ADC1115S125

Single 11-bit ADC; 125 Msps with input buffer; CMOS or LVDS DDR digital outputs

Rev. 01 — 12 April 2010

Preliminary data sheet

General description 1.

The ADC1115S125 is a single channel 11-bit Analog-to-Digital Converter (ADC) optimized for high dynamic performances and low power consumption at sample rates up to 125 Msps. Pipelined architecture and output error correction ensure the ADC1115S125 is accurate enough to guarantee zero missing codes over the entire operating range. Supplied from a single 3 V source, it can handle output logic levels from 1.8 V to 3.3 V in CMOS mode, thanks to a separate digital output supply.

The ADC1115S125 supports the Low Voltage Differential Signalling (LVDS) Double Data Rate (DDR) output standard. An integrated Serial Peripheral Interface (SPI) allows the user to easily configure the ADC.

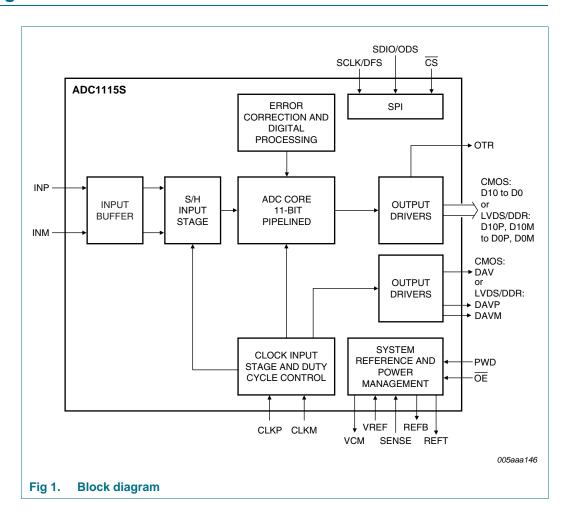
The device also includes a SPI programmable full-scale to allow flexible input voltage range from 1 V to 2 V (peak-to-peak). With excellent dynamic performance from the baseband to input frequencies of 170 MHz or more, the ADC1115S125 is ideal for use in communications, imaging and medical applications - especially in high Intermediate Frequency (IF) applications thanks to the integrated input buffer. The input buffer ensures that the input impedance remains constant and low and the performance consistent over a wide frequency range.

Features and benefits 2.

- SNR, 66.5 dBFS / SFDR, 86 dBc
- Sample rate up to 125 Msps
- 11-bit pipelined ADC core
- Clock input divider by 2 for less jitter contribution
- Integrated input buffer
- Flexible input voltage range: 1 V (p-p) to INL ±1.25 LSB, DNL ±0.25 LSB 2 V (p-p)
- CMOS or LVDS DDR digital outputs
- Pin compatible with the ADC1415S series, the ADC1215S series and the ADC1015S series
- HVQFN40 package

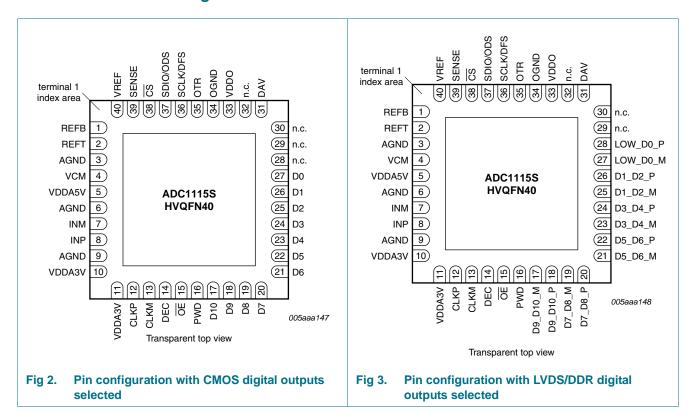
- Input bandwidth, 600 MHz
- Power dissipation, 840 mW including analog input buffer
- SPI
- Duty cycle stabilizer
- Fast OuT of Range (OTR) detection
- Offset binary, two's complement, gray code
- Power-down and Sleep modes

3. Applications


- Wireless and wired broadband communications
- Portable instrumentation
- Imaging systems
- Digital predistortion loop, power amplifier linearization
- Spectral analysis
- Ultrasound equipment
- Software defined radio

4. Ordering information

Table 1. Ordering information


Type number	f _s (Msps)	Package					
		Name	Description	Version			
ADC1115S125HN/C1	125	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6\times6\times0.85$ mm	SOT618-6			

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description (CMOS digital outputs)

			3 . ,
Symbol	Pin	Type ^[1]	Description
REFB	1	Ο	bottom reference
REFT	2	0	top reference
AGND	3	G	analog ground
VCM	4	0	common-mode output voltage
VDDA5V	5	Р	analog power supply 5 V
AGND	6	G	analog ground
INM	7	I	complementary analog input
INP	8	I	analog input
AGND	9	G	analog ground
VDDA3V	10	Р	analog power supply 3 V
VDDA3V	11	Р	analog power supply 3 V
CLKP	12	I	clock input
CLKM	13	I	complementary clock input
DEC	14	0	regulator decoupling node
ŌĒ	15	ļ	output enable, active LOW
PWD	16		power down, active HIGH

Table 2. Pin description (CMOS digital outputs)

Symbol P	Pin		Description
D10 1	7	Type ^[1] O	data output bit 10 (MSB)
		0	data output bit 9
		0	data output bit 8
			•
		0	data output bit 7
		0	data output bit 6
D5 2	22	0	data output bit 5
D4 2	23	0	data output bit 4
D3 2	24	0	data output bit 3
D2 2	25	0	data output bit 2
D1 2	26	0	data output bit 1
D0 2	27	0	data output bit 0 (LSB)
n.c. 2	28	-	not connected
n.c. 2	29	-	not connected
n.c. 3	80	-	not connected
DAV 3	31	0	data valid output clock
n.c. 3	32	-	not connected
VDDO 3	3	Р	output power supply
OGND 3	34	G	output ground
OTR 3	35	0	out of range
SCLK/DFS 3	86	I	SPI clock / data format select
SDIO/ODS 3	37	I/O	SPI data IO / output data standard
CS 3	88	l	SPI chip select
SENSE 3	9	l	reference programming pin
VREF 4	·0	I/O	voltage reference input/output

^[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.

