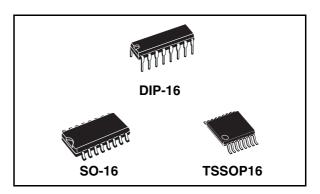


STPIC6D595

Power logic 8-bit shift register


Features

- Low $R_{DS(on)}$: 4Ω typ
- Eight 100mA DMOS outputs
- 250mA current limit capability
- Device are cascadable
- Low power consumption

Description

This STPIC6D595 is a monolithic, mediumvoltage, low current power 8-bit shift register designed for use in systems that require relatively moderate load power such as LEDs.

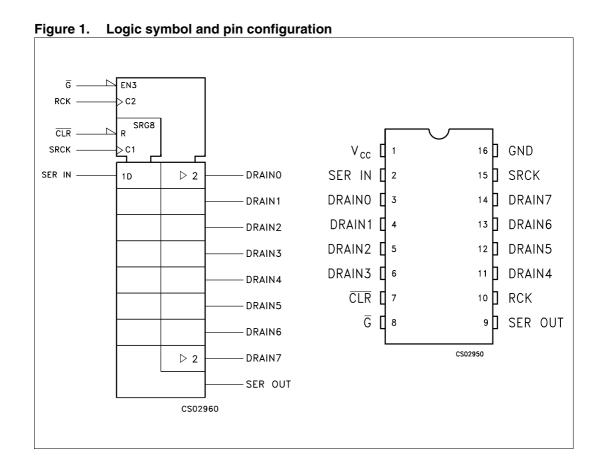
The device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage register clock (SRCK) and the register clock (RCK), respectively. The device transfers data out the serial output (SER OUT) port on the rising edge of SRCK. The storage register transfers data to the output buffer when shift register clear (CLR) is high. When $\overline{\text{CLR}}$ is low, the input shift register is cleared. When output enable $\overline{\text{(G)}}$ is held high, all data in the output buffer is held low and all drain output are off. When G is held low, data from the storage register is transparent to the output buffer.

When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs have sink-current capability. The SER OUT allows for cascading of the data from the shift register to additional devices.

Output are low-side, open-drain DMOS transistors with output ratings of 20V and 120mA continuous sink-current capability. Each output provides a 250 mA maximum current limit at $T_{\rm C}=25^{\circ}{\rm C}.$ The current limit decreases as the junction temperature increases for additional device protection. The device also provides up to 2.0KV of ESD protection when tested using the human-body model.

The STPIC6D595 is characterized for operation over the operating case temperature range of -40°C to 125°C.

Table 1. Device summary


Order code	Package	Packaging
STPIC6D595M	SO-16 (Tube)	50 parts per tube / 20 tube per box
STPIC6D595MTR	SO-16 (Tape & Reel)	2500 parts per reel
STPIC6D595TTR	TSSOP16 (Tape & Reel)	2500 parts per reel
STPIC6D595B1	DIP-16	2500 parts per reel

Contents STPIC6D595

Contents

1	Logi	c symbol and pin configuration	. 3
2	Maxi	mum rating	. 4
	2.1	Absolute maximum ratings	. 4
	2.2	Thermal data	. 4
	2.3	Recommended operating conditions	. 5
3	Elec	trical characteristics	. 6
	3.1	DC characteristics	. 6
	3.2	Switching characteristics	. 7
4	Logi	c diagram	. 8
5	Туріс	cal operating circuit	. 9
6	Pack	age mechanical data	13
7	Revi	sion history	19

