$V_0 = 5.5 \text{ V or GND}$
Quiescent supply current	I _{CC}	5.5	_	_	10	μΑ	$V_{IN} = V_{CC}$ or GND, $I_O = 0$
Output leakage current	I _{OFF}	0	_	_	5	μА	V_{IN} or $V_O = 0$ to 5.5 V
Input capacitance	C _{IN}	3.3	_	3.0	_	pF	$V_{IN} = V_{CC}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

• $V_{CC} = 1.8 \pm 0.15 \text{ V}$

Item	Symbol	Ta = 25°C			Ta = -40	Ta = -40 to 85°C		Test	FROM	ТО
item	Syllibol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}	_	13.5	23.5	1.0	26.0	ne	C _L = 15 pF	Α	Υ
delay time	t _{PHL}	_	19.0	33.0	1.0	36.0		$C_L = 50 pF$		
Enable time	t _{ZH}	_	13.7	26.5	1.0	29.0	no	$C_L = 15 pF$	ŌĒ	V
Enable time	t_{ZL}	_	20.5	36.0	1.0	38.0	ns	$C_L = 50 pF$	OE	Y
Disable time	t _{HZ}	_	8.3	20.0	1.0	22.5	no	$C_L = 15 pF$	ŌĒ	V
	t_{LZ}	_	13.0	29.5	1.0	32.0	ı ne	$C_L = 50 pF$	OE	l i

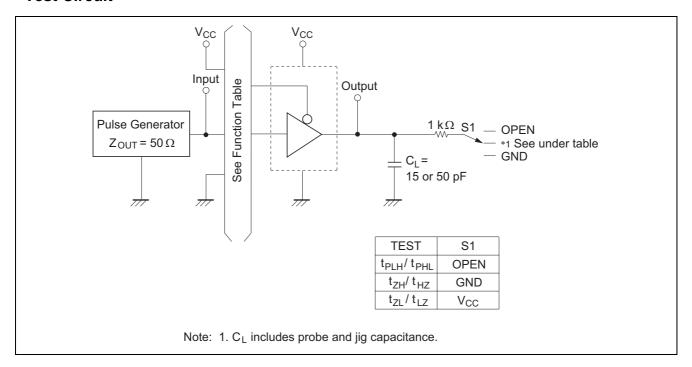
$\bullet \quad V_{CC} = 2.5 \pm 0.2 \ V$

Item	Symbol	Ta = 25°C			Ta = -40	Ta = -40 to 85°C		Test	FROM	ТО
item	Syllibol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}	_	6.8	13.0	1.0	15.5	ns	$C_L = 15 pF$	Α	V
delay time	t _{PHL}	— 8.7 16.5 1.0 18.5	113	$C_L = 50 pF$	^	'				
Enable time	t _{ZH}	_	7.0	13.0	1.0	15.5	no	$C_L = 15 pF$	ŌĒ	Υ
Enable time	t _{ZL}	_	8.8	16.5	1.0	18.5	ns	$C_L = 50 pF$		
Disable time	t _{HZ}	_	5.1	14.7	1.0	17.0	- ns	C _L = 15 pF	ŌĒ	Υ
Disable time	t_{LZ}	_	7.3	18.2	1.0	20.5		$C_L = 50 pF$	5	