Table 3. Pin description (LVDS/DDR) digital outputs)

Symbol	Pin[1]	Type ^[2]	Description
D9_D10_M	17	0	differential output data D9 and D10 multiplexed, complement
D9_D10_P	18	0	differential output data D9 and D10 multiplexed, true
D7_D8_M	19	0	differential output data D7 and D8 multiplexed, complement
D7_D8_P	20	0	differential output data D7 and D8 multiplexed, true
D5_D6_M	21	0	differential output data D5 and D6 multiplexed, complement
D5_D6_P	22	0	differential output data D5 and D6 multiplexed, true
D3_D4_M	23	0	differential output data D3 and D4 multiplexed, complement
D3_D4_P	24	0	differential output data D3 and D4 multiplexed, true
D1_D2_M	25	0	differential output data D1 and D2 multiplexed, complement
D1_D2_P	26	0	differential output data D1 and D2 multiplexed, true
LOW_D0_M	27	0	differential output data D0 multiplexed, complement
LOW_D0_P	28	0	differential output data D0 multiplexed, true
n.c.	29	-	not connected

Table 3. Pin description ...continued (LVDS/DDR) digital outputs)

Symbol	Pin ^[1]	Type ^[2]	Description
n.c.	30	-	not connected
DAVM	31	0	data valid output clock, complement
DAVP	32	0	data valid output clock, true

^[1] Pins 1 to 16 and pins 33 to 40 are the same for both CMOS and LVDS DDR outputs (see Table 2)

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Vo	output voltage	pins D10 to D0 or pins D10P to D0P and pins D10M to D0M	-0.4	+3.9	V
V _{DDA(3V)}	analog supply voltage 3 V	on pin VDDA3V	-0.5	+4.6	V
V _{DDA(5V)}	analog supply voltage 5 V	on pin VDDA5V	-0.5	+6.0	V
V_{DDO}	output supply voltage		-0.5	+4.6	V
ΔV_{CC}	supply voltage difference	$V_{DDA(3V)} - V_{DDO}$	<tbd></tbd>	<tbd></tbd>	V
T _{stg}	storage temperature		-55	+125	°C
T _{amb}	ambient temperature		-40	+85	°C
Tj	junction temperature		-	125	°C

8. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient		<u>11</u> 30.5	K/W
R _{th(j-c)}	thermal resistance from junction to case		<u>11</u> 13.3	K/W

^[1] Value for six layers board in still air with a minimum of 25 thermal vias.

9. Static characteristics

Table 6. Static characteristics[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
V _{DDA(5V)}	analog supply voltage 5 V		4.75	5.0	5.25	V
V _{DDA(3V)}	analog supply voltage 3 V		2.85	3.0	3.4	V
V_{DDO}	output supply voltage	CMOS mode	1.65	1.8	3.6	V
		LVDS DDR mode	2.85	3.0	3.6	V
I _{DDA(5V)}	analog supply current 5 V	$f_{clk} = 125 \text{ Msps};$ $f_i = 70 \text{ MHz}$	-	46	-	mA

^[2] P: power supply; G: ground; I: input; O: output; I/O: input/output.

 Table 6.
 Static characteristics
 [1]
 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Uni
I _{DDA(3V)}	analog supply current 3 V	f_{clk} = 125 Msps; f_i =70 MHz	-	205	-	mA
I _{DDO}	output supply current	CMOS mode; $f_{clk} = 125 \text{ Msps};$ $f_i = 70 \text{ MHz}$	-	11	-	mA
		LVDS DDR mode: $f_{clk} = 125 \text{ Msps};$ $f_i = 70 \text{ MHz}$	-	39	-	mA
Р	power dissipation	analog supply only	-	840	-	mW
		Power-down mode	-	2	-	mW
		Standby mode	-	40	-	mW
Clock inputs	s: pins CLKP and CLKM					
V _{i(clk)dif}	differential clock input voltage	peak-to-peak	-	±1.6	-	٧
LVDS						
$V_{i(clk)dif}$	differential clock input voltage	peak-to-peak	-	±0.70	-	V
SINE wave						
$V_{i(clk)dif}$	differential clock input voltage	peak-to-peak	±0.8	±3.0	-	V
LVCMOS						
V_{IL}	LOW-level input voltage		-	-	$0.3V_{DDA(3V)}$	V
V _{IH}	HIGH-level input voltage		0.7V _{DDA(3V)}	-	-	V
	s: pins PWD and OE					
V _{IL}	LOW-level input voltage		0	-	0.8	V
V _{IH}	HIGH-level input voltage		2	-	$V_{DDA(3V)}$	V
I _{IL}	LOW-level input current		<tbd></tbd>	-	<tbd></tbd>	μΑ
I _{IH}	HIGH-level input current		-10	-	+10	μА
	neral interface: pins CS, SDIO/OD	OS, SCLK/DFS				
V_{IL}	LOW-level input voltage		0	-	0.3V _{DDA(3V)}	V
V _{IH}	HIGH-level input voltage		0.7V _{DDA(3V)}	-	V _{DDA(3V)}	V
I _{IL}	LOW-level input current		-10 	-	+10	μA
I _{IH}	HIGH-level input current		-50	-	+50	μA
Cı	input capacitance	OTD DAY	-	4	-	pF
	uts, CMOS mode: pins D10 to D0,	OIR, DAV				
	s, V _{DDO} = 3 V	1 45-4	OOND		0.017	١,,
V _{OL}	LOW-level output voltage	I _{OL} = <tbd></tbd>	OGND	-	0.2V _{DDO}	V
V _{OH}	HIGH-level output voltage	I _{OH} = <tbd></tbd>	$0.8V_{DDO}$	- .4b1	V_{DDO}	V
l _{OL}	LOW-level output current	3-state; output level = 0 V	-	<tbd></tbd>	-	μA
I _{OH}	HIGH-level output current	3-state; output level = $V_{DDA(3V)}$	-	<tbd></tbd>	-	μА
	output capacitance	high impedance;		3		рF

Output levels, $V_{DDO} = 1.8 \text{ V}$

 Table 6.
 Static characteristics
 [1]
 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OL}	LOW-level output voltage	$I_{OL} = \langle tbd \rangle$	OGND	-	$0.2V_{DDO}$	V
V _{OH}	HIGH-level output voltage	$I_{OH} = \langle tbd \rangle$	$0.8V_{DDO}$	-	V_{DDO}	V
Digital outp	uts, LVDS mode: pins D10P to D	OP, D10M to D0M, DAVP	and DAVM			
Output levels	s, $V_{DDO} = 3 \text{ V}$ only, $R_{load} = 100 \Omega$					
$V_{O(offset)}$	output offset voltage	output buffer current set to 3.5 mA	-	1.2	-	V
$V_{O(dif)}$	differential output voltage	output buffer current set to 3.5 mA	-	350	-	mV
Co	output capacitance		-	<tbd></tbd>	-	pF
Analog inpu	uts: pins INP and INM					
I _I	input current		-5	-	+5	μΑ
R _I	input resistance		-	550	-	Ω
C _I	input capacitance		-	1.3	-	pF
V _{I(cm)}	common-mode input voltage	$V_{INP} = V_{INM}$	0.9	1.5	2	V
B _i	input bandwidth		-	600	-	MHz
$V_{I(dif)}$	differential input voltage	peak-to-peak	1		2	V
Common m	ode output voltage: pin VCM					
$V_{O(cm)}$	common-mode output voltage		-	$0.5V_{DDA(3V)}$	-	V
I _{O(cm)}	common-mode output current		-	<tbd></tbd>	-	μΑ
I/O referenc	e voltage: pin VREF					
V_{VREF}	voltage on pin VREF	output	-	0.5 to 1	-	V
		input	0.5	-	1	V
Accuracy						
INL	integral non-linearity		<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	LSB
DNL	differential non-linearity	guaranteed no missing codes	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	LSB
E _{offset}	offset error		-	±2	-	mV
E_G	gain error		-	±0.5	-	%FS
Supply						
PSRR	power supply rejection ratio	100 mV (p-p) on V _{DDA(3V)}	-	35	-	dBc

^[1] Typical values measured at $V_{DDA(3V)}=3$ V, $V_{DDO}=1.8$ V, $V_{DDA(5V)}=5$ V; $V_{DDA(5V)}=5$ V; $V_{DDA(5V)}=5$ V; $V_{DDA(5V)}=5$ V; $V_{DDA(5V)}=5$ V, $V_{DDA(5V)}=5$ V, V