1 Logic symbol and pin configuration

Maximum rating STPIC6D595

2 Maximum rating

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

2.1 Absolute maximum ratings

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Logic supply voltage (See Note 1)	7	V
V _I	Logic input voltage range	-0.3 to 7	V
V_{DS}	Power DMOS drain to source voltage (See Note 2)	20	V
I _{DS}	Continuous source to drain diode anode current	250	mA
I _D	Pulsed drain current, each output, all output ON $(T_C = 25^{\circ}C)$	250	mA
I _D	Continuous current, each output, All Output ON $(T_C = 25^{\circ}C)$	100	mA
I _D	Peak drain current single output (T _C = 25°C) (See <i>Note 3</i>)	250	mA
P_{d}	Continuous total dissipation (T _C ≤ 25°C)	1087	mW
P_{d}	Continuous total dissipation (T _C = 125°C)	217	mW
T _J	Operating virtual junction temperature range	-40 to +150	°C
T _C	Operating case temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-65 to +150	°C
T _L	Lead temperature 1.6mm (1/16inch) from case for 10 seconds	260	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th(JA)}	Thermal resistance junction-ambient	115	°C/W

STPIC6D595 Maximum rating

2.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Min	Max	Unit
V _{CC}	Logic supply voltage	4.5	5.5	V
V _{IH}	High level input voltage	0.85V _{CC}	V _{CC}	V
V _{IL}	LoW Level Input Voltage	0	0.15V _{CC}	V
I _{DP}	Pulse drain output current (T _C = 25°C, V _{CC} = 5V,all outputs ON) (see <i>Note 3</i> , <i>Note 4</i>)		250	mA
t _{su}	Set-up Time, SER IN High Before SRCK ↑ (see <i>Figure 3</i> and <i>Figure 7</i>)	20		ns
t _h	Hold Time, SER IN High Before G ↑ (see Figure Figure 3, Figure 6, Figure 7)	20		ns
t _W	Pulse duration (see Figure 7)	40		ns
T _C	Operating case temperature	-40	125	°C

Electrical characteristics STPIC6D595

3 Electrical characteristics

3.1 DC characteristics

Table 5. DC characteristics ($V_{CC} = 5V$, $T_{C} = 25^{\circ}C$, unless otherwise specified.)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{(BR)DSX}	Drain-to-source breakdown voltage	I _D = 1mA			20	٧
V _{OH}	High level output	$I_{OH} = -20 \mu AV_{CC} = 4.5V$	4.4	4.49		V
VOH	voltage SER OUT	$I_{OH} = -4 \text{ mAV}_{CC} = 4.5 \text{V}$	4			V
V _{OL}	Low level output	$I_{OH} = 20 \ \mu AV_{CC} = 4.5V$		1	100	mV
VOL	voltage SER OUT	$I_{OH} = 4 \text{ mAV}_{CC} = 4.5 \text{V}$		145	300	mV
I _{IH}	High level input current	$V_{CC} = 5.5VV_I = V_{CC}$		1	100	nA
I _{IL}	Low level input current	$V_{CC} = 5.5VV_I = 0$		-1	-100	nA
Icc	Logic supply current	$V_{CC} = 5.5V$ All outputs OFF or ON		23	40	μА
I _{CC(FRQ)}	Logic supply current at frequency	$f_{SRCK} = 5MHzC_L = 30pF$ All outputs OFF (See <i>Figure 5</i> , ⁽¹⁾)		70	250	μА
I _N	Nominal current	winal current $ \begin{array}{c} V_{DS(on)} = 0.5 V I_{N} = I_{D} \\ T_{C} = 85^{\circ} C \\ (See \ \textit{Note 4}, \ \textit{Note 5}, \ \textit{Note 6}) \\ (1) \end{array} $		120	200	μΑ
		$V_{DS} = 20VV_{CC} = 5.5V$		0.02	1	μА
I _{DSX}	Off-state drain current	$V_{DS} = 20VV_{CC} = 5.5V \text{ or } 0V$ $T_C = 125^{\circ}C$		0.5	1	μА
	Static drain source on	$I_D = 50 \text{mAV}_{CC} = 4.5 \text{V}$		3.4	4	Ω
R _{DS(on)}	Static drain source on state resistance (See <i>Note 4</i> , and	$I_D = 50 \text{mAV}_{CC} = 4.5 \text{V}$ $T_C = 125 ^{\circ}\text{C}$		4.8	6	Ω
	Note 5)	$I_D = 100 \text{mAV}_{CC} = 4.5 \text{V}$		3.5	6	Ω