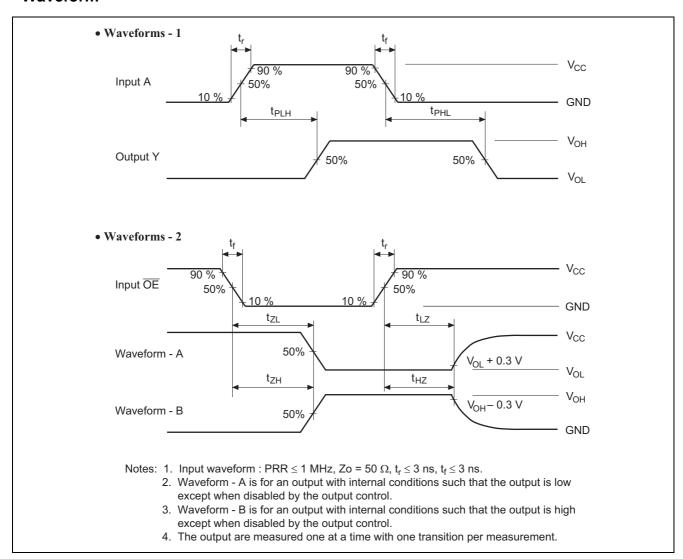
• $V_{CC} = 3.3 \pm 0.3 \text{ V}$

Item	Cumhal	Ta = 25°C			Ta = -40 to 85°C		Unit	Test	FROM	ТО
	Symbol	Min	Тур	Max	Min	Max	Onit	Conditions	(Input)	(Output)
Propagation	t _{PLH}	_	4.8	8.0	1.0	9.5	ne	$C_L = 15 pF$	А	Υ
delay time	t _{PHL}	_	6.1	11.5	1.0	13.0		$C_L = 50 pF$	Α	
Enable time	t _{ZH}	_	4.8	8.0	1.0	9.5	nc	$C_L = 15 pF$	ŌĒ	V
Lilable time	t_{ZL}	_	6.2	11.5	1.0	13.0	ns	$C_L = 50 pF$	OE	ĭ
Disable time	t _{HZ}	_	4.1	9.7	1.0	11.5	nc	$C_L = 15 pF$	ŌĒ	V
	t_{LZ}	_	5.5	13.2	1.0	15.0	ns	C _L = 50 pF	OE	ī

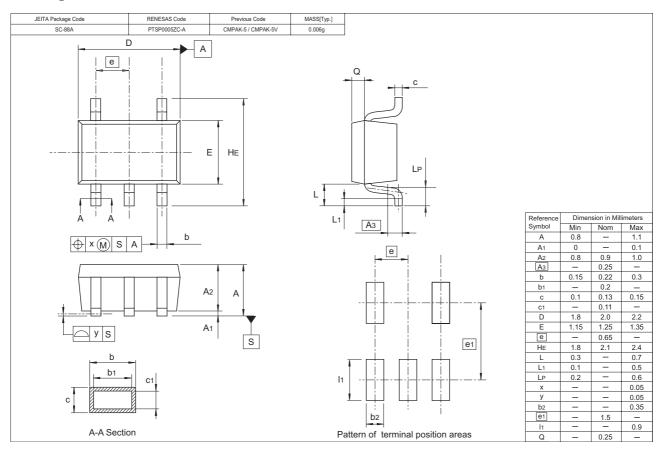
$\bullet \quad V_{CC} = 5.0 \pm 0.5 \ V$

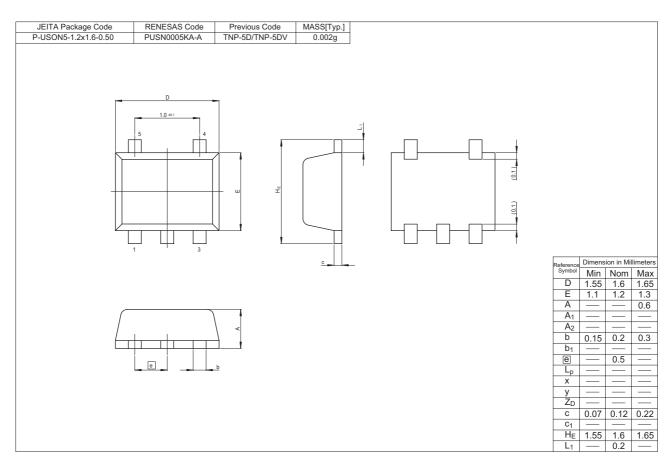

Item	Symbol	Ta = 25°C			Ta = -40	Ta = -40 to 85°C		Test	FROM	то
iteiii		Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}	_	3.4	5.5	1.0	6.5	ne	$C_L = 15 pF$	Α	
delay time	time t _{PHL} —	_	4.3	7.5	1.0	8.5	115	$C_L = 50 pF$	^	'
Enable time	t _{zH}	_	3.4	5.1	1.0	6.0	20	$C_L = 15 pF$	ŌĒ	Y
Lilable time	t _{ZL}	_	4.4	7.1	1.0	8.0	ns	$C_L = 50 pF$		
Disable time	t _{HZ}	_	3.2	6.8	1.0	8.0	ne	$C_L = 15 pF$	ŌĒ	Υ
Disable time	t_{LZ}	_	4.0	8.8	1.0	10.0	ns	$C_L = 50 pF$	5	

Operating Characteristics


• $C_L = 50 pF$

Item	Symbol	V _{CC} (V)	Ta = 25°C			Unit	Test Conditions	
	Syllibol		Min	Тур	Max	Oilit	rest Conditions	
Power dissipation	C	3.3	_	10.5	_	pF	f = 10 MHz	
capacitance	C_{PD}	5.0		11.5	_	рг		


Test Circuit



Waveform

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510