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

10. Dynamic characteristics

10.1 Dynamic characteristics

Table 7. Dynamic characteristics[1]

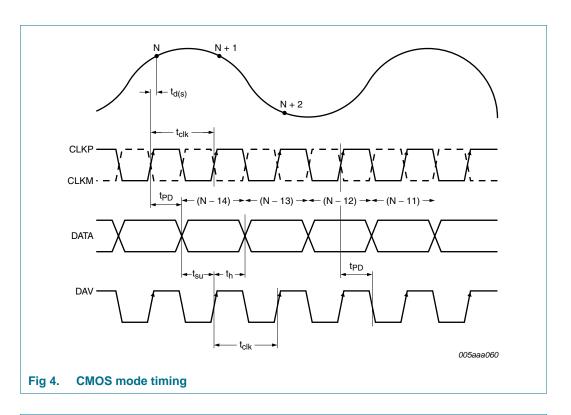
	nd harmonic level	$\begin{aligned} f_i &= 3 \text{ MHz} \\ f_i &= 30 \text{ MHz} \\ f_i &= 70 \text{ MHz} \\ f_i &= 170 \text{ MHz} \\ f_i &= 3 \text{ MHz} \\ f_i &= 30 \text{ MHz} \end{aligned}$	Min	88 87 85 83		dBc dBc dBc
α_{2H} secon	nd harmonic level	$f_i = 30 \text{ MHz}$ $f_i = 70 \text{ MHz}$ $f_i = 170 \text{ MHz}$ $f_i = 3 \text{ MHz}$	- - - -	87 85 83	-	dBc dBc
		$f_i = 30 \text{ MHz}$ $f_i = 70 \text{ MHz}$ $f_i = 170 \text{ MHz}$ $f_i = 3 \text{ MHz}$	-	87 85 83	-	dBc dBc
$lpha_{3 ext{H}}$ third I	harmonic level	$f_i = 70 \text{ MHz}$ $f_i = 170 \text{ MHz}$ $f_i = 3 \text{ MHz}$	-	85 83		dBc
α_{3H} third I	harmonic level	f _i = 170 MHz f _i = 3 MHz	-	83		
α_{3H} third I	harmonic level	f _i = 3 MHz	-		-	dBc
α_{3H} third I	harmonic level		-	0.7		abo
		f _i = 30 MHz		87	-	dBc
			-	86	-	dBc
		f _i = 70 MHz	-	84	-	dBc
		f _i = 170 MHz	-	82	-	dBc
THD total h	HD total harmonic distortion	f _i = 3 MHz	-	86	-	dBc
		f _i = 30 MHz	-	85	-	dBc
		f _i = 70 MHz	-	83	-	dBc
		f _i = 170 MHz	-	81	-	dBc
ENOB effect	tive number of bits	f _i = 3 MHz	-	10.7	-	bits
		f _i = 30 MHz	-	10.7	-	bits
		f _i = 70 MHz	-	10.7	-	bits
		f _i = 170 MHz	-	10.6	-	bits
SNR signa	ıl-to-noise ratio	f _i = 3 MHz	-	66.2	-	dBFS
		f _i = 30 MHz	-	66.2	-	dBFS
		f _i = 70 MHz	-	66.0	-	dBFS
		f _i = 170 MHz	-	65.8	-	dBFS
	ous-free dynamic	f _i = 3 MHz	-	87	-	dBc
range	Э	f _i = 30 MHz	-	86	-	dBc
		f _i = 70 MHz	-	84	-	dBc
		f _i = 170 MHz	-	82	-	dBc
IMD Intern	modulation distortion	f _i = 3 MHz	-	89	-	dBc
		f _i = 30 MHz	-	88	-	dBc
		f _i = 70 MHz	-	86	-	dBc
		f _i = 170 MHz	-	84	-	dBc

^[1] Typical values measured at $V_{DDA(3V)} = 3$ V, $V_{DDO} = 1.8$ V, $V_{DDA(5V)} = 5$ V; $T_{amb} = 25$ °C and $C_L = 5$ pF; minimum and maximum values are across the full temperature range $T_{amb} = -40$ °C to +85 °C at $V_{DDA(3V)} = 3$ V, $V_{DDO} = 1.8$ V, $V_{DDA(5V)} = 5$ V, $V_{INP} - V_{INM} = -1$ dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.

ADC1115S125

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

10.2 Clock and digital output timing

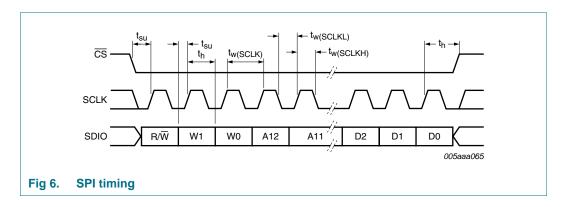

Table 8. Clock and digital output timing characteristics[1]

Symbol	Parameter	Conditions		ADC1115S125			
			Min	Тур	Max		
Clock timin	g input: pins CLKP and CL	KM					
f _{clk}	clock frequency		100	-	125	MHz	
t _{lat(data)}	data latency time		-	14	-	clock cycles	
δ_{clk}	clock duty cycle	DCS_EN = 1	30	50	70	%	
		DCS_EN = 0	45	50	55	%	
t _{d(s)}	sampling delay time		-	0.8	-	ns	
t _{wake}	wake-up time		-	tbd	-	ns	
CMOS mod	le timing output: pins D10 t	o D0 and DAV					
t _{PD} propagation delay	propagation delay	DATA	-	3.9	-	ns	
		DAV	-	4.2	-	ns	
t _{su}	set-up time		-	4.3	-	ns	
t _h	hold time		-	3.5	-	ns	
t _r	rise time ^[2]	DATA	0.5	-	2.4	ns	
		DAV	0.5	-	2.4	ns	
t _f	fall time ^[2]	DATA	0.5	-	2.4	ns	
LVDS DDR	mode timing output: pins D	010P to D0P, D10M to D0	M, DAVP and DA	AVM			
t _{PD}	propagation delay	DATA	-	3.9	-	ns	
		DAV	-	4.2	-	ns	
t _{su}	set-up time		-	1.4	-	ns	
t _h	hold time		-	2.0	-	ns	
t _r	rise time[3]	DATA	50	100	200	ps	
		DAV	50	100	200	ps	
t _f	fall time[3]	DATA	50	100	200	ps	
		DAV	50	100	200	ps	

^[1] Typical values measured at $V_{DDA(3V)} = 3$ V, $V_{DDO} = 1.8$ V, $V_{DDA(5V)} = 5$ V; $T_{amb} = 25$ °C and $C_L = 5$ pF; minimum and maximum values are across the full temperature range $T_{amb} = -40$ °C to +85 °C at $V_{DDA(3V)} = 3$ V, $V_{DDO} = 1.8$ V, $V_{DDA(5V)} = 5$ V, $V_{INP} - V_{INM} = -1$ dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.

^[2] Measured between 20 % to 80 % of V_{DDO} .

^[3] Rise time measured from -50 mV to +50 mV; fall time measured from +50 mV to -50 mV.