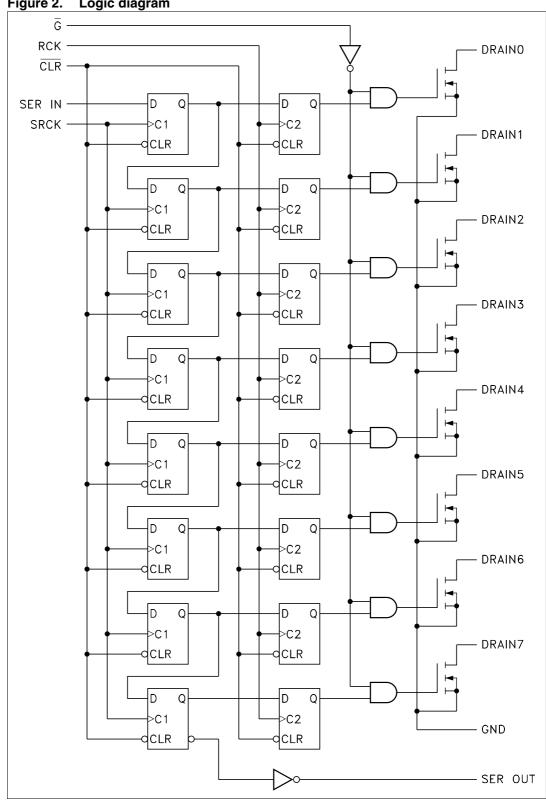
^{1.} Not tested, specified by design

3.2 Switching characteristics

Table 6. Switching characteristics ($V_{CC} = 5V$, $T_C = 25$ °C, unless otherwise specified.)

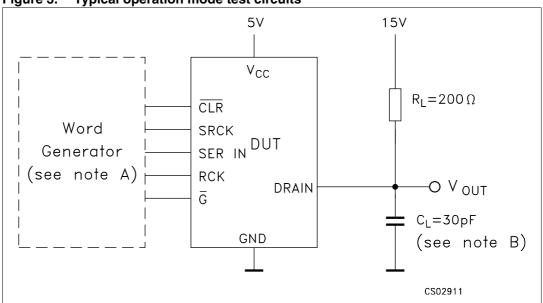
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{PHL}	Propagation delay time, high to low level output from \overline{G}			19	30	ns
t _{PLH}	Propagation delay time, low to high level output from \overline{G}			46	70	ns
t _{PHL-SDO}	Propagation delay time, Clock to SDO			14	20	ns
t _{PLH-SDO}	Propagation delay time, Clock to SDO	0 00-51 75-4		14	20	ns
t _{PLH-R_O}	Propagation delay low to high level RCK to OUT	$C_L = 30 \text{pFI}_D = 75 \text{mA}$ (See Figure 3, Figure 4, Figure 5,		62	90	ns
t _{PHL-R_O}	Propagation delay high to low level RCK to OUT	Figure 6,)		13	18	ns
t _{PLH-S_SO}	Propagation delay low to high level SCK to SDO			14	20	ns
t _{PHL-S_SO}	Propagation delay high to low level SCK to SDO			14	20	ns
t _r	Rise time, drain output			20	30	ns
t _f	Fall time, drain output			15	20	ns

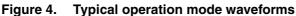
Note: 1

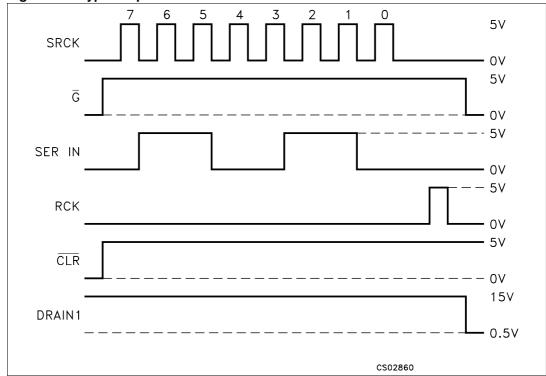

- 1 All voltage value are with respect to GND
- 2 Each power DMOS source is internally connected to GND
- 3 Pulse duration \leq 100 μ s and duty cycle \leq 2%
- 4 Technique should limit T_J T_C to 10°C maximum
- 5 These parameters are measured with voltage sensing contacts separate from the current-carrying contacts.
- Nominal Current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5V at $T_C = 85$ °C.