10.3 SPI timings

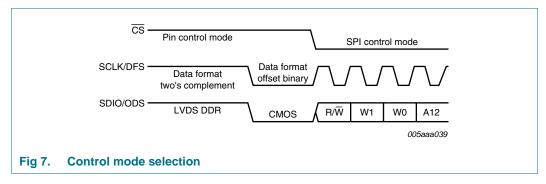
Table 9. Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	
SPI timing	gs					
tw(SCLK)	SCLK pulse width		40	-	-	ns
t _{w(SCLKH)}	SCLK pulse width HIGH		16	-	-	ns
t _{w(SCLKL)}	SCLK pulse width LOW		16	-	-	ns
t _{su}	set-up time	data to SCLKH	5	-	-	ns
		CS to SCLKH	5	-	-	ns
t _h	hold time	data to SCLKH	2	-	-	ns
		CS to SCLKH	2	-	-	ns
f _{clk(max)}	maximum clock frequency		-	-	25	MHz

[1] Typical values measured at V_{DDA(3V)} = 3 V, V_{DDO} = 1.8 V, V_{DDA(5V)} = 5 V; T_{amb} = 25 °C and C_L = 5 pF; minimum and maximum values are across the full temperature range T_{amb} = -40 °C to +85 °C at V_{DDA(3V)} = 3 V, V_{DDO} = 1.8 V, V_{DDA(5V)} = 5 V, V_{INP} - V_{INM} = -1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified

11. Application information

11.1 Device control


The ADC1115S125 can be controlled via the Serial Peripheral Interface (SPI control mode) or directly via the I/O pins (Pin control mode).

11.1.1 SPI and Pin control modes

The device enters Pin control mode at power-up, and remains in this mode as long as pin $\overline{\text{CS}}$ is held HIGH. In Pin control mode, the SPI pins SDIO, $\overline{\text{CS}}$ and SCLK are used as static control pins.

SPI control mode is enabled by forcing pin \overline{CS} LOW. Once SPI control mode has been enabled, the device will remain in this mode. The transition from Pin control mode to SPI control mode is illustrated in Figure 7.

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

When the device enters SPI control mode, the output data standard and data format are determined by the level on pin SDIO as soon as a transition is triggered by a falling edge on \overline{CS} .

11.1.2 Operating mode selection

The active ADC1115S125 operating mode (Power-up, Power-down or Sleep) can be selected via the SPI interface (see <u>Table 19</u>) or using pins PWD and OE in Pin control mode, as described in <u>Table 10</u>.

Table 10. Operating mode selection via pin PWD and OE

Pin PWD	Pin OE	Operating mode	Output high-Z
0	0	Power-up	no
0	1	Power-up	yes
1	0	Sleep	yes
1	1	Power-down	yes

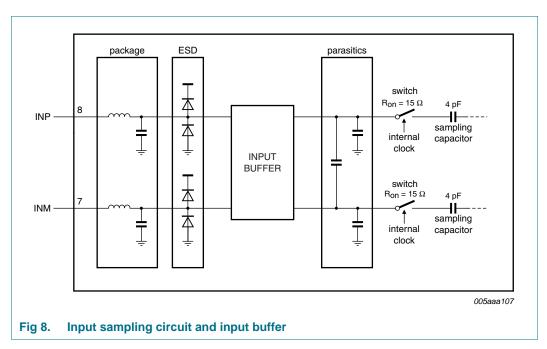
11.1.3 Selecting the output data standard

The output data standard (CMOS or LVDS DDR) can be selected via the SPI interface (see <u>Table 23</u>) or using pin ODS in Pin control mode. LVDS DDR is selected when ODS is HIGH, otherwise CMOS is selected.

11.1.4 Selecting the output data format

The output data format can be selected via the SPI interface (offset binary, two's complement or gray code; see <u>Table 23</u>) or using pin DFS in Pin control mode (offset binary or two's complement). Offset binary is selected when DFS is LOW. When DFS is HIGH, two's complement is selected.

11.2 Analog inputs


11.2.1 Input stage

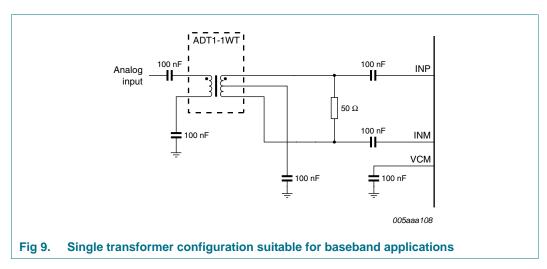
The analog input of the ADC1115S125 supports differential or single-ended input drive. Optimal performance is achieved using differential inputs. The ADC inputs are internally biased and need to be decoupled.

The full scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p) via a programmable internal reference (see <u>Section 11.3</u> and <u>Table 21</u> further details).

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

The equivalent circuit of the input buffer followed by the Sample and Hold (S/H) input stage, including ElectroStatic Discharge (ESD) protection and circuit and package parasitics, is shown in Figure 8.

The integrated input buffer offers the following advantages:


- The kickback effect is avoided the charge injection and glitches generated by the S/H input stage are isolated from the input circuitry. So there's no need for additional filtering.
- The input capacitance is very low and constant over a wide frequency range, which makes the ADC1115S125 easy to drive.

The sample phase occurs when the internal clock (derived from the clock signal on pin CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the clock signal goes LOW, the stage enters the hold phase and the voltage information is transmitted to the ADC core.

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

11.2.2 Transformer

The configuration of the transformer circuit is determined by the input frequency. The configuration shown in Figure 9 would be suitable for a baseband application.

The configuration shown in <u>Figure 10</u> is recommended for high frequency applications. In both cases, the choice of transformer will be a compromise between cost and performance.

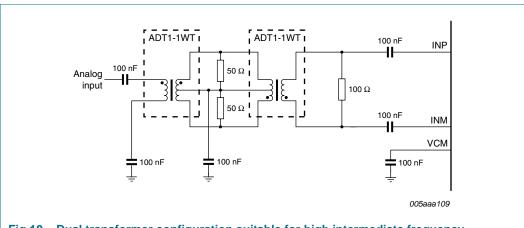
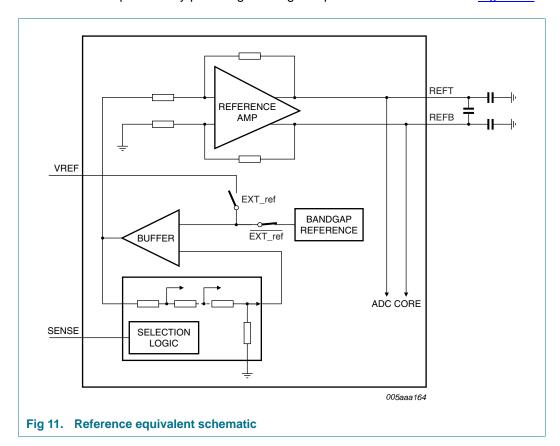



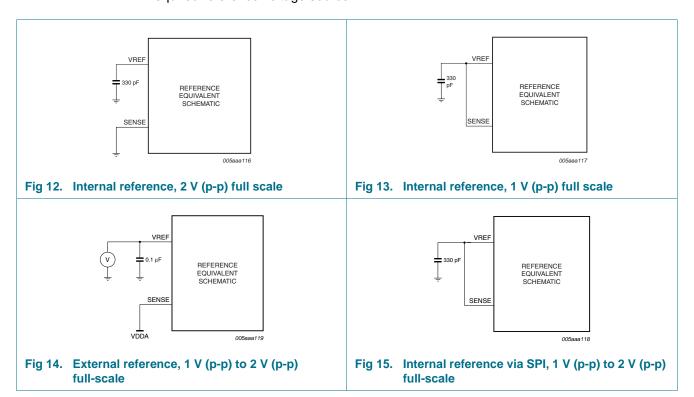
Fig 10. Dual transformer configuration suitable for high intermediate frequency application

11.3 System reference and power management

11.3.1 Internal/external references

The ADC1115S125 has a stable and accurate built-in internal reference voltage to adjust the ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF and SENSE (programmable in 1 dB steps between 0 dB and –6 dB via control bits INTREF[2:0] when bit INTREF_EN = 1; see <u>Table 21</u>). See <u>Figure 12</u>, <u>Figure 13</u>, <u>Figure 14</u> and <u>Figure 15</u>. The equivalent reference circuit is shown in <u>Figure 11</u>. External reference is also possible by providing a voltage on pin VREF as described in Figure 14.

If bit INTREF_EN is set to 0, the reference voltage will be determined either internally or externally as detailed in Table 11.


Table 11. Reference selection

Selection	SPI bit INTREF_EN	SENSE pin	VREF pin	full scale (p-p)
internal (<u>Figure 12</u>)	0	AGND	330 pF capacitor to AGND	2 V
internal (<u>Figure 13</u>)	0	pin VREF con via a 330 pF c	1 V	
external (Figure 14)	0	V _{DDA(3V)}	external voltage between 0.5 V and 1 V[1]	1 V to 2 V
internal via SPI (Figure 15)	1	•	nected to pin SENSE and pacitor to AGND	1 V to 2 V

^[1] The voltage on pin VREF is doubled internally to generate the internal reference voltage.

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

<u>Figure 12</u> to <u>Figure 15</u> illustrate how to connect the SENSE and VREF pins to select the required reference voltage source.

11.3.2 Reference gain control

The reference gain is programmable between 0 dB to –6 dB in 1 dB steps via the SPI (see <u>Table 21</u>). The corresponding full-scale input voltage range varies between 2 V (p-p) and 1 V (p-p), as shown in <u>Table 12</u>:

Table 12. Reference SPI gain control

INTREF	Gain	full scale (p-p)
000	0 dB	2 V
001	−1 dB	1.78 V
010	−2 dB	1.59 V
011	−3 dB	1.42 V
100	−4 dB	1.26 V
101	−5 dB	1.12 V
110	−6 dB	1 V
111	reserved	Х

11.3.3 Common-mode output voltage (V_{O(cm)})

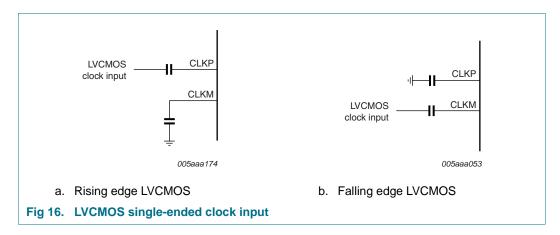
A 0.1 µF filter capacitor should be connected between pin VCM and ground.

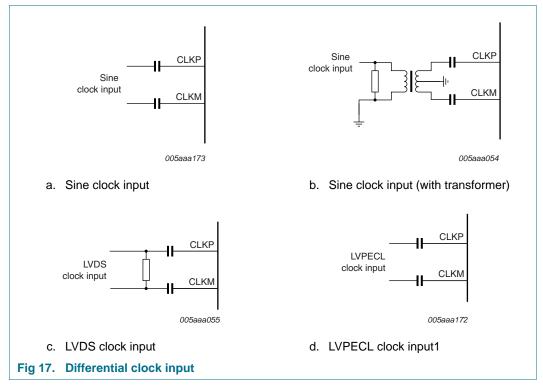
11.3.4 Biasing

The common-mode input voltage $(V_{I(cm)})$ on pins INP and INM is set internally. The input buffer bias current can be set to one of three levels (high, medium or low) via the SPI (see <u>Table 22</u>).

ADC1115S125_1

All information provided in this document is subject to legal disclaimers.

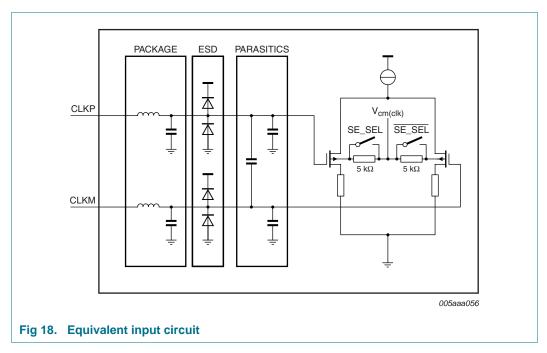

© NXP B.V. 2010. All rights reserved.


11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

11.4 Clock input

11.4.1 Drive modes

The ADC1115S125 can be driven differentially (SINE, LVPECL or LVDS) with little or no degradation on dynamic performances. It can also be driven by a single-ended LVCMOS signal connected to pin CLKP (CLKM should be connected to ground via a capacitor) or CLKM (CLKP should be connected to ground via a capacitor).



11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

11.4.2 Equivalent input circuit

The equivalent circuit of the input clock buffer is shown in Figure 18. The common-mode voltage of the differential input stage is set via internal 5 k Ω resistors.

Single-ended or differential clock inputs can be selected via the SPI interface (see <u>Table 20</u>). If single-ended is enabled, the input pin (CLKM or CLKP) is selected via control bit SE_SEL.

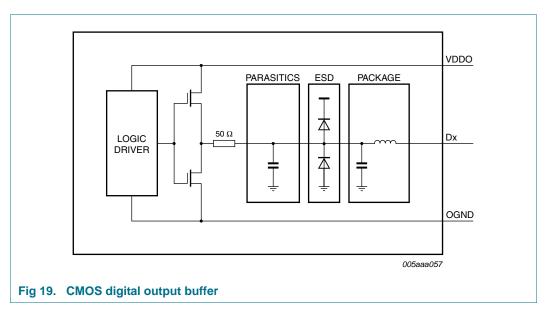
If single-ended is implemented without setting SE_SEL to the appropriate value, the unused pin should be connected to ground via a capacitor.

11.4.3 Duty cycle stabilizer

The duty cycle stabilizer can improve the overall performances of the ADC by compensating the duty cycle of the input clock signal. When the duty cycle stabilizer is active (bit DCS_EN = 1; see $\underline{\text{Table 20}}$), the circuit can handle signals with duty cycles of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled (DCS_EN = 0), the input clock signal should have a duty cycle of between 45% and 55%.

11.4.4 Clock input divider

The ADC1115S125 contains an input clock divider that divides the incoming clock by a factor of 2 (when bit CLKDIV = 1; see <u>Table 20</u>). This feature allows the user to deliver a higher clock frequency with better jitter performance, leading to a better SNR result once acquisition has been performed.