5/

Logic diagram STPIC6D595


Logic diagram 4

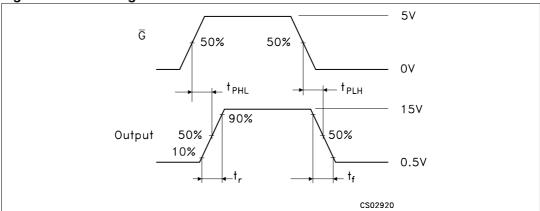




5 Typical operating circuit

Figure 3. Typical operation mode test circuits

Note: 1 A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulse repetition rate (PRR) = 5KHz, $Z_O = 50\Omega$


2 B) C_1 includes probe and jig capacitance.

CS02911

15V 5٧ V_{CC} $R_L=200\Omega$ $\overline{\text{CLR}}$ Word SRCK SER IN DUT Generator (see note A) RCK -О V _{оит} DRAIN $\bar{\mathsf{G}}$ $C_L = 30pF$ GND (see note B)

Typical operation mode test circuits

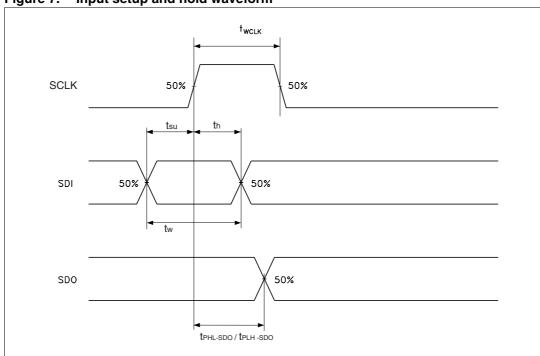


Figure 7. Input setup and hold waveform

Note: 1 A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulse repetition rate (PRR) = 5KHz, $Z_O = 50\Omega$

2 B) C_L includes probe and jig capacitance.

Figure 8. Input equivalent circuit

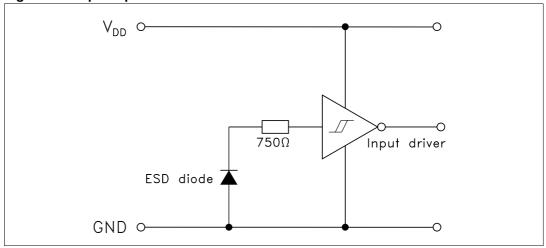
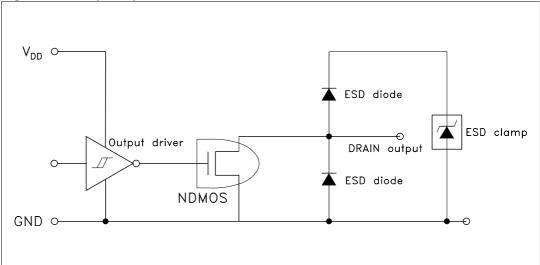
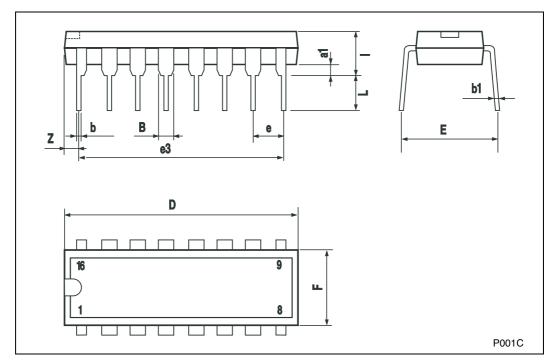
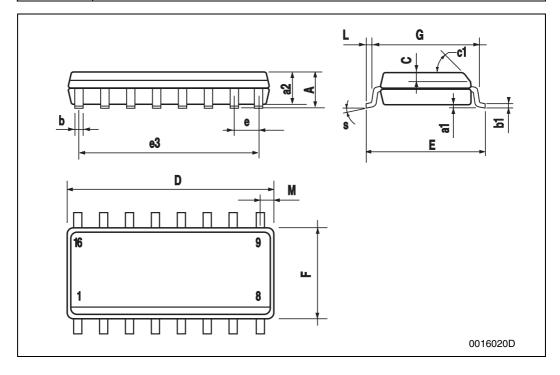