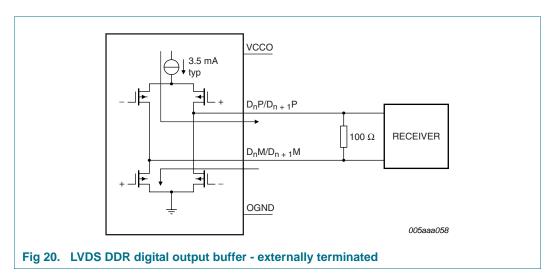

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

11.5 Digital outputs

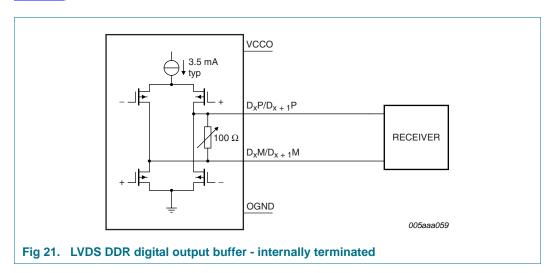
11.5.1 Digital output buffers: CMOS mode

The digital output buffers can be configured as CMOS by setting bit LVDS/CMOS to 0 (see Table 23).

Each digital output has a dedicated output buffer. The equivalent circuit of the CMOS digital output buffer is shown in <u>Figure 19</u>. The buffer is powered by a separate OGND/V_{DDO} to ensure 1.8 V to 3.3 V compatibility and is isolated from the ADC core. Each buffer can be loaded by a maximum of 10 pF.



The output resistance is 50 Ω and is the combination of the an internal resistor and the equivalent output resistance of the buffer. There is no need for an external damping resistor. The drive strength of both data and DAV buffers can be programmed via the SPI in order to adjust the rise and fall times of the output digital signals (see Table 30):


11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

11.5.2 Digital output buffers: LVDS DDR mode

The digital output buffers can be configured as LVDS DDR by setting bit LVDS/CMOS to 1 (see <u>Table 23</u>).

Each output should be terminated externally with a 100 Ω resistor (typical) at the receiver side (<u>Figure 20</u>) or internally via SPI control bits LVDS_INT_TER[2:0] (see <u>Figure 21</u> and <u>Table 32</u>).

The default LVDS DDR output buffer current is set to 3.5 mA. It can be programmed via the SPI (bits DAVI[1:0] and DATAI[1:0]; see <u>Table 31</u>) in order to adjust the output logic voltage levels.

Table 13. LVDS DDR output register 2

LVDS_INT_TER[2:0]	Resistor value (Ω)
000	no internal termination
001	300
010	180
011	110
100	150

ADC1115S125_1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

Table 13. LVDS DDR output register 2 ...continued

LVDS_INT_TER[2:0]	Resistor value (Ω)
101	100
110	81
111	60

11.5.3 Data valid (DAV) output clock

A data valid output clock signal (DAV) is provided that can be used to capture the data delivered by the ADC1115S125. Detailed timing diagrams for CMOS and LVDS DDR modes are provided in Figure 4 and Figure 5 respectively.

11.5.4 Out-of-Range (OTR)

An out-of-range signal is provided on pin OTR. The latency of OTR is fourteen clock cycles. The OTR response can be speeded up by enabling Fast OTR (bit FASTOTR = 1; see <u>Table 29</u>). In this mode, the latency of OTR is reduced to only four clock cycles. The Fast OTR detection threshold (below full scale) can be programmed via bits FASTOTR_DET[2:0].

Table 14. Fast OTR register

FASTOTR_DET[2:0]	Detection level (dB)
000	-20.56
001	-16.12
010	-11.02
011	-7.82
100	-5.49
101	-3.66
110	-2.14
111	-0.86

11.5.5 Digital offset

By default, the ADC1115S125 delivers output code that corresponds to the analog input. However it is possible to add a digital offset to the output code via the SPI (bits DIG_OFFSET[5:0]; see <u>Table 25</u>).

11.5.6 Test patterns

For test purposes, the ADC1115S125 can be configured to transmit one of a number of predefined test patterns (via bits TESTPAT_SEL[2:0]; see $\underline{\text{Table 26}}$). A custom test pattern can be defined by the user (TESTPAT_USER; see $\underline{\text{Table 27}}$ and $\underline{\text{Table 28}}$) and is selected when TESTPAT_SEL[2:0] = 101. The selected test pattern will be transmitted regardless of the analog input.

11.5.7 Output codes versus input voltage

Table 15. Output codes

$V_{INP} - V_{INM}$	Offset binary	Two's complement	OTR pin
< -1	000 0000 0000	100 0000 0000	1
-1.0000000	000 0000 0000	100 0000 0000	0
-0.9990234	000 0000 0001	100 0000 0001	0
-0.9980469	000 0000 0010	100 0000 0010	0
-0.9970703	000 0000 0011	100 0000 0011	0
-0.996093	000 0000 0100	100 0000 0100	0
			0
-0.0019531	011 1111 1110	111 1111 1110	0
-0.0009766	011 1111 1111	111 1111 1111	0
0.0000000	100 0000 0000	000 0000 0000	0
+0.0009766	100 0000 0001	000 0000 0001	0
+0.0019531	100 0000 0010	000 0000 0010	0
			0
+0.9960938	111 1111 1011	011 1111 1011	0
+0.9970703	111 1111 1100	011 1111 1100	0
+0.9980469	111 1111 1101	011 1111 1101	0
+0.9990234	111 1111 1110	011 1111 1110	0
+1.0000000	111 1111 1111	011 1111 1111	0
> +1	111 1111 1111	011 1111 1111	1

11.6 Serial Peripheral Interface (SPI)

11.6.1 Register description

The ADC1115S125 serial interface is a synchronous serial communications port that allows for easy interfacing with many commonly-used microprocessors. It provides access to the registers that control the operation of the chip.

This interface is configured as a 3-wire type (SDIO as bidirectional pin)

Pin SCLK is the serial clock input and \overline{CS} is the chip select pin.

Each read/write operation is initiated by a LOW level on CS. A minimum of three bytes will be transmitted (two instruction bytes and at least one data byte). The number of data bytes is determined by the value of bits W1 and W2 (see Table 17).

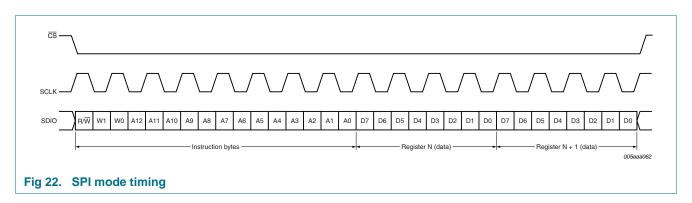
Table 16. Instruction bytes for the SPI

	MSB							LSB
Bit	7	6	5	4	3	2	1	0
Description	R/W[1]	W1[2]	W0[2]	A12	A11	A10	A9	A8
	A7	A6	A5	A4	A3	A2	A1	A0

^[1] Bit R/\overline{W} indicates whether it is a read (1) or a write (0) operation.

^[2] Bits W1 and W0 indicate the number of bytes to be transferred after the instruction byte (see Table 17).

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

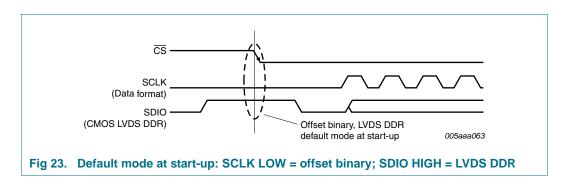

Table 17. Number of data bytes to be transferred after the instruction bytes

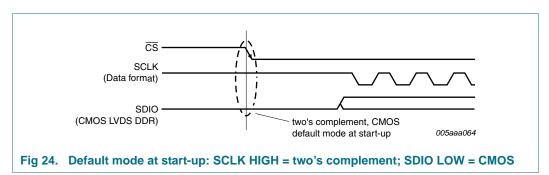
W1	W0	Number of bytes transmitted
0	0	1 byte
0	1	2 bytes
1	0	3 bytes
1	1	4 bytes or more

Bits A12 to A0 indicate the address of the register being accessed. In the case of a multiple byte transfer, this address is the first register to be accessed. An address counter is increased to access subsequent addresses.

The steps involved in a data transfer are as follows:

- 1. A falling edge on $\overline{\text{CS}}$ in combination with a rising edge on SCLK determine the start of communications.
- 2. The first phase is the transfer of the 2-byte instruction.
- 3. The second phase is the transfer of the data which can vary in length but will always be a multiple of 8 bits. The MSB is always sent first (for instruction and data bytes).
- 4. A rising edge on $\overline{\text{CS}}$ indicates the end on data transmission.




11.6.2 Default modes at start-up

During circuit initialization, it does not matter which output data standard has been selected. At power-up, the device enters Pin control mode.

A falling edge on \overline{CS} will trigger a transition to SPI control mode. When the ADC1115S125 enters SPI control mode, the output data standard (CMOS/LVDS DDR) is determined by the level on pin SDIO (see <u>Figure 23</u>). Once in SPI control mode, the output data standard can be changed via bit LVDS/CMOS in <u>Table 23</u>.

When the ADC1115S125 enters SPI control mode, the output data format (two's complement or offset binary) is determined by the level on pin SCLK (gray code can only be selected via the SPI). Once in SPI control mode, the output data format can be changed via bit DATA FORMAT[1:0] in Table 23.

Preliminary data sheet

11.6.3 Register allocation map

Table 18. Register allocation map

Addr.	Register name	R/W	Bit definiti	ion							Defaul
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bin
0005	Reset and operating mode	R/W	SW_RST		RESERVED	[2:0]	-	-	OP_MC	DDE[1:0]	0000
0006	Clock	R/W	-	-	-	SE_SEL	DIFF_SE	-	CLKDIV	DCS_EN	0000 0001
8000	Internal reference	R/W	-	-	-	-	INTREF_EN	11	NTREF[2:0]		0000
0010	Input buffer	R/W	-	-	-	-	-	-	IB_IBIAS[1:0	-	0000 0011
0011	Output data standard.	R/W	-	-	-	LVDS_ CMOS	OUTBUF	OUTBUS_SWAP	DATA_FO	RMAT[1:0]	0000
0012	Output clock	R/W	-	-	-	-	DAVINV	DAVPHASE[2:0]			0000 1110
0013	Offset	R/W	-	DIG_OFFSET[5:0]					0000		
0014	Test pattern 1	R/W	-	-	-	-	-	TES ⁻	TPAT_SEL[2:0		0000
0015	Test pattern 2	R/W				-	TESTPAT_USER[10	:3]			0000
0016	Test pattern 3	R/W	TEST	PAT_L	JSER[2:0]	-	-	-	-	-	0000
0017	Fast OTR	R/W	-	-	-	-	FASTOTR	FAST	OTR_DET[2:0]	0000
0020	CMOS output	R/W	-	-	-	-	DAV_E	DRV[1:0]	DATA_[DRV[1:0]	0000 1110
0021	LVDS DDR O/P 1	R/W	-	-	DAVI_x2_EN	[DAVI[1:0]	DATAI_x2_EN	DATA	AI[1:0]	0000
0022	LVDS DDR O/P 2	R/W	-	-	-	-	BIT_BYTE_WISE	LVDS	S_INT_TER[2:0)]	0000

Table 19. Reset and operating mode control register (address 0005h) bit description

Bit	Symbol	Access	Value	Description
7	SW_RST	R/W		reset digital section
			0	no reset
			1	performs a reset on SPI registers
6 to 4	RESERVED[2:0]		000	reserved
3 to 2	-		00	not used
1 to 0	OP_MODE[1:0]	R/W		operating mode
			00	normal (Power-up)
			01	Power-down
			10	Sleep
			11	normal (Power-up)

Table 20. Clock control register (address 0006h) bit description

Bit	Symbol	Access	Value	Description
7 to 5	-		000	not used
4	SE_SEL	R/W		single-ended clock input pin select
			0	CLKM
			1	CLKP
3	DIFF_SE	R/W		differential/single ended clock input select
			0	fully differential
			1	single-ended
2	-		0	not used
1	CLKDIV	R/W		clock input divide by 2
			0	disabled
			1	enabled
0	DCS_EN	R/W		duty cycle stabilizer
			0	disabled
			1	enabled

Table 21. Internal reference control register (address 0008h) bit description

Bit	Symbol	Access	Value	Description
7 to 4	-		0000	not used
3	3 INTREF_EN R/	R/W		programmable internal reference enable
			0	disable
			1	active
2 to 0	INTREF[2:0]	R/W		programmable internal reference
			000	0 dB (FS = 2 V)
			001	−1 dB (FS = 1.78 V)
			010	−2 dB (FS = 1.59 V)
			011	−3 dB (FS = 1.42 V)
			100	−4 dB (FS = 1.26 V)
			101	−5 dB (FS = 1.12 V)
			110	−6 dB (FS = 1 V)
			111	reserved

Table 22. Input buffer control register (address 0010h) bit description

Bit	Symbol	Access	Value	Description
7 to 2	-		000000	not used
1 to 0	IB_IBIAS[1:0]	R/W		input buffer bias current
			00	not used
			01	medium
			10	low
			11	high

Table 23. Output data standard control register (address 0011h) bit description

Bit	Symbol	Access	Value	Description
7 to 5	-		000	not used
4	LVDS_CMOS	R/W		output data standard: LVDS DDR or CMOS
			0	CMOS
			1	LVDS DDR
3	OUTBUF	R/W		output buffers enable
			0	output enabled
			1	output disabled (high Z)
2	OUTBUS_SWAP	R/W		output bus swapping
			0	no swapping
			1	output bus is swapped (MSB becomes LSB and vice versa)
1 to 0	DATA_FORMAT[1:0]	R/W		output data format
			00	offset binary
			01	two's complement
			10	gray code
			11	offset binary

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

Table 24. Output clock register (address 0012h) bit description

Bit	Symbol	Access	Value	Description
7 to 4	-		0000	not used
3	DAVINV	R/W		output clock data valid (DAV) polarity
			0	normal
			1	inverted
2 to 0	DAVPHASE[2:0]	R/W		DAV phase select
			000	output clock shifted (ahead) by 3 ns
			001	output clock shifted (ahead) by 2.5 ns
			010	output clock shifted (ahead) by 2 ns
			011	output clock shifted (ahead) by 1.5 ns
			100	output clock shifted (ahead) by 1 ns
			101	output clock shifted (ahead) by 0.5 ns
			110	default value as defined in timing section
			111	output clock shifted (delayed) by 0.5 ns

Table 25. Offset register (address 0013h) bit description

Bit	Symbol	Access	Value	Description
7 to 6	-		00	not used
5 to 0 DIG_OFFSET[5:0]	R/W		digital offset adjustment	
			011111	+31 LSB
			000000	0
			100000	−32 LSB