Figure 9. Output equivalent circuit

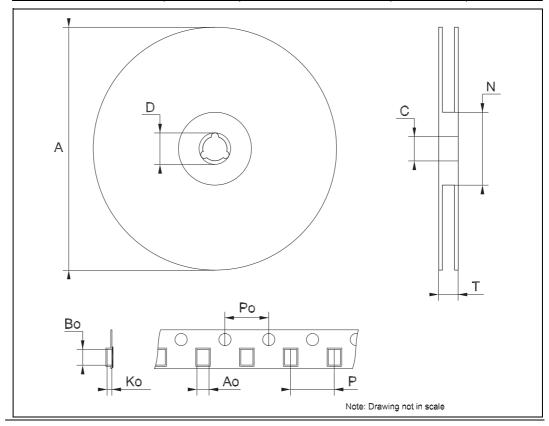

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

13/20

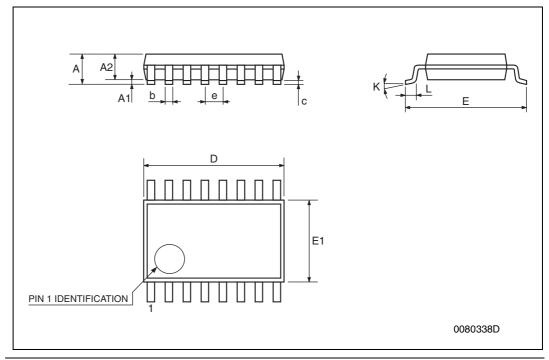

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
1			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

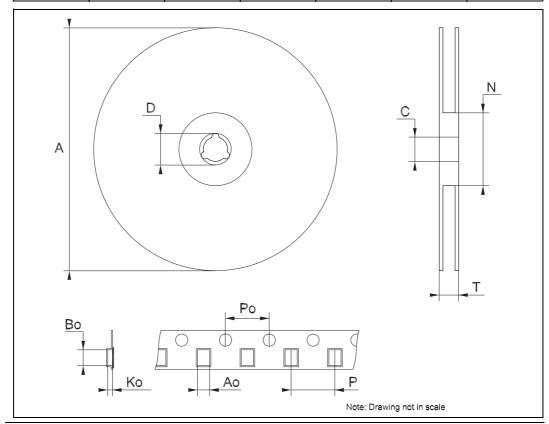


SO-16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.25	0.004		0.010	
a2			1.64			0.063	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S		•	8° (ı	max.)	•		



DIM.	mm.			inch		
Diw.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.45		6.65	0.254		0.262
Во	10.3		10.5	0.406		0.414
Ko	2.1		2.3	0.082		0.090
Ро	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319


TSSOP16 MECHANICAL DATA

DIM		mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
Α			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0079	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

Tape & Reel TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ко	1.6		1.8	0.063		0.071
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

STPIC6D595 Revision history

7 Revision history

Table 7. Document revision history

Date	Revision	Changes	
20-Jun-2007	1	First release	
06-Sep-2007	2	Change from Preliminary to final version	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com