Table 26. Test pattern register 1 (address 0014h) bit description

				<u> </u>
Bit	Symbol	Access	Value	Description
7 to 3	-		00000	not used
2 to 0	TESTPAT_SEL[2:0]	R/W		digital test pattern select
			000	off
			001	mid scale
			010	-FS
			011	+FS
			100	toggle '11111111'/'00000000'
			101	custom test pattern
			110	'10101010.'
			111	'0101010'

Table 27. Test pattern register 2 (address 0015h) bit description

Bit	Symbol	Access	Value	Description
7 to 0	TESTPAT_USER[10:3]	R/W	00000000	custom digital test pattern (bits 10 to 3)

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

Table 28. Test pattern register 3 (address 0016h) bit description

Bit	Symbol	Access	Value	Description
7 to 5	TESTPAT_USER[2:0]	R/W	000	custom digital test pattern (bits 2 to 0)
4 to 0	-		00000	not used

Table 29. Fast OTR register (address 0017h) bit description

Bit	Symbol	Access	Value	Description
7 to 4	-		0000	not used
3	FASTOTR	R/W		fast Out-of-Range (OTR) detection
			0	disabled
			1	enabled
2 to 0	FASTOTR_DET[2:0]	R/W		set fast OTR detect level
			000	−20.56 dB
			001	–16.12 dB
			010	–11.02 dB
			011	−7.82 dB
			100	−5.49 dB
			101	−3.66 dB
			110	–2.14 dB
			111	-0.86 dB

Table 30. CMOS output register (address 0020h) bit description

Bit	Symbol	Access	Value	Description
7 to 4	-		0000	not used
3 to 2	DAV_DRV[1:0]	R/W		drive strength for DAV CMOS output buffer
		00	low	
			01	medium
			10	high
			11	very high
1 to 0	DATA_DRV[1:0]	-		drive strength for DATA CMOS output buffer
			00	low
			01	medium
			10	high
			11	very high

Table 31. LVDS DDR output register 1 (address 0021h) bit description

Bit	Symbol	Access	Value	Description
7 to 6	-		00	not used
5	DAVI_x2_EN	R/W		double LVDS current for DAV LVDS buffer
			0	disabled
			1	enabled
4 to 3	DAVI[1:0]	R/W		LVDS current for DAV LVDS buffer
			00	3.5 mA
			01	4.5 mA
			10	1.25 mA
			11	2.5 mA
2	DATAI_x2_EN	R/W		double LVDS current for DATA LVDS buffer
			0	disabled
			1	enabled
1 to 0	DATAI[1:0]	R/W		LVDS current for DATA LVDS buffer
			00	3.5 mA
			01	4.5 mA
			10	1.25 mA
			11	2.5 mA

Table 32. LVDS DDR output register 2 (address 0022h) bit description

Bit	Symbol	Access	Value	Description
7 to 4	-		0000	not used
3	BIT/BYTE_WISE	R/W		DDR mode for LVDS output
			0	bit wise (even data bits output on DAV rising edge / odd data bits output on DAV falling edge)
			1	byte wise (MSB data bits output on DAV rising edge / LSB data bits output on DAV falling edge)
2 to 0	LVDS_INTTER[2:0]	R/W		internal termination for LVDS buffer (DAV and DATA)
			000	no internal termination
			001	300 Ω
			010	180 Ω
			011	110 Ω
			100	150 Ω
			101	100 Ω
			110	81 Ω
			111	60 Ω

12. Package outline

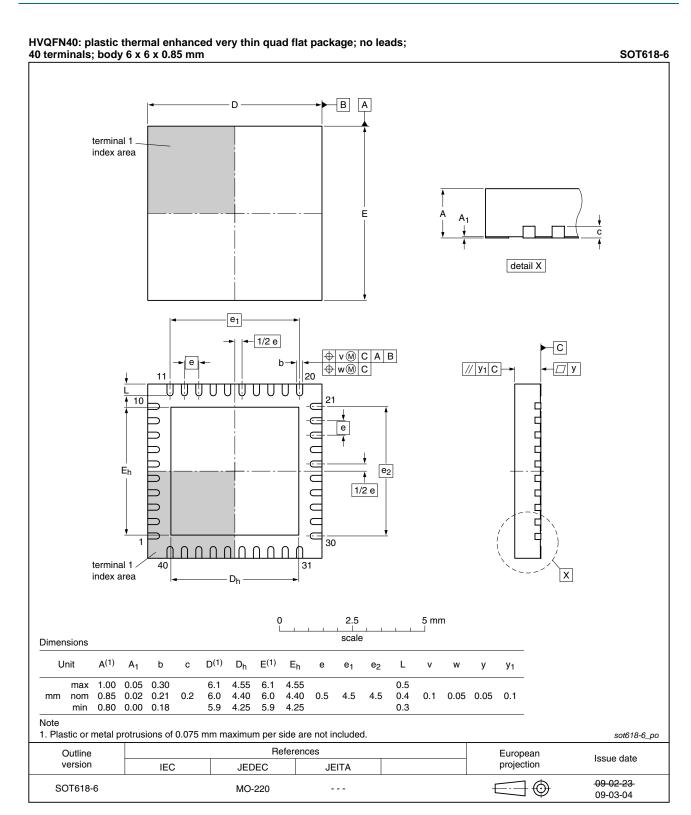


Fig 25. Package outline SOT618-6 (HVQFN40)

ADC1115S125_1

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

13. Revision history

Table 33. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
ADC1115S125_1	20100412	Preliminary data sheet	-	-

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

ADC1115S125_1

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

ADC1115S125

11-bit, 125 Msps ADC; input buffer; CMOS or LVDS DDR digital outputs

12

13 14 14.1 14.2 14.3 14.4

15

16

16. Contents

1	General description	1
2	Features and benefits	
_		
3	Applications	
4	Ordering information	
5	Block diagram	. 2
6	Pinning information	. 3
6.1	Pinning	
6.2	Pin description	. 3
7	Limiting values	. 5
8	Thermal characteristics	. 5
9	Static characteristics	. 5
10	Dynamic characteristics	
10.1	Dynamic characteristics	
10.1	Clock and digital output timing	
10.2	SPI timings	
10.5 11		
	Application information	
11.1 11.1.1	Device control	
11.1.2	Operating mode selection	
11.1.3 11.1.4	Selecting the output data standard	
11.1.4	·	
11.2.1	Analog inputs	
11.2.1	Transformer	
11.2.2	System reference and power management	
11.3.1	Internal/external references	
11.3.2	Reference gain control	
11.3.3	Common-mode output voltage (V _{O(cm)})	
11.3.4	Biasing	16
11.4	Clock input	
11.4.1	Drive modes	
11.4.2	Equivalent input circuit	
11.4.3	Duty cycle stabilizer	
11.4.4	Clock input divider	
11.5	Digital outputs	
11.5.1	Digital output buffers: CMOS mode	19
11.5.2	Digital output buffers: LVDS DDR mode	20
11.5.3	Data valid (DAV) output clock	
11.5.4	Out-of-Range (OTR)	21
11.5.5	Digital offset	
11.5.6	Test patterns	
11.5.7	Output codes versus input voltage	22
11.6	Serial Peripheral Interface (SPI)	
11.6.1	Register description	
11.6.2	Default modes at start-up	
11.6.3	Register allocation map	25

Package outline	31
Revision history	32
Legal information	33
Data sheet status	33
Definitions	33
Disclaimers	33
Trademarks	34
Contact information	34
Contents	35

